1
|
Salmanzadeh H, Poojari A, Rabiee A, Zeitlin BD, Halliwell RF. Neuropharmacology of human TERA2.cl.SP12 stem cell-derived neurons in ultra-long-term culture for antiseizure drug discovery. Front Neurosci 2023; 17:1182720. [PMID: 37397467 PMCID: PMC10308080 DOI: 10.3389/fnins.2023.1182720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Modeling the complex and prolonged development of the mammalian central nervous system in vitro remains a profound challenge. Most studies of human stem cell derived neurons are conducted over days to weeks and may or may not include glia. Here we have utilized a single human pluripotent stem cell line, TERA2.cl.SP12 to derive both neurons and glial cells and determined their differentiation and functional maturation over 1 year in culture together with their ability to display epileptiform activity in response to pro-convulsant agents and to detect antiseizure drug actions. Our experiments show that these human stem cells differentiate in vitro into mature neurons and glia cells and form inhibitory and excitatory synapses and integrated neural circuits over 6-8 months, paralleling early human neurogenesis in vivo; these neuroglia cultures display complex electrochemical signaling including high frequency trains of action potentials from single neurons, neural network bursts and highly synchronized, rhythmical firing patterns. Neural activity in our 2D neuron-glia circuits is modulated by a variety of voltage-gated and ligand-gated ion channel acting drugs and these actions were consistent in both young and highly mature neuron cultures. We also show for the first time that spontaneous and epileptiform activity is modulated by first, second and third generation antiseizure agents consistent with animal and human studies. Together, our observations strongly support the value of long-term human stem cell-derived neuroglial cultures in disease modeling and neuropsychiatric drug discovery.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Atefeh Rabiee
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Benjamin D. Zeitlin
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
| | - Robert F. Halliwell
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
2
|
Halliwell RF, Salmanzadeh H, Coyne L, Cao WS. An Electrophysiological and Pharmacological Study of the Properties of Human iPSC-Derived Neurons for Drug Discovery. Cells 2021; 10:cells10081953. [PMID: 34440722 PMCID: PMC8395001 DOI: 10.3390/cells10081953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Human stem cell-derived neurons are increasingly considered powerful models in drug discovery and disease modeling, despite limited characterization of their molecular properties. Here, we have conducted a detailed study of the properties of a commercial human induced Pluripotent Stem Cell (iPSC)-derived neuron line, iCell [GABA] neurons, maintained for up to 3 months in vitro. We confirmed that iCell neurons display neurite outgrowth within 24 h of plating and label for the pan-neuronal marker, βIII tubulin within the first week. Our multi-electrode array (MEA) recordings clearly showed neurons generated spontaneous, spike-like activity within 2 days of plating, which peaked at one week, and rapidly decreased over the second week to remain at low levels up to one month. Extracellularly recorded spikes were reversibly inhibited by tetrodotoxin. Patch-clamp experiments showed that iCell neurons generated spontaneous action potentials and expressed voltage-gated Na and K channels with membrane capacitances, resistances and membrane potentials that are consistent with native neurons. Our single neuron recordings revealed that reduced spiking observed in the MEA after the first week results from development of a dominant inhibitory tone from GABAergic neuron circuit maturation. GABA evoked concentration-dependent currents that were inhibited by the convulsants, bicuculline and picrotoxin, and potentiated by the positive allosteric modulators, diazepam, chlordiazepoxide, phenobarbital, allopregnanolone and mefenamic acid, consistent with native neuronal GABAA receptors. We also show that glycine evoked robust concentration-dependent currents that were inhibited by the neurotoxin, strychnine. Glutamate, AMPA, Kainate and NMDA each evoked concentration-dependent currents in iCell neurons that were blocked by their selective antagonists, consistent with the expression of ionotropic glutamate receptors. The NMDA currents required the presence of the co-agonist glycine and were blocked in a highly voltage-dependent manner by Mg2+ consistent with the properties of native neuronal NMDA receptors. Together, our data suggest that such human iPSC-derived neurons may have significant value in drug discovery and development and may eventually largely replace the need for animal tissues in human biomedical research.
