1
|
Wiegand A, Behal M, Robbins B, Bissell B, Pandya K, Mefford B. Niche Roles for Dexmedetomidine in the Intensive Care Unit. Ann Pharmacother 2023; 57:1207-1220. [PMID: 36721323 DOI: 10.1177/10600280221151170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Review dexmedetomidine use in critically ill patients for niche indications including sleep, delirium, alcohol withdrawal, sepsis, and immunomodulation. DATA SOURCES Literature was sought using PubMed (February 2012-November 2022). Search terms included dexmedetomidine AND (hypnotics OR sedatives OR sleep OR delirium OR immunomodulation OR sepsis OR alcohol withdrawal). STUDY SELECTION AND DATA EXTRACTION Relevant studies conducted in humans ≥18 years published in English were included. Exclusion criteria included systematic reviews, meta-analyses, and studies evaluating oral dexmedetomidine or other alpha-2 agonists. DATA SYNTHESIS A total of 231 articles were retrieved. After removal of duplicates, title and abstract screening, and application of inclusion criteria, 35 articles were included. Across the clinical conditions included in this review, varying clinical outcomes were seen. Dexmedetomidine may improve morbidity outcomes in delirium, sleep, and alcohol withdrawal syndrome. Due to limited human studies and poor quality of evidence, no conclusions can be drawn regarding the role of dexmedetomidine in immunomodulation or sepsis. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This review presents data for potential niche roles of dexmedetomidine aside from sedation in critically ill patients. This may serve as a guide for sedation selection in critically ill patients who may also benefit from the pleiotropic effects of dexmedetomidine due to a clinical condition discussed in this review. CONCLUSION While further studies are needed, dexmedetomidine may provide benefit in other indications in critically ill patients including delirium, sleep, and alcohol withdrawal. Given the poor quality of evidence of dexmedetomidine use in immunomodulation and sepsis, no conclusions can be drawn.
Collapse
Affiliation(s)
- Alexandra Wiegand
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| | - Michael Behal
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
- Department of Pharmacy Practice & Science, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Blake Robbins
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| | - Brittany Bissell
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| | - Komal Pandya
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| | - Breanne Mefford
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, KY, USA
| |
Collapse
|
2
|
Ramos-Miguel A, Sánchez-Blázquez P, García-Sevilla JA. Effects of Gαi 2 and Gαz protein knockdown on alpha 2A-adrenergic and cannabinoid CB 1 receptor regulation of MEK-ERK and FADD pathways in mouse cerebral cortex. Pharmacol Rep 2021; 73:1122-1135. [PMID: 33641090 DOI: 10.1007/s43440-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha2A-adrenergic (α2A-AR) and cannabinoid CB1 (CB1-R) receptors exert their functions modulating multiple signaling pathways, including MEK-ERK (extracellular signal-regulated kinases) and FADD (Fas-associated protein with death domain) cascades. These molecules are relevant in finding biased agonists with fewer side effects, but the mechanisms involving their modulations by α2A-AR- and CB1-R in vivo are unclear. This study investigated the roles of Gαi2 and Gαz proteins in mediating α2A-AR- and CB1-R-induced alterations of MEK-ERK and FADD phosphorylation (p-) in mouse brain cortex. METHODS Gαi2 or Gαz protein knockdown was induced in mice with selective antisense oligodeoxinucleotides (ODNs; 3 nmol/day, 5 days) prior to UK-14,304 (UK or brimonidine; 1 mg/kg) or WIN55212-2 (WIN; 8 mg/kg) acute treatments. Inactivated (p-T286) MEK1, activated (p-S217/221) MEK1/2, activated (p-T202/Y204) ERK1/2, p-S191 FADD, and the corresponding total forms of these proteins were quantified by immunoblotting. RESULTS Increased (+ 88%) p-T286 MEK1 cortical density, with a concomitant reduction (-43%) of activated ERK was observed in UK-treated mice. Both effects were attenuated by Gαi2 or Gαz antisense ODNs. Contrastingly, WIN induced Gαi2- and Gαz-independent upregulations of p-T286 MEK1 (+ 63%), p-S217/221 MEK1/2 (+ 86%), and activated ERK (+ 111%) in brain. Pro-apoptotic FADD was downregulated (- 34 to 39%) following UK and WIN administration, whereas the neuroprotective p-S191 FADD was increased (+ 74%) in WIN-treated mice only. None of these latter effects required from Gαi2 or Gαz protein integrity. CONCLUSION The results indicate that α2A-AR (UK), but not CB1-R (WIN), agonists use Gαi2 and Gαz proteins to modulate MEK-ERK, but not FADD, pathway in mouse brain cortex.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (EHU/UPV), Barrio Sarriena s/n, ES48940, Leioa, Biscay, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | | | - Jesús A García-Sevilla
