1
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
2
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
3
|
Feigin A, Evans EE, Fisher TL, Leonard JE, Smith ES, Reader A, Mishra V, Manber R, Walters KA, Kowarski L, Oakes D, Siemers E, Kieburtz KD, Zauderer M. Pepinemab antibody blockade of SEMA4D in early Huntington's disease: a randomized, placebo-controlled, phase 2 trial. Nat Med 2022; 28:2183-2193. [PMID: 35941373 PMCID: PMC9361919 DOI: 10.1038/s41591-022-01919-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
SIGNAL is a multicenter, randomized, double-blind, placebo-controlled phase 2 study (no. NCT02481674) established to evaluate pepinemab, a semaphorin 4D (SEMA4D)-blocking antibody, for treatment of Huntington's disease (HD). The trial enrolled a total of 265 HD gene expansion carriers with either early manifest (EM, n = 179) or late prodromal (LP, n = 86) HD, randomized (1:1) to receive 18 monthly infusions of pepinemab (n = 91 EM, 41 LP) or placebo (n = 88 EM, 45 LP). Pepinemab was generally well tolerated, with a relatively low frequency of serious treatment-emergent adverse events of 5% with pepinemab compared to 9% with placebo, including both EM and LP participants. Coprimary efficacy outcome measures consisted of assessments within the EM cohort of (1) a two-item HD cognitive assessment family comprising one-touch stockings of Cambridge (OTS) and paced tapping (PTAP) and (2) clinical global impression of change (CGIC). The differences between pepinemab and placebo in mean change (95% confidence interval) from baseline at month 17 for OTS were -1.98 (-4.00, 0.05) (one-sided P = 0.028), and for PTAP 1.43 (-0.37, 3.23) (one-sided P = 0.06). Similarly, because a significant treatment effect was not observed for CGIC, the coprimary endpoint, the study did not meet its prespecified primary outcomes. Nevertheless, a number of other positive outcomes and post hoc subgroup analyses-including additional cognitive measures and volumetric magnetic resonance imaging and fluorodeoxyglucose-positron-emission tomography imaging assessments-provide rationale and direction for the design of a phase 3 study and encourage the continued development of pepinemab in patients diagnosed with EM HD.
Collapse
Affiliation(s)
- Andrew Feigin
- New York University Langone Health and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York, NY, USA
| | | | | | | | | | | | | | | | | | - Lisa Kowarski
- WCG Statistics Collaborative, Inc., Washington, DC, USA
| | - David Oakes
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
4
|
Evans EE, Mishra V, Mallow C, Gersz EM, Balch L, Howell A, Reilly C, Smith ES, Fisher TL, Zauderer M. Semaphorin 4D is upregulated in neurons of diseased brains and triggers astrocyte reactivity. J Neuroinflammation 2022; 19:200. [PMID: 35933420 PMCID: PMC9356477 DOI: 10.1186/s12974-022-02509-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The close interaction and interdependence of astrocytes and neurons allows for the possibility that astrocyte dysfunction contributes to and amplifies neurodegenerative pathology. Molecular pathways that trigger reactive astrocytes may represent important targets to preserve normal homeostatic maintenance and modify disease progression. METHODS Semaphorin 4D (SEMA4D) expression in the context of disease-associated neuropathology was assessed in postmortem brain sections of patients with Huntington's (HD) and Alzheimer's disease (AD), as well as in mouse models of HD (zQ175) and AD (CVN; APPSwDI/NOS2-/-) by immunohistochemistry. Effects of SEMA4D antibody blockade were assessed in purified astrocyte cultures and in the CVN mouse AD model. CVN mice were treated weekly from 26 to 38 weeks of age; thereafter mice underwent cognitive