Collapse
|
3
|
Harberts J, Haferkamp U, Haugg S, Fendler C, Lam D, Zierold R, Pless O, Blick RH. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater Sci 2020; 8:2434-2446. [DOI: 10.1039/d0bm00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Stefanie Haugg
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Dennis Lam
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert H. Blick
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
- Material Science and Engineering
| |
Collapse
|
4
|
Santillo S, Martini A, Polverino A, Mercuri NB, Guatteo E, Sorrentino G. Treating TB human neuroectodermal cell line with retinoic acid induces the appearance of neuron-like voltage-gated ionic currents. Brain Res 2019; 1711:97-105. [PMID: 30660613 DOI: 10.1016/j.brainres.2019.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
TB is a cell line derived from the cerebrospinal fluid sample of a patient with primary leptomeningeal melanomatosis. Our previous immunological and ultrastructural analysis revealed that TB cells differentiate towards a neuronal phenotype when grown in vitro up to 7 days in presence of 10 µM all-trans retinoic acid (RA). Recently, we reported that TB cells are sensitive to the cytotoxic effects of β-amyloid peptides, activating the cytosolic phospholipase A2. To date, it is not known if RA, in addition to inducing morphological changes, also causes functional modification in TB cells, by regulating voltage-gated ionic currents. To this purpose, we performed electrophysiological characterization of undifferentiated (TB) and differentiated (RA-TB) cells by means of whole-cell patch clamp recordings. Upon depolarizing stimuli, both groups displayed voltage-gated K+ outward currents of similar amplitude. By contrast, the low amplitude voltage-gated Na+ currents recorded in undifferentiated TB cells were largely up-regulated by RA exposure. This current was strongly reduced by TTX and lidocaine and completely abolished by removal of extracellular sodium. Furthermore, treatment with RA caused the appearance of a late-onset inward current carried by Ca2+ ions in a subpopulation of TB cells. This current was not affected by removal of extracellular Na+ and was completely blocked by Cd2+, a broad-spectrum blocker of Ca2+ currents. Altogether, our results indicate that RA-differentiation of TB cells induces functional changes by augmenting the amplitude of voltage-gated sodium current and by inducing, in a subpopulation of treated cells, the appearance of a voltage-gated calcium current.
Collapse
Affiliation(s)
- Silvia Santillo
- Istituto di Scienze Applicate e Sistemi Intelligenti, CNR, Naples, Italy.
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, Rome, Italy; University of Rome, Tor Vergata, Department of Neurosciences, Rome, Italy
| | - Arianna Polverino
- University of Naples Parthenope, Department of Motor Sciences and Wellness, Naples, Italy; Institute of Diagnosis and Treatment Hermitage, Naples, Italy
| | - Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Rome, Italy; University of Rome, Tor Vergata, Department of Neurosciences, Rome, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, Rome, Italy; University of Naples Parthenope, Department of Motor Sciences and Wellness, Naples, Italy
| | - Giuseppe Sorrentino
- Istituto di Scienze Applicate e Sistemi Intelligenti, CNR, Naples, Italy; University of Naples Parthenope, Department of Motor Sciences and Wellness, Naples, Italy; Institute of Diagnosis and Treatment Hermitage, Naples, Italy
| |
Collapse
|
5
|
Kuenzel K, Mofrad SA, Gilbert DF. Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells. Methods Mol Biol 2018; 1601:205-214. [PMID: 28470528 DOI: 10.1007/978-1-4939-6960-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycine receptor chloride channels (GlyRs) are attractive drug targets for therapeutic intervention and are also more and more recognized in the context of in vitro neurotoxicity and developmental neurotoxicity testing. Assaying the functional properties of GlyR can serve as an indicator of cellular viability and the integrity of the developing and mature central nervous system. Human pluripotent NTERA-2 (NT2) stem cells undergo neuronal differentiation upon stimulation with retinoic acid and express a large variety of neuronal proteins-including GlyR. YFP-I152L, a halide-sensitive variant of yellow fluorescent protein, allows high-throughput fluorescence-based functional analysis of GlyRs in NT2 cells. Here we describe a protocol for phenotyping of cellular viability by functional analysis of GlyR in neuronally differentiated NT2 (NT2-N) cells using YFP-I152L as a reporter of functional integrity of GlyRs. The protocol describes neuronal differentiation of NT2 stem cells, transient transfection of NT2-N cells with YFP-I152L as well as functional imaging and analysis of data from high-content imaging.