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
3
|
Castillo RL, Ibacache M, Cortínez I, Carrasco-Pozo C, Farías JG, Carrasco RA, Vargas-Errázuriz P, Ramos D, Benavente R, Torres DH, Méndez A. Dexmedetomidine Improves Cardiovascular and Ventilatory Outcomes in Critically Ill Patients: Basic and Clinical Approaches. Front Pharmacol 2020; 10:1641. [PMID: 32184718 PMCID: PMC7058802 DOI: 10.3389/fphar.2019.01641] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenergic agonist with sedative and analgesic properties, with minimal respiratory effects. It is used as a sedative in the intensive care unit and the operating room. The opioid-sparing effect and the absence of respiratory effects make dexmedetomidine an attractive adjuvant drug for anesthesia in obese patients who are at an increased risk for postoperative respiratory complications. The pharmacodynamic effects on the cardiovascular system are known; however the mechanisms that induce cardioprotection are still under study. Regarding the pharmacokinetics properties, this drug is extensively metabolized in the liver by the uridine diphosphate glucuronosyltransferases. It has a relatively high hepatic extraction ratio, and therefore, its metabolism is dependent on liver blood flow. This review shows, from a basic clinical approach, the evidence supporting the use of dexmedetomidine in different settings, from its use in animal models of ischemia-reperfusion, and cardioprotective signaling pathways. In addition, pharmacokinetics and pharmacodynamics studies in obese subjects and the management of patients subjected to mechanical ventilation are described. Moreover, the clinical efficacy of delirium incidence in patients with indication of non-invasive ventilation is shown. Finally, the available evidence from DEX is described by a group of Chilean pharmacologists and clinicians who have worked for more than 10 years on DEX.
Collapse
Affiliation(s)
- Rodrigo L Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile
| | - Mauricio Ibacache
- Programa de Farmacología y Toxicología & División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Cortínez
- Programa de Farmacología y Toxicología & División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jorge G Farías
- Departmento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar, Chile
| | - Rodrigo A Carrasco
- Departamento de Cardiología, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Patricio Vargas-Errázuriz
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile.,Unidad de Paciente Crítico Adulto, Clínica Universidad de Los Andes, Santiago, Chile.,Unidad de Paciente Crítico, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Daniel Ramos
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rafael Benavente
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Henríquez Torres
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal Méndez
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Qiu Z, Lu P, Wang K, Zhao X, Li Q, Wen J, Zhang H, Li R, Wei H, Lv Y, Zhang S, Zhang P. Dexmedetomidine Inhibits Neuroinflammation by Altering Microglial M1/M2 Polarization Through MAPK/ERK Pathway. Neurochem Res 2019; 45:345-353. [PMID: 31823113 DOI: 10.1007/s11064-019-02922-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