assessment and brains were collected for histopathology. RESULTS We report here that SEMA4D is upregulated in neurons during progression of neurodegenerative diseases and is a trigger of reactive astrocytes. Evidence of reactive astrocytes in close proximity to neurons expressing SEMA4D is detected in brain sections of patients and mouse models of HD and AD. We further report that SEMA4D-blockade prevents characteristic loss of GABAergic synapses and restores spatial memory and learning in CVN mice, a disease model that appears to reproduce many features of AD-like pathology including neuroinflammation. In vitro mechanistic studies demonstrate that astrocytes express cognate receptors for SEMA4D and that ligand binding triggers morphological variations, and changes in expression of key membrane receptors and enzymes characteristic of reactive astrocytes. These changes include reductions in EAAT-2 glutamate transporter and glutamine synthetase, key enzymes in neurotransmitter recycling, as well as reduced GLUT-1 glucose and MCT-4 lactate transporters, that allow astrocytes to couple energy metabolism with synaptic activity. Antibody blockade of SEMA4D prevented these changes and reversed functional deficits in glucose uptake. CONCLUSIONS Collectively, these results suggest that SEMA4D blockade may ameliorate disease pathology by preserving normal astrocyte function and reducing the negative consequences of reactive astrogliosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Alan Howell
- Vaccinex, Inc., Research, Rochester, NY, USA
| | | | | | | | - Maurice Zauderer
- Vaccinex, Inc., Research, Rochester, NY, USA.
- Department of Neurology, Center for Health and Technology (SMD), University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
6
|
Mao Y, Evans EE, Mishra V, Balch L, Eberhardt A, Zauderer M, Gold WA. Anti-Semaphorin 4D Rescues Motor, Cognitive, and Respiratory Phenotypes in a Rett Syndrome Mouse Model. Int J Mol Sci 2021; 22:ijms22179465. [PMID: 34502373 PMCID: PMC8431088 DOI: 10.3390/ijms22179465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023] Open
Abstract
Rett syndrome is a neurodevelopmental disorder caused by mutations of the methyl-CpG binding protein 2 gene. Abnormal physiological functions of glial cells contribute to pathogenesis of Rett syndrome. Semaphorin 4D (SEMA4D) regulates processes central to neuroinflammation and neurodegeneration including cytoskeletal structures required for process extension, communication, and migration of glial cells. Blocking SEMA4D-induced gliosis may preserve normal glial and neuronal function and rescue neurological dysfunction in Rett syndrome. We evaluated the pre-clinical therapeutic efficacy of an anti-SEMA4D monoclonal antibody in the Rett syndrome Mecp2T158A transgenic mouse model and investigated the contribution of glial cells as a proposed mechanism of action in treated mice and in primary glial cultures isolated from Mecp2T158A/y mutant mice. SEMA4D is upregulated in neurons while glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1-positive cells are upregulated in Mecp2T158A/y mice. Anti-SEMA4D treatment ameliorates Rett syndrome-specific symptoms and improves behavioural functions in both pre-symptomatic and symptomatic cohorts of hemizygous Mecp2T158A/y male mice. Anti-SEMA4D also reduces astrocyte and microglia activation in vivo. In vitro experiments demonstrate an abnormal cytoskeletal structure in mutant astrocytes in the presence of SEMA4D, while anti-SEMA4D antibody treatment blocks SEMA4D–Plexin B1 signaling and mitigates these abnormalities. These results suggest that anti-SEMA4D immunotherapy may be an effective treatment option to alleviate symptoms and improve cognitive and motor function in Rett syndrome.