Collapse
Affiliation(s)
- Katharina Kuenzel
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052, Erlangen, Germany.
| | - Sepideh Abolpour Mofrad
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052, Erlangen, Germany
| | - Daniel F Gilbert
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Institute of Medical Biotechnology, Paul-Gordan-Street 3, 91052, Erlangen, Germany
| |
Collapse
|
6
|
Menzner AK, Gilbert DF. A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells. Methods Mol Biol 2018; 1601:61-70. [PMID: 28470517 DOI: 10.1007/978-1-4939-6960-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incidence of neurological diseases including learning and developmental disorders has increased in recent years. Concurrently, the number and volume of worldwide registered and traded chemicals have also increased. There is a broad consensus that the developing brain is particularly sensitive to damage by chemicals and that evaluation of chemicals for developmental toxicity or neurotoxicity is critical to human health. Human pluripotent embryonal carcinoma (NTERA-2 or NT2) cells are increasingly considered as a suitable model for in vitro developmental toxicity and neurotoxicity (DT/DNT) studies as they undergo neuronal differentiation upon stimulation with retinoic acid (RA) and allow toxicity assessment at different stages of maturation. Here we describe a protocol for cell fitness screening in differentiating NT2 cells based on the analysis of intracellular ATP levels allowing for the identification of chemicals which are potentially harmful to the developing brain. The described method is suitable to be adapted to low-, medium-, and high-throughput screening and allows multiplexing with other cell fitness indicators. While the presented protocol focuses on cell fitness screening in human pluripotent stem cells it may also be applied to other in vitro models.
Collapse
Affiliation(s)
- Ann-Katrin Menzner
- Department of Internal Medicine 5, University Medical Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel F Gilbert
- Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Institute of Medical Biotechnology, Paul-Gordan-Street 3, 91052, Erlangen, Germany.
| |
Collapse
|
7
|
Nagy J, Kobolák J, Berzsenyi S, Ábrahám Z, Avci HX, Bock I, Bekes Z, Hodoscsek B, Chandrasekaran A, Téglási A, Dezső P, Koványi B, Vörös ET, Fodor L, Szél T, Németh K, Balázs A, Dinnyés A, Lendvai B, Lévay G, Román V. Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism. Transl Psychiatry 2017; 7:e1179. [PMID: 28742076 PMCID: PMC5538124 DOI: 10.1038/tp.2017.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to establish an in vitro Kleefstra syndrome (KS) disease model using the human induced pluripotent stem cell (hiPSC) technology. Previously, an autism spectrum disorder (ASD) patient with Kleefstra syndrome (KS-ASD) carrying a deleterious premature termination codon mutation in the EHMT1 gene was identified. Patient specific hiPSCs generated from peripheral blood mononuclear cells of the KS-ASD patient were differentiated into post-mitotic cortical neurons. Lower levels of EHMT1 mRNA as well as protein expression were confirmed in these cells. Morphological analysis on neuronal cells differentiated from the KS-ASD patient-derived hiPSC clones showed significantly shorter neurites and reduced arborization compared to cells generated from healthy controls. Moreover, density of dendritic protrusions of neuronal cells derived from KS-ASD hiPSCs was lower than that of control cells. Synaptic connections and spontaneous neuronal activity measured by live cell calcium imaging could be detected after 5 weeks of differentiation, when KS-ASD cells exhibited higher sensitivity of calcium responses to acetylcholine stimulation indicating a lower nicotinic cholinergic tone at baseline condition in KS-ASD cells. In addition, gene expression profiling of differentiated neuronal cells from the KS-ASD patient revealed higher expression of proliferation-related genes and lower mRNA levels of genes involved in neuronal maturation and migration. Our data demonstrate anomalous neuronal morphology, functional activity and gene expression in KS-ASD patient-specific hiPSC-derived neuronal cultures, which offers an in vitro system that contributes to a better understanding of KS and potentially other neurodevelopmental disorders including ASD.