Neuroinflammation is critical in the pathogenesis of neurological diseases. Microglial pro-inflammatory (M1) and anti-inflammatory (M2) status determines the outcome of neuroinflammation. Dexmedetomidine exerts anti-inflammatory effects in many neurological conditions. Whether dexmedetomidine functions via modulation of microglia M1/M2 polarization remains to be fully elucidated. In the present study, we investigated the anti-inflammatory effects of dexmedetomidine on the neuroinflammatory cell model and explored the potential mechanism. BV2 cells were stimulated with LPS to establish a neuroinflammatory model. The cell viability was determined with MTT assay. NO levels were assessed using a NO detection kit. The protein levels of IL-10, TNF-α, iNOS, CD206, ERK1/2, and pERK1/2 were quantified using Western blotting. LPS significantly increased pro-inflammatory factors TNF-α and NO, and M1 phenotypic marker iNOS, and decreased anti-inflammatory factor IL-10 and M2 phenotypic marker CD206 in BV2 cells. Furthermore, exposure of BV2 cells to LPS significantly raised pERK1/2 expression. Pretreatment with dexmedetomidine attenuated LPS-elicited changes in p-ERK, iNOS, TNF-α, NO, CD206 and IL-10 levels in BV2 cells. However, co-treatment with dexmedetomidine and LM22B-10, an agonist of ERK, reversed dexmedetomidine-elicited changes in p-ERK, iNOS, TNF-α, NO, CD206 and IL-10 levels in LPS-exposed BV2 cells. We, for the first time, showed that dexmedetomidine increases microglial M2 polarization by inhibiting phosphorylation of ERK1/2, by which it exerts anti-inflammatory effects in BV2 cells.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China.,Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Shaanxi, 710038, China
| | - Pan Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Xijuan Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Qianqian Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Jieqiong Wen
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Hong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Yuying Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China
| | - Shuyue Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157# West 5 Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
5
|
Kushwaha R, Mishra J, Gupta AP, Gupta K, Vishwakarma J, Chattopadhyay N, Gayen JR, Kamthan M, Bandyopadhyay S. Rosiglitazone up-regulates glial fibrillary acidic protein via HB-EGF secreted from astrocytes and neurons through PPARγ pathway and reduces apoptosis in high-fat diet-fed mice. J Neurochem 2018; 149:679-698. [PMID: 30311190 DOI: 10.1111/jnc.14610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/17/2022]
Abstract
The anti-diabetic drug and peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, rosiglitazone, alters astrocyte activation; however, its mechanism remains less-known. We hypothesized participation of epidermal growth factor receptor (EGFR), known to control astrocyte reactivity. We first detected that rosiglitazone promoted glial fibrillary acidic protein (GFAP) expression in primary astrocytes as well as the mouse cerebral cortex, associated with increased EGFR activation. Screening for EGFR ligands revealed a rosiglitazone-mediated increase of heparin-binding epidermal growth factor (HB-EGF) in astrocytes, resulting in HB-EGF release into culture medium and mouse cerebrospinal fluid too. Treatment with HB-EGF-siRNA and EGFR inhibitors showed that the rosiglitazone-induced HB-EGF and p-EFGR were interdependent, which participated in GFAP increase. Interestingly, we observed that rosiglitazone could induce cellular and secreted-HB-EGF in neurons also, contributing toward the activated EGFR-induced GFAP in astrocytes. Probing whether these effects of rosiglitazone were PPARγ-linked, revealed potential PPARγ-responsive elements within HB-EGF gene. Moreover, gel-shift, site-directed mutagenesis, chromatin-immunoprecipitation and luciferase-reporter assays demonstrated a PPARγ-dependent HB-EGF transactivation. Subsequently, we examined effects of rosiglitazone in a high-fat diet-fed diabetes mouse model, and supporting observations in the normal cortical cells, identified a rosiglitazone-induced GFAP, astrocyte and neuronal HB-EGF and secreted-HB-EGF in the cerebral cortex of diabetic mice. Moreover, assessing relevance of increased HB-EGF and GFAP revealed an anti-apoptotic role of rosiglitazone in the cerebral cortex, supported by a GFAP-siRNA as well as HB-EGF-siRNA-mediated increase in cleaved-caspase 3 and 9 levels in the rosiglitazone-treated astrocyte-neuron coculture. Overall, our study indicates that rosiglitazone may protect the brain, via a PPARγ-dependent HB-EGF/EGFR signaling and increased GFAP.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India.,Babu Banarasi Das University, Lucknow, India
| | - Anand Prakash Gupta
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Keerti Gupta
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Jitendra Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Naibedya Chattopadhyay