Collapse
Affiliation(s)
- Yilin Mao
- Molecular Neurobiology Research Laboratory, Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Elizabeth E. Evans
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Vikas Mishra
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Leslie Balch
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Allison Eberhardt
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Maurice Zauderer
- Vaccinex Inc., Rochester, NY 14620, USA; (E.E.E.); (V.M.); (L.B.); (A.E.); (M.Z.)
| | - Wendy A. Gold
- Molecular Neurobiology Research Laboratory, Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Westmead, NSW 2145, Australia;
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Molecular Neurobiology Research Laboratory, The Children’s Medical Research Institute, Westmead, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
7
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|
8
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
9
|
Lee WS, Lee WH, Bae YC, Suk K. Axon Guidance Molecules Guiding Neuroinflammation. Exp Neurobiol 2019; 28:311-319. [PMID: 31308791 PMCID: PMC6614065 DOI: 10.5607/en.2019.28.3.311] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Axon guidance molecules (AGMs), such as Netrins, Semaphorins, and Ephrins, have long been known to regulate axonal growth in the developing nervous system. Interestingly, the chemotactic properties of AGMs are also important in the postnatal period, such as in the regulation of immune and inflammatory responses. In particular, AGMs play pivotal roles in inflammation of the nervous system, by either stimulating or inhibiting inflammatory responses, depending on specific ligand-receptor combinations. Understanding such regulatory functions of AGMs in neuroinflammation may allow finding new molecular targets to treat neurodegenerative diseases, in which neuroinflammation underlies aetiology and progression.
Collapse
Affiliation(s)
- Won Suk Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
10
|
Markus T, Ley D, Hansson SR, Wieloch T, Ruscher K. Neuroprotective dobutamine treatment upregulates superoxide dismutase 3, anti-oxidant and survival genes and attenuates genes mediating inflammation. BMC Neurosci 2018. [PMID: 29523072 PMCID: PMC5845293 DOI: 10.1186/s12868-018-0415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Labor subjects the fetus to an hypoxic episode and concomitant adrenomodullary catecholamine surge that may provide protection against the hypoxic insult. The beta1-adrenergic agonist dobutamine protects against hypoxia/aglycemia induced neuronal damage. We aimed to identify the associated protective biological processes involved. Results Hippocampal slices from 6 days old mice showed significant changes of gene expression comparing slices with or without dobutamine (50 mM) in the following two experimental paradigms: (1) control conditions versus lipopolysacharide (LPS) stimulation and (2) oxygen–glucose deprivation (OGD), versus combined LPS/OGD. Dobutamine depressed the inflammatory response by modifying the toll-like receptor-4 signalling pathways, including interferon regulatory factors and nuclear factor κ B activation in experimental paradigm 1. The anti-oxidant defense genes superoxide dismutase 3 showed an upregulation in the OGD paradigm while thioredoxin reductase was upregulated in LPS paradigm. The survival genes Bag-3, Tinf2, and TMBIM-1, were up-regulated in paradigm 1. Moreover, increased levels of SOD3 were verified on the protein level 24 h after OGD and control stimulation in cultures with or without preconditioning with LPS and dobutamine, respectively. Conclusions Neuroprotective treatment with dobutamine depresses expression of inflammatory mediators and promotes the defense against oxidative stress and depresses apoptotic genes in a model of neonatal brain hypoxia/ischemia interpreted as pharmacological preconditioning. We conclude that beta1-adrenoceptor activation might be an efficient strategy for identifying novel pharmacological targets for protection of the neonatal brain. Electronic supplementary material The online version of this article (10.1186/s12868-018-0415-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tina Markus
- Department of Pediatrics, Lund University, Lund, Sweden
| | - David Ley
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Department of Obstetrics and Gynecology, Lund University, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
11
|