Collapse
Affiliation(s)
- J Nagy
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary,Laboratory of Molecular Cell Biology, Gedeon Richter Plc. Gyömrői út 19-21., Budapest 1103, Hungary. E-mail:
| | | | - S Berzsenyi
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Z Ábrahám
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - H X Avci
- BioTalentum Ltd., Gödöllő, Hungary
| | - I Bock
- BioTalentum Ltd., Gödöllő, Hungary
| | - Z Bekes
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - B Hodoscsek
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | | | - P Dezső
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - B Koványi
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - E T Vörös
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - L Fodor
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - T Szél
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - K Németh
- Autism Foundation, Budapest, Hungary
| | - A Balázs
- Autism Foundation, Budapest, Hungary
| | | | - B Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - G Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - V Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
8
|
Clarke KE, Tams DM, Henderson AP, Roger MF, Whiting A, Przyborski SA. A robust and reproducible human pluripotent stem cell derived model of neurite outgrowth in a three-dimensional culture system and its application to study neurite inhibition. Neurochem Int 2016; 106:74-84. [PMID: 28011165 PMCID: PMC5455986 DOI: 10.1016/j.neuint.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
The inability of neurites to grow and restore neural connections is common to many neurological disorders, including trauma to the central nervous system and neurodegenerative diseases. Therefore, there is need for a robust and reproducible model of neurite outgrowth, to provide a tool to study the molecular mechanisms that underpin the process of neurite inhibition and to screen molecules that may be able to overcome such inhibition. In this study a novel in vitro pluripotent stem cell based model of human neuritogenesis was developed. This was achieved by incorporating additional technologies, notably a stable synthetic inducer of neural differentiation, and the application of three-dimensional (3D) cell culture techniques. We have evaluated the use of photostable, synthetic retinoid molecules to promote neural differentiation and found that 0.01 μM EC23 was the optimal concentration to promote differentiation and neurite outgrowth from human pluripotent stem cells within our model. We have also developed a methodology to enable quick and accurate quantification of neurite outgrowth derived from such a model. Furthermore, we have obtained significant neurite outgrowth within a 3D culture system enhancing the level of neuritogenesis observed and providing a more physiological microenvironment to investigate the molecular mechanisms that underpin neurite outgrowth and inhibition within the nervous system. We have demonstrated a potential application of our model in co-culture with glioma cells, to recapitulate aspects of the process of neurite inhibition that may also occur in the injured spinal cord. We propose that such a system that can be utilised to investigate the molecular mechanisms that underpin neurite inhibition mediated via glial and neuron interactions. Development of a robust, novel neurite outgrowth assay from human pluripotent stem cell derived neural cell aggregates. Synthetic retinoids induce neural differentiation of pluripotent stem cells to a greater extent than natural ATRA. Neurospheres cultured on a 3D scaffold provide a more physiologically relevant model of neurite outgrowth. Suppression of neurite outgrowth by glioma cells in 3D enables the study of neurite inhibitory mechanisms in the glial scar.