- Department of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Jiaur Rahaman Gayen
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Mohan Kamthan
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-IITR, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| |
Collapse
|
6
|
Shi Y, Peng XH, Li X, Luo GP, Wu MF. Neuroprotective role of dexmedetomidine pretreatment in cerebral ischemia injury via ADRA2A-mediated phosphorylation of ERK1/2 in adult rats. Exp Ther Med 2018; 16:5201-5209. [PMID: 30546415 PMCID: PMC6256861 DOI: 10.3892/etm.2018.6878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroprotective effects of dexmedetomidine (Dex) have been reported in various models of brain injury. However, to our knowledge, the neuroprotective mechanism of Dex pretreatment in rats remains unknown. The aim of the present study was to detect the expression of the α2A adrenergic receptor (ADRA2A) in focal ischemic brain tissues and to investigate the protective role and corresponding mechanism of Dex pretreatment in cerebral ischemia in rats. A hypoxia/reoxygenation (H/R) cell model in primary cultured astrocytes and a focal cerebral ischemia/reperfusion (I/R) model in adult rats were used. The expression of ADRA2A and extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the primary cultured astrocytes and rat brain ischemic tissues was detected in the different conditions prior to and following Dex pretreatment using western blotting. The H/R model of primary cultured astrocytes and the focal cerebral I/R model in adult rats were successfully constructed. Under the normal oxygen conditions, 500 ng/ml Dex pretreatment increased the expression of ADRA2A and phosphorylated (p)-ERK1/2 in the astrocytes compared with in the control group. Hypoxic culture for 6 h and then reoxygenation for 24 h decreased the levels of p-ERK1/2 in the astrocytes compared with those in control group. This decrease was prevented by Dex pretreatment for 3 h. The hypoxic culture and then reoxygenation increased the expression of ADRA2A. Similarly, compared with those prior to Dex treatment, the levels of ADRA2A and p-ERK1/2 in the brain ischemic tissues following Dex treatment were increased. The levels of ADRA2A and p-ERK1/2 were 0.72±0.23 and 0.66±0.25 following Dex treatment, compared with 0.76±0.22 and 0.31±0.18, respectively, prior to Dex treatment. The effect of Dex pretreatment increasing p-ERK1/2 expression was attenuated by AG1478 pretreatment. In summary, Dex appeared to promote phosphorylation of ERK1/2 in astrocytes under H/R. As a specific agonist of ADRA2A, Dex may activate phosphorylation of ERK1/2 via ADRA2A in astrocytes. Thus, the neuroprotective role of Dex pretreatment against cerebral ischemic injury may function via ADRA2A-mediated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yanyan Shi
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xiao-Hong Peng
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xia Li
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Gao-Ping Luo
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ming-Fu Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
7
|
Harun-Or-Rashid M, Hallböök F. Alpha 2-Adrenergic Receptor Agonist Brimonidine Stimulates ERK1/2 and AKT Signaling via Transactivation of EGF Receptors in the Human MIO-M1 Müller Cell Line. Curr Eye Res 2018; 44:34-45. [DOI: 10.1080/02713683.2018.1516783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Harun-Or-Rashid
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Harun-Or-Rashid M, Konjusha D, Galindo-Romero C, Hallböök F. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors. PLoS One 2016; 11:e0167778. [PMID: 27930693 PMCID: PMC5145189 DOI: 10.1371/journal.pone.0167778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023] Open
Abstract
Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins among several other functions, serve as an injury-signal that regulate the gliotic response of Müller cells.
Collapse
Affiliation(s)
| | - Dardan Konjusha
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
9
|
Pan W, Lin L, Zhang N, Yuan F, Hua X, Wang Y, Mo L. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways. Cell Mol Neurobiol 2016; 36:1179-88. [PMID: 26683659 PMCID: PMC11482469 DOI: 10.1007/s10571-015-0315-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine's neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine.