Zhou YF, Li YN, Jin HJ, Wu JH, He QW, Wang XX, Lei H, Hu B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats. FASEB J 2018; 32:2181-2196. [PMID: 29242274 DOI: 10.1096/fj.201700786rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory process in stroke is the major contributor to blood-brain barrier (BBB) breakdown. Previous studies indicated that semaphorin 4D (Sema4D), an axon guidance molecule, initiated inflammatory microglial activation and disrupted endothelial function in the CNS. However, whether Sema4D disrupts BBB integrity after stroke remains unclear. To study the effect of Sema4D on BBB disruption in stroke, rats were subjected to transient middle cerebral artery occlusion and targeted injection of lentivirus-mediated clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene disruption of PlexinB1. We found that Sema4D synchronously increased with BBB permeability and accumulated in the perivascular area after stroke. Suppressing Sema4D/PlexinB1 signaling in the periinfarct cortex significantly decreased BBB permeability as detected by MRI and fibrin deposition, and thereby improved stroke outcome. In vitro, we confirmed that Sema4D disrupted BBB integrity and endothelial tight junctions. Moreover, we found that Sema4D induced pericytes to acquire a CD11b-positive phenotype and express proinflammatory cytokines. In addition, Sema4D inhibited AUF1-induced proinflammatory mRNA decay effect. Taken together, our data provides evidence that Sema4D disrupts BBB integrity and promotes an inflammatory response by binding to PlexinB1 in pericytes after transient middle cerebral artery occlusion. Our study indicates that Sema4D may be a novel therapeutic target for treatment in the acute phase of stroke.-Zhou, Y.-F., Li, Y.-N., Jin, H.-J., Wu, J.-H., He, Q.-W., Wang, X.-X., Lei, H., Hu, B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Xia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Peng SX, Yao L, Cui C, Zhao HD, Liu CJ, Li YH, Wang LF, Huang SB, Shen YQ. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury. Neuroscience 2017; 351:36-46. [PMID: 28347780 DOI: 10.1016/j.neuroscience.2017.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 01/03/2023]
Abstract
Semaphorins comprise a family of proteins involved in axon guidance during development. Semaphorin4D (Sema4D) has both neuroregenerative and neurorepressive functions, being able to stimulate both axonal outgrowth and growth cone collapse during development, and therefore could play an important role in neurological recovery from traumatic injury. Here, we used a zebrafish spinal cord transection model to study the role of Sema4D in a system capable of neuroregeneration. Real-time qPCR and in situ hybridization showed upregulated Sema4D expression in the acute response phase (within 3days post SCI), and downregulated levels in the chronic response phase (11-21days after SCI). Double-immunostaining for Sema4D and either Islet-1 (motoneuron marker) or Iba-1 (microglial marker) showed that microglia surrounded Sema4D-positive motoneurons along the central canal at 4h post injury (hpi) and 12hpi. Following administration of Sema4D morpholino (MO) to transected zebrafish, double-immunostaining showed that Sema4D-positive motoneurons surrounded by microglia decreased at 7days and 11days compared with standard control MO. Anterograde and retrograde tracing indicate that Sema4D participates in axon regeneration in the spinal cord following spinal cord injury (SCI) in the zebrafish. Swim tracking shows that MO-mediated inhibition of Sema4D retarded the recovery of swimming function when compared to standard control MO. The combined results indicate that Sema4D expression in motoneurons enhances locomotor recovery and axon regeneration, possibly by regulating microglia function, after SCI in adult zebrafish.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li Yao
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chun Cui
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hou-de Zhao
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chun-Jie Liu
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yu-Hong Li
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lin-Fang Wang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shu-Bing Huang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yan-Qin Shen
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
13
|
Gurrapu S, Tamagnone L. Transmembrane semaphorins: Multimodal signaling cues in development and cancer. Cell Adh Migr 2016; 10:675-691. [PMID: 27295627 DOI: 10.1080/19336918.2016.1197479] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semaphorins constitute a large family of membrane-bound and secreted proteins that provide guidance cues for axon pathfinding and cell migration. Although initially discovered as repelling cues for axons in nervous system, they have been found to regulate cell adhesion and motility, angiogenesis, immune function and tumor progression. Notably, semaphorins are bifunctional cues and for instance can mediate both repulsive and attractive functions in different contexts. While many studies focused so far on the function of secreted family members, class 1 semaphorins in invertebrates and class 4, 5 and 6 in vertebrate species comprise around 14 transmembrane semaphorin molecules with emerging functional relevance. These can signal in juxtacrine, paracrine and autocrine fashion, hence mediating long and short range repulsive and attractive guidance cues which have a profound impact on cellular morphology and functions. Importantly, transmembrane semaphorins are capable of bidirectional signaling, acting both in "forward" mode via plexins (sometimes in association with receptor tyrosine kinases), and in "reverse" manner through their cytoplasmic domains. In this review, we will survey known molecular mechanisms underlying the functions of transmembrane semaphorins in development and cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| | - Luca Tamagnone