Collapse
Affiliation(s)
- Kirsty E Clarke
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Daniel M Tams
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew P Henderson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Mathilde F Roger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; ReproCELL Europe Ltd., NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK.
| |
Collapse
|
9
|
Halliwell RF. Electrophysiological properties of neurons derived from human stem cells and iNeurons in vitro. Neurochem Int 2016; 106:37-47. [PMID: 27742467 DOI: 10.1016/j.neuint.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023]
Abstract
Functional studies of neurons have traditionally used nervous system tissues from a variety of non-human vertebrate and invertebrate species, even when the focus of much of this research has been directed at understanding human brain function. Over the last decade, the identification and isolation of human stem cells from embryonic, tissue (or adult) and induced pluripotent stem cells (iPSCs) has revolutionized the availability of human neurons for experimental studies in vitro. In addition, the direct conversion of terminally differentiated fibroblasts into Induced neurons (iN) has generated great excitement because of the likely value of such human stem cell derived neurons (hSCNs) and iN cells in drug discovery, neuropharmacology, neurotoxicology and regenerative medicine. This review addresses the current state of our knowledge of functional receptors and ion channels expressed in neurons derived from human stem cells and iNeurons and identifies gaps and questions that might be investigated in future studies; it focusses almost exclusively on what is known about the electrophysiological properties of neurons derived from human stem cells and iN cells in vitro with an emphasis on voltage and ligand gated ion channels, since these mediate synaptic signalling in the nervous system and they are at the heart of neuropharmacology.
Collapse
Affiliation(s)
- Robert F Halliwell
- Schools of Pharmacy & Dentistry, University of the Pacific, 751 Brookside Road, Stockton, CA, USA.
| |
Collapse
|
10
|
Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert DF. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ 2016; 58:664-676. [DOI: 10.1111/dgd.12323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/05/2016] [Accepted: 08/21/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Sepideh Abolpour Mofrad
- Institute of Medical Biotechnology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Optical Technologies (SAOT); Friedrich-Alexander-Universität Erlangen-Nürnberg; Paul-Gordan-Str. 6 91052 Erlangen Germany
| | - Katharina Kuenzel
- Institute of Medical Biotechnology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Optical Technologies (SAOT); Friedrich-Alexander-Universität Erlangen-Nürnberg; Paul-Gordan-Str. 6 91052 Erlangen Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Optical Technologies (SAOT); Friedrich-Alexander-Universität Erlangen-Nürnberg; Paul-Gordan-Str. 6 91052 Erlangen Germany
| | - Daniel F. Gilbert
- Institute of Medical Biotechnology; Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
- Erlangen Graduate School in Optical Technologies (SAOT); Friedrich-Alexander-Universität Erlangen-Nürnberg; Paul-Gordan-Str. 6 91052 Erlangen Germany
| |
Collapse
|
11
|
Kuenzel K, Friedrich O, Gilbert DF. A Recombinant Human Pluripotent Stem Cell Line Stably Expressing Halide-Sensitive YFP-I152L for GABAAR and GlyR-Targeted High-Throughput Drug Screening and Toxicity Testing. Front Mol Neurosci 2016; 9:51. [PMID: 27445687 PMCID: PMC4923258 DOI: 10.3389/fnmol.2016.00051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 01/29/2023] Open
Abstract
GABAARs and GlyRs are considered attractive drug targets for therapeutic intervention and are also increasingly recognized in the context of in vitro neurotoxicity (NT) and developmental neurotoxicity (DNT) testing. However, systematic human-specific GABAAR and GlyR-targeted drug screening and toxicity testing is hampered due to lack of appropriate in vitro models that express native GABAARs and GlyRs. We have established a human pluripotent stem cell line (NT2) stably expressing YFP-I152L, a halide-sensitive variant of yellow fluorescent protein (YFP), allowing for fluorescence-based functional analysis of chloride channels. Upon stimulation with retinoic acid, NT2 cells undergo neuronal differentiation and allow pharmacological and toxicological evaluation of native GABAARs and GlyRs at different stages of brain maturation. We applied the cell line in concentration-response experiments with the neurotransmitters GABA and glycine as well as with the drugs strychnine, picrotoxin, fipronil, lindane, bicuculline, and zinc and demonstrate that the established in vitro model is applicable to GABAAR and GlyR-targeted pharmacological and toxicological profiling. We quantified the proportion of GABAAR and GlyR-sensitive cells, respectively, and identified percentages of approximately 20% each within the overall populations, rendering the cells a suitable model for systematic in vitro GABAAR and GlyR-targeted screening in the context of drug development and NT/DNT testing.