Collapse
Affiliation(s)
- Wanying Pan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lin Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Fuli Yuan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoxiao Hua
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yueting Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Liqiu Mo
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Wang LY, Tang ZJ, Han YZ. Neuroprotective effects of caffeic acid phenethyl ester against sevoflurane‑induced neuronal degeneration in the hippocampus of neonatal rats involve MAPK and PI3K/Akt signaling pathways. Mol Med Rep 2016; 14:3403-12. [PMID: 27498600 DOI: 10.3892/mmr.2016.5586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Millions of infants and children are exposed to anesthesia every year during medical care. Sevoflurane is a volatile anesthetic that is frequently used for pediatric anesthesia. However, previous reports have suggested that the administration of sevoflurane promotes neurodegeneration, raising concerns regarding the safety of its usage. The present study aimed to investigate caffeic acid phenethyl ester (CAPE) and its protective effect against sevoflurane‑induced neurotoxicity in neonatal rats. Rat pups were administered with CAPE at 10, 20 or 40 mg/kg body weight from postnatal day 1 (P1) to P15. The P7 rats were exposed to sevoflurane (2.9%) for 6 h. Control group rats received no sevoflurane or CAPE. Neuronal apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick‑end labeling assay. The expression levels of caspases (caspase‑3, ‑8 and ‑9), apoptotic pathway proteins [Bcl‑2‑associated X protein (Bax), B cell CCL/lymphoma 2 (Bcl‑2), Bcl‑2‑like 1 (Bcl‑xL), Bcl‑2‑associated agonist of cell death (Bad) and phosphorylated (p)‑Bad], mitogen‑activated protein kinases (MAPK) signaling pathway proteins [c‑Jun N‑terminal kinase (JNK), p‑JNK, extracellular signal‑regulated kinase (ERK)1/2, p‑ERK1/2, p38, p‑p38 and p‑c‑Jun] and the phosphoinositide 3‑kinase (PI3K)/Akt cascade were evaluated by western blotting following sevoflurane and CAPE treatment. In addition, the expression of cleaved caspase‑3 was analyzed by immunohistochemistry. CAPE significantly reduced sevoflurane‑induced apoptosis, downregulated the expression levels of caspases and pro‑apoptotic proteins (Bax and Bad) and elevated the expression levels of Bcl‑2 and Bcl‑xL when compared with sevoflurane treatment. Furthermore, CAPE appeared to modify the expression levels of MAPKs and activate the PI3K/Akt signaling pathway. Thus, the present study demonstrated that CAPE effectively inhibited sevoflurane‑induced neuroapoptosis by modulating the expression and phosphorylation of apoptotic pathway proteins and MAPKs, and by regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pediatric Surgery, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Zhi-Jun Tang
- Department of Orthopedics in Repair and Reconstruction, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Yu-Zeng Han
- Department of Pediatric Internal Medicine, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
11
|
Wang Y, Han R, Zuo Z. Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage. Br J Anaesth 2016; 116:384-92. [PMID: 26865131 DOI: 10.1093/bja/aev549] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dexmedetomidine, a sedative agent, provides neuroprotection when administered during or before brain ischaemia. This study was designed to determine whether dexmedetomidine post-treatment induces neuroprotection against subarachnoid haemorrhage (SAH) and the mechanisms for this effect. METHODS Subarachnoid haemorrhage was induced by endovascular perforation to the junction of the right middle and anterior cerebral arteries in adult rats. Dexmedetomidine was applied immediately or 2 h after onset of SAH. Neurological outcome was evaluated 2 days after SAH. Right frontal cortex area 1 was harvested 24 h after SAH for western blotting. RESULTS Subarachnoid haemorrhage reduced neurological scores and increased brain oedema and blood-brain barrier permeability. These effects were attenuated by dexmedetomidine post-treatment. Neuroprotection by dexmedetomidine was abolished by PD98095, an inhibitor of extracellular signal-regulated kinase (ERK) activation. Phospho-ERK, the activated form of ERK, was increased by dexmedetomidine; this activation was inhibited by PD98095. CONCLUSIONS Dexmedetomidine post-treatment provides neuroprotection against SAH. This effect appears to be mediated by ERK.
Collapse
Affiliation(s)
- Y Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA Department of Anaesthesiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - R Han
- Department of Anaesthesiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Z Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
12
|
Gibbs ME. Role of Glycogenolysis in Memory and Learning: Regulation by Noradrenaline, Serotonin and ATP. Front Integr Neurosci 2016; 9:70. [PMID: 26834586 PMCID: PMC4717441 DOI: 10.3389/fnint.2015.00070] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
This paper reviews the role played by glycogen breakdown (glycogenolysis) and glycogen re-synthesis in memory processing in two different chick brain regions, (1) the hippocampus and (2) the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM). Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training glycogen breakdown and re-synthesis. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis) at three specific times during the first 60 min after learning (around 2.5, 30, and 55 min). The chicks learn to discriminate in a single trial between beads of two colors and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR) agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i) in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo and neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.
Collapse
Affiliation(s)
- Marie E Gibbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC, Australia
| |
Collapse
|
13
|
Gradinaru I, Babaeva E, Schwinn DA, Oganesian A. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway. PLoS One 2015; 10:e0142787. [PMID: 26571308 PMCID: PMC4646490 DOI: 10.1371/journal.pone.0142787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/27/2015] [Indexed: 01/06/2023] Open
Abstract
α1a Adrenergic receptors (α1aARs) are the predominant AR subtype in human vascular smooth muscle cells (SMCs). α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R) genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT) receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive) hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant), different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.