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| |
Collapse
|
14
|
Rapidly activated epidermal growth factor receptor mediates lipopolysaccharide-triggered migration of microglia. Neurochem Int 2015. [PMID: 26209152 DOI: 10.1016/j.neuint.2015.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previous reports have suggested that epidermal growth factor receptor (EGFR) is involved in microglia activation characterized by cell morphology changes, cytokine production and cell migration; and the biochemical regulation of the microglia migration is a potential therapeutic target following CNS inflammatory damages. However, the role of EGFR in microglia motility after inflammatory stimulation remains unknown. In the present study, lipopolysaccharide (LPS) was found to trigger rapid EGFR phosphorylation within 10 min, which was sustained during long-term stimulation in both primary microglial cells and the cultured BV2 microglial cells, furthermore, blocking EGFR phosphorylation by AG1478 significantly attenuated the LPS-induced chemotactic and chemokinetic migration of microglia. In addition, LPS could initiate calcium oscillation in microglia during live-cell recording, however, an intracellular calcium chelator and a selective inhibitor of calcium/calmodulin-dependent protein kinase II, but not an extracellular calcium chelator, remarkably suppressed the LPS-induced EGFR phosphorylation in BV2 microglia cells. As EGFR is not a traditional receptor for LPS, these findings suggest that the rapid phosphorylation of EGFR is attributed to the LPS-triggered intracellular calcium mobilization. By examining the downstream signals of EGFR, we further proved that extracellular signal-regulated kinase (ERK) is essential for EGFR-mediated microglia migration, because ERK inhibition attenuated the chemotactic and chemokinetic migration of microglia that had been induced by either LPS or EGF. Collectively, these results suggest that LPS could trigger the rapid phosphorylation of EGFR and subsequent ERK activation through mobilizing calcium activity, which underlies the microglia migration in an inflammatory condition.
Collapse
|
15
|
Amor S, Peferoen LAN, Vogel DYS, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases--an update. Immunology 2014; 142:151-66. [PMID: 24329535 DOI: 10.1111/imm.12233] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration, the progressive dysfunction and loss of neurons in the central nervous system (CNS), is the major cause of cognitive and motor dysfunction. While neuronal degeneration is well-known in Alzheimer's and Parkinson's diseases, it is also observed in neurotrophic infections, traumatic brain and spinal cord injury, stroke, neoplastic disorders, prion diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as neuropsychiatric disorders and genetic disorders. A common link between these diseases is chronic activation of innate immune responses including those mediated by microglia, the resident CNS macrophages. Such activation can trigger neurotoxic pathways leading to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory processes, and repair and regeneration. The adaptive immune response is implicated in neurodegenerative diseases contributing to tissue damage, but also plays important roles in resolving inflammation and mediating neuroprotection and repair. The growing awareness that the immune system is inextricably involved in mediating damage as well as regeneration and repair in neurodegenerative disorders, has prompted novel approaches to modulate the immune system, although it remains whether these approaches can be used in humans. Additional factors in humans include ageing and exposure to environmental factors such as systemic infections that provide additional clues that may be human specific and therefore difficult to translate from animal models. Nevertheless, a better understanding of how immune responses are involved in neuronal damage and regeneration, as reviewed here, will be essential to develop effective therapies to improve quality of life, and mitigate the personal, economic and social impact of these diseases.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, the Netherlands; Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim EA, Han AR, Choi J, Ahn JY, Choi SY, Cho SW. Anti-inflammatory mechanisms of N-adamantyl-4-methylthiazol-2-amine in lipopolysaccharide-stimulated BV-2 microglial cells. Int Immunopharmacol 2014; 22:73-83. [PMID: 24975832 DOI: 10.1016/j.intimp.2014.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/10/2014] [Indexed: 01/03/2023]