Collapse
Affiliation(s)
- Katharina Kuenzel
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Daniel F Gilbert
- Department of Chemical and Biological Engineering, Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany; Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
12
|
Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells. Toxicology 2015; 338:69-76. [PMID: 26498558 DOI: 10.1016/j.tox.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
Abstract
Human pluripotent embryonal carcinoma (NT2) cells are increasingly considered as a suitable model for in vitro toxicity testing, e.g. developmental toxicity and neurotoxicity (DT/DNT) studies, as they undergo neuronal differentiation upon stimulation with retinoic acid (RA) and permit toxicity testing at different stages of maturation. NT2 cells have recently been reported to show specific changes in dielectric resistance profiles during differentiation which can be observed as early as 24h upon RA-stimulation. These observations suggest altered susceptibility to chemicals at an early stage of differentiation. However, chemical susceptibility of early differentiating NT cells has not yet been studied. To address this question, we have established a cell fitness screening assay based on the analysis of intracellular ATP levels and we applied the assay in a large-scale drug screening experiment in NT2 stem cells and early differentiating NT2 cells. Subsequent analysis of ranked fitness phenotypes revealed 19 chemicals with differential toxicity profile in early differentiating NT2 cells. To evaluate whether any of the identified drugs have previously been associated with DT/DNT, we conducted a literature search on the identified molecules and quantified the fraction of chemicals assigned to the FDA (Food and Drug Administration) pregnancy risk categories (PRC) N, A, B, C, D, and X in the hit list and the small molecule library. While the fractions of the categories N and B were decreased (0.81 and 0.35-fold), the classes C, D and X were increased (1.35, 1.47 and 3.27-fold) in the hit list compared to the chemical library. From these data as well as from the literature review, identifying large fractions of chemicals being directly (∼42%) and indirectly associated with DT/DNT (∼32%), we conclude that our method may be beneficial to systematic in vitro-based primary screening for developmental toxicants and neurotoxicants and we propose cell fitness screening in early differentiating NT2 cells as a strategy for evaluating chemical susceptibility at different stages of differentiation to reduce animal testing in the context of the 3Rs.
Collapse
|
13
|
Cao WS, Livesey JC, Halliwell RF. An evaluation of a human stem cell line to identify risk of developmental neurotoxicity with antiepileptic drugs. Toxicol In Vitro 2015; 29:592-9. [DOI: 10.1016/j.tiv.2015.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
|
14
|
Bird MJ, Needham K, Frazier AE, van Rooijen J, Leung J, Hough S, Denham M, Thornton ME, Parish CL, Nayagam BA, Pera M, Thorburn DR, Thompson LH, Dottori M. Functional characterization of Friedreich ataxia iPS-derived neuronal progenitors and their integration in the adult brain. PLoS One 2014; 9:e101718. [PMID: 25000412 PMCID: PMC4084949 DOI: 10.1371/journal.pone.0101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/11/2014] [Indexed: 01/20/2023] Open
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive disease characterised by neurodegeneration and cardiomyopathy that is caused by an insufficiency of the mitochondrial protein, frataxin. Our previous studies described the generation of FRDA induced pluripotent stem cell lines (FA3 and FA4 iPS) that retained genetic characteristics of this disease. Here we extend these studies, showing that neural derivatives of FA iPS cells are able to differentiate into functional neurons, which don't show altered susceptibility to cell death, and have normal mitochondrial function. Furthermore, FA iPS-derived neural progenitors are able to differentiate into functional neurons and integrate in the nervous system when transplanted into the cerebellar regions of host adult rodent brain. These are the first studies to describe both in vitro and in vivo characterization of FA iPS-derived neurons and demonstrate their capacity to survive long term. These findings are highly significant for developing FRDA therapies using patient-derived stem cells.