Collapse
Affiliation(s)
- Irina Gradinaru
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ekaterina Babaeva
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Debra A. Schwinn
- Department of Anesthesiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Anush Oganesian
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 2015; 7:7/5/1759091415602463. [PMID: 26442853 PMCID: PMC4601130 DOI: 10.1177/1759091415602463] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain University of Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
15
|
Hertz L, Rothman DL, Li B, Peng L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 2015; 9:25. [PMID: 25750618 PMCID: PMC4335176 DOI: 10.3389/fnbeh.2015.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology and Biomedical Engineering, Yale University New Haven, CT, USA
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
16
|
Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog 2015; 55:170-81. [PMID: 25641046 DOI: 10.1002/mc.22267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 01/23/2023]
Abstract
The epidermal growth factor receptor (EGFR) is involved in the regulation of various cellular processes and dysregulation of its signalling plays a critical role in the etiology of a variety of malignancies like breast cancer. At the same time, elevated levels of urokinase (uPA), its receptor uPAR, and other components of the plasminogen activation system are found to be correlated with a poor prognosis in breast cancer. Interestingly, EGFR appears to participate in transducing the signal generated upon binding of uPA to uPAR. However, whether uPA signalling would thereby interfere with ligand-driven EGFR signalling was not described before. Therefore, it was the aim of the present study to investigate the combined effects of uPA and EGF in the low invasive and high invasive breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, respectively. Simultaneous exposure of cells to both signals negatively affected ERK1/2 and AKT activation whereas positive effects on p38 and Src kinase phosphorylation were noted in both cell lines. Furthermore, uPA attenuated the mitogenic effect of EGF on cellular proliferation, invasion and motility in both MCF-7 and MDA-MB-231 cells. Experiments with the uPA amino terminal fragment (ATF) revealed that the negative effects of uPA were independent from its protease activity. Together, these data suggest that enhanced levels of uPA in breast cancer modulate the mitogenic effects of EGF and thus, this knowledge may help to better understand breast cancer pathogenesis as well as to develop new therapeutic options.
Collapse
Affiliation(s)
- Nina Kozlova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anatoly Samoylenko
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Laboratory of Cell Signalling, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Lyudmyla Drobot
- Laboratory of Cell Signalling, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Braun D, Madrigal JLM, Feinstein DL. Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol 2014; 12:342-52. [PMID: 25342942 PMCID: PMC4207074 DOI: 10.2174/1570159x12666140828220938] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 01/07/2023] Open
Abstract
It has been known for many years that the endogenous neurotransmitter noradrenaline (NA) exerts anti-inflammatory and neuroprotective effects both in vitro and in vivo. In many cases the site of action of NA are beta-adrenergic receptors (βARs), causing an increase in intracellular levels of cAMP which initiates a broad cascade of events including suppression of inflammatory transcription factor activities, alterations in nuclear localization of proteins, and induction of patterns of gene expression mediated through activity of the CREB transcription factor. These changes lead not only to reduced inflammatory events, but also contribute to neuroprotective actions of NA by increasing expression of neurotrophic substances including BDNF, GDNF, and NGF. These properties have prompted studies to determine if treatments with drugs to raise CNS NA levels could provide benefit in various neurological conditions and diseases having an inflammatory component. Moreover, increasing evidence shows that disruptions in endogenous NA levels occurs in several diseases and conditions including Alzheimer's disease (AD), Parkinson's disease (PD), Down's syndrome, posttraumatic stress disorder (PTSD), and multiple sclerosis (MS), suggesting that damage to NA producing neurons is a common factor that contributes to the initiation or progression of neuropathology. Methods to increase NA levels, or to reduce damage to noradrenergic neurons, therefore represent potential preventative as well as therapeutic approaches to disease.