Abstract
The activation of microglia is crucially associated with the neurodegeneration observed in many neuroinflammatory pathologies, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. We have examined various thiazole derivatives with the goal of developing new anti-neuroinflammatory drugs. Thiazole derivatives are attractive candidates for drug development, because they are efficiently synthesized and active against a number of disease organisms and conditions, including neurodegenerative disorders. The present study investigated the effects of a new compound, N-adamantyl-4-methylthiazol-2-amine (KHG26693), against lipopolysaccharide (LPS)-induced inflammation in cultured BV-2 microglial cells. KHG26693 suppressed several inflammatory responses in LPS-activated cells, as evidenced by decreased levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), hydrogen peroxide (H(2)O(2)), reactive oxygen species (ROS), nitric oxide (NO), and lipid peroxidation. These anti-inflammatory/antioxidative actions occurred as a result of the downregulation of NADPH oxidase (NOX), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) content, but not as a result of the upregulation of superoxide dismutase (SOD) or catalase activity. The pharmacological properties of KHG26693 were also facilitated via inhibition of both the cluster of differentiation 14 (CD14)/toll-like receptor 4 (TLR4)-dependent nuclear factor kappa B (NF-κB) signaling pathway and extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, KHG26693 successfully blocked the migration of LPS-activated microglia, most likely by modulating the ERK pathway. Taken together, these results demonstrate that the anti-inflammatory and antioxidative actions of KHG26693 are mediated, at least in part, through the control of microglial activation.
Collapse
Affiliation(s)
- Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - A Reum Han
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jiyoung Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
17
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
18
|
Abstract
Studies of neural repair after stroke have developed from a relatively small number of laboratories doing highly creative discovery science to a field in which reproducible evidence supports distinct pathways, processes, and molecules that promote recovery. This review focuses on some emerging targets for neural repair or recovery in stroke and on their limitations.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Okuno T, Nakatsuji Y, Moriya M, Takamatsu H, Nojima S, Takegahara N, Toyofuku T, Nakagawa Y, Kang S, Friedel RH, Sakoda S, Kikutani H, Kumanogoh A. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2009; 184:1499-506. [PMID: 20038643 DOI: 10.4049/jimmunol.0903302] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although semaphorins were originally identified as axonal guidance molecules during neuronal development, it is emerging that several semaphorins play crucial roles in various phases of immune responses. Sema4D/CD100, a class IV semaphorin, has been shown to be involved in the nervous and immune systems through its receptors plexin-B1 and CD72, respectively. However, the involvement of Sema4D in neuroinflammation still remains unclear. We found that Sema4D promoted inducible NO synthase expression by primary mouse microglia, the effects of which were abolished in plexin-B1-deficient but not in CD72-deficient microglia. In addition, during the development of experimental autoimmune encephalomyelitis (EAE), which was induced by immunization with myelin oligodendrocyte glycoprotein-derived peptides, we observed that the expression of Sema4D and plexin-B1 was induced in infiltrating mononuclear cells and microglia, respectively. Consistent with these expression profiles, when myelin oligodendrocyte glycoprotein-specific T cells derived from wild-type mice were adoptively transferred into plexin-B1-deficient mice or bone marrow chimera mice with plexin-B1-deficient CNS resident cells, the development of EAE was considerably attenuated. Furthermore, blocking Abs against Sema4D significantly inhibited neuroinflammation during EAE development. Collectively, our findings demonstrate the role of Sema4D-plexin-B1 interactions in the activation of microglia and provide their pathologic significance in neuroinflammation.
Collapse
Affiliation(s)
- Tatsusada Okuno
- Department of Immunopathology, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|