Collapse
Affiliation(s)
- David Braun
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612
| | - Jose L M Madrigal
- Departamento de Farmacología, Universidad Complutense de Madrid, Spain
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago IL, USA, 60612 ; Jesse Brown VA Medical Center, Chicago IL, USA, 60612
| |
Collapse
|
18
|
Liao Z, Cao D, Han X, Liu C, Peng J, Zuo Z, Wang F, Li Y. Both JNK and P38 MAPK pathways participate in the protection by dexmedetomidine against isoflurane-induced neuroapoptosis in the hippocampus of neonatal rats. Brain Res Bull 2014; 107:69-78. [PMID: 25026397 DOI: 10.1016/j.brainresbull.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
Dexmedetomidine, a highly selective α2-adrenergic agonist, has been reported to attenuate isoflurane-induced cognitive impairment and neuroapoptosis. However, the underlying molecular mechanisms remain poorly understood. The aim of this study was to investigate whether mitogen-activated protein kinase (MAPK) pathway was involved in dexmedetomidine-induced neuroprotection against isoflurane effects. Seven-day-old (P7) neonatal Sprague-Dawley rats were pretreated with various concentrations of dexmedetomidine, and then exposed to 0.75% isoflurane or air for 6h. Terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL) was used to detect neuronal apoptosis in their hippocampus. Activated caspase-3, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinases (JNK), p38, phospho-ERK1/2, phospho-JNK and phospho-p38 proteins were detected by Western blotting in the hippocampus at the end of exposure. Also, P7 rats were pretreated with 75 μg/kg dexmedetomidine alone, or given the ERK inhibitor U0126 before dexmedetomidine pretreatment, or pretreated with the p38 MAPK inhibitor SB203580 or JNK inhibitor SP600125 alone, and then exposed to 0.75% isoflurane for 6h. Isoflurane induced significant neuroapoptosis, increased the protein expression of phospho-JNK, phospho-c-Jun, phospho-p38 and phospho-nuclear factor-κB (NF-κB), decreased the level of phospho-ERK1/2 protein and reduced the ratio of Bcl-2/Bax in the hippocampus. Dexmedetomidine pretreatment inhibited isoflurane-induced neuroapoptosis and restored proteins expression of MAPK pathways and the Bcl-2/Bax ratio after isoflurane exposure. Moreover, SB203580 and SP600125 also partly attenuated the isoflurane-induced protein changes. However, U0126 did not reverse dexmedetomidine-induced neuroprotection. Our results indicate that the JNK and p38 pathways, not the ERK pathway are involved in dexmedetomidine-induced neuroprotection against isoflurane effects.
Collapse
Affiliation(s)
- Zhaoxia Liao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Dexiong Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Chuiliang Liu
- Department of Anesthesiology, ChanCheng Center Hospital, Foshan 528030, China.
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Zhiyi Zuo
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Anesthesiology, University of Virginia Health System, PO Box 800710, Charlottesville, VA 22908-0710, USA.
| | - Fei Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yujuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
19
|
Song D, Du T. Ammonium activates ouabain-activated signalling pathway in astrocytes: therapeutic potential of ouabain antagonist. Curr Neuropharmacol 2014; 12:334-41. [PMID: 25342941 PMCID: PMC4207073 DOI: 10.2174/1570159x12666140828222115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 01/16/2023] Open
Abstract
The causal role of ammonium in hepatic encephalopathy was identified in 1930s. Astroglial cells are primary cellular elements of hepatic encephalopathy which conceptually, can be considered a toxic astrogliopathology. Previously we have reported that acute exposure to ammonium activated ouabain/Na,K-ATPase signalling pathway, which includes Src, EGF receptor, Raf, Ras, MEK and ERK1/2. Chronic incubation of astrocytes with ammonium increased production of endogenous ouabain-like compound. Ouabain antagonist canrenone abolished effects of ammonium on astrocytic swelling, ROS production, and upregulation of gene expression and function of TRPC1 and Cav1.2. However, ammonium induces multiple pathological modifications in astrocytes, and some of them may be not related to this signalling pathway. In this review, we focus on the effect of ammonium on ouabain/Na,K-ATPase signalling pathway and its involvement in ammonium-induced ROS production, cell swelling and aberration of Ca(2+) signals in astrocytes. We also briefly discuss Na,K-ATPase, EGF receptor, endogenous ouabain and ouabain antagonist.
Collapse
Affiliation(s)
- Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | | |
Collapse
|
20
|
Cai Y, Xu H, Yan J, Zhang L, Lu Y. Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep 2014; 9:1542-50. [PMID: 24627001 DOI: 10.3892/mmr.2014.2034] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/17/2014] [Indexed: 01/13/2023] Open
Abstract
Dexmedetomidine (DEX), a highly specific α2-adrenergic agonist, which exhibits anaesthetic-sparing, analgesia and sympatholytic properties. DEX modulates gene expression, channel activation, transmitter release, inflammatory processes and apoptotic and necrotic cell death. It has also been demonstrated to have protective effects in a variety of animal models of ischemia/reperfusion (I/R) injury, including the intestine, myocardial, renal, lung, cerebral and liver. The broad spectrum of biological activities associated with DEX continues to expand, and its diverse effects suggest that it may offer a novel therapeutic approach for the treatment of human diseases with I/R involvement.
Collapse
Affiliation(s)
- Ye Cai
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hui Xu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jia Yan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lei Zhang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yi Lu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
21
|
In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation. Exp Cell Res 2013; 319:2718-27. [DOI: 10.1016/j.yexcr.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/15/2022]
|
22
|
Dai H, Song D, Xu J, Li B, Hertz L, Peng L. Ammonia-induced Na,K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem Int 2013; 63:610-25. [PMID: 24044899 DOI: 10.1016/j.neuint.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR(845) and EGFR(1068); (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3mM ammonia it does not appear until after 12h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Dan Song
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Junnan Xu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
23
|
Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int J Mol Sci 2013; 14:10761-90. [PMID: 23702846 PMCID: PMC3709701 DOI: 10.3390/ijms140610761] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022] Open
Abstract
The Src gene product (Src) and the epidermal growth factor receptor (EGFR) are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845) in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases) or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase). A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.
Collapse
|
24
|
Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S. Cypermethrin Induces Astrocyte Apoptosis by the Disruption of the Autocrine/Paracrine Mode of Epidermal Growth Factor Receptor Signaling. Toxicol Sci 2011; 125:473-87. [DOI: 10.1093/toxsci/kfr303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Astrocytic transactivation by α2A-adrenergic and 5-HT2B serotonergic signaling. Neurochem Int 2010; 57:421-31. [DOI: 10.1016/j.neuint.2010.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/24/2010] [Accepted: 04/28/2010] [Indexed: 12/11/2022]
|
26
|
Du T, Li B, Li H, Li M, Hertz L, Peng L. Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent. J Neurochem 2010; 115:1007-23. [PMID: 20831657 DOI: 10.1111/j.1471-4159.2010.06995.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stimulation of β-adrenoceptors activates the canonical adenylate cyclase pathway (via G(s) protein) but can also evoke phosphorylation of extracellular-regulated kinases 1 and 2 (ERK(1/2) ) via G(s)/G(i) switching or β-arrestin-mediated recruitment of Src. In primary cultures of mouse astrocytes, activation of the former of these pathways required micromolar concentrations of the β(1)/β(2) -adrenergic agonist isoproterenol, that acted on β(1)-adrenoceptors, whereas the latter was activated already by nanomolar concentrations, acting on β(2) receptors. Protein kinase A activity was required for G(s)/G(i) switching, which was followed by Ca(2+) release from intracellular stores and G(iα)- and metalloproteinase-dependent transactivation of the epidermal growth factor receptor (EGFR; at its Y1173 phophorylation site), via its receptor-tyrosine kinase, β-arrestin 1/2 recruitment, and MAPK/ERK kinase-dependent ERK(1/2) phosphorylation. ERK(1/2) phosphorylation by Src activation depended on β-arrestin 2, but not β-arrestin 1, was accompanied by Src/EGFR co-precipitation and phosphorylation of the EGFR at the Src-phosphorylated Y845 site and the Y1045 autophosphorylation site; it was independent of transactivation but dependent on MAPK/ERK kinase activity, suggesting EGFR phosphorylation independently of the receptor-tyrosine kinase or activation of Ras or Raf directly from Src. Most astrocytic consequences of activating either pathway (or both) are unknown, but morphological differentiation and increase in glial fibrillary acidic protein in response to dibutyryl cAMP-mediated increase in cAMP depend on G(s)/G(i) switching and transactivation.
Collapse
Affiliation(s)
- Ting Du
- Department of Clinical Pharmacology, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
27
|
Sharif A, Prevot V. ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system. Neurochem Int 2010; 57:344-58. [PMID: 20685225 DOI: 10.1016/j.neuint.2010.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/29/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders.
Collapse
Affiliation(s)
- Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the postnatal Brain, Lille, France.
| | | |
Collapse
|