Collapse
Affiliation(s)
- Matthew J. Bird
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ann E. Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jorien van Rooijen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessie Leung
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shelley Hough
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark Denham
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Saban Research Institute of Children's Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Clare L. Parish
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Pera
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - David R. Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Lachlan H. Thompson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Dage JL, Colvin EM, Fouillet A, Langron E, Roell WC, Li J, Mathur SX, Mogg AJ, Schmitt MG, Felder CC, Merchant KM, Isaac J, Broad LM, Sher E, Ursu D. Pharmacological characterisation of ligand- and voltage-gated ion channels expressed in human iPSC-derived forebrain neurons. Psychopharmacology (Berl) 2014; 231:1105-24. [PMID: 24429870 DOI: 10.1007/s00213-013-3384-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Genetic causes, or predisposition, are increasingly accepted to be part of the ethiopathogenesis of many neuropsychiatric diseases. While genes can be studied in any type of cells, their physiological function in human brain cells is difficult to evaluate, particularly in living subjects. METHODS As a first step towards the characterisation of human inducible pluripotent stem cell (iPSC)-derived neurons from autism spectrum disorder (ASD) patients, we used gene expression and functional studies to define the regional identity of the typical forebrain differentiation, demonstrate expression patterns of genes of interest in ASD and understand the properties of 'control' iPSC-derived neurons (iCell-Neurons™), with a focus on receptors and ion channels that play a central role in synaptic physio-pathology. RESULTS AND DISCUSSION The gene expression profile of the iCell-Neurons™ closely resembled that observed in neonatal prefrontal cortex tissues. Functional studies, performed mainly using calcium flux assays, demonstrated the presence of ionotropic glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate) and gamma-aminobutyric acid type A receptors. Voltage-gated sodium and calcium channels were also identified using similar techniques. CONCLUSIONS Overall, the results reported here suggest that iCell-Neurons™ are a good cellular model of a relatively immature forebrain human neuron population that can be used both as a control in comparison to patients cells, and as host cells in which mutations, insertions and deletions can be used in order to study the molecular mechanisms of ASD and other neurological disorders in an isogenic cellular background.
Collapse
Affiliation(s)
- Jeffrey L Dage
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahuja V, Sharma S. Drug safety testing paradigm, current progress and future challenges: an overview. J Appl Toxicol 2013; 34:576-94. [PMID: 24777877 DOI: 10.1002/jat.2935] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/08/2013] [Accepted: 08/22/2013] [Indexed: 12/29/2022]
Abstract
Early assessment of the toxicity potential of new molecules in pharmaceutical industry is a multi-dimensional task involving predictive systems and screening approaches to aid in the optimization of lead compounds prior to their entry into development phase. Due to the high attrition rate in the pharma industry in last few years, it has become imperative for the nonclinical toxicologist to focus on novel approaches which could be helpful for early screening of drug candidates. The need is that the toxicologists should change their classical approach to a more investigative approach. This review discusses the developments that allow toxicologists to anticipate safety problems and plan ways to address them earlier than ever before. This includes progress in the field of in vitro models, surrogate models, molecular toxicology, 'omics' technologies, translational safety biomarkers, stem-cell based assays and preclinical imaging. The traditional boundaries between teams focusing on efficacy/ safety and preclinical/ clinical aspects in the pharma industry are disappearing, and translational research-centric organizations with a focused vision of bringing drugs forward safely and rapidly are emerging. Today's toxicologist should collaborate with medicinal chemists, pharmacologists, and clinicians and these value-adding contributions will change traditional toxicologists from side-effect identifiers to drug development enablers.
Collapse
Affiliation(s)
- Varun Ahuja
- Drug Safety Assessment, Novel Drug Discovery and Development, Lupin Limited (Research Park), 46A/47A, Nande Village, MulshiTaluka, Pune, 412 115, India
| | | |
Collapse
|
17
|
Piracetam induces plasma membrane depolarization in rat brain synaptosomes. Neurosci Lett 2013; 553:206-10. [DOI: 10.1016/j.neulet.2013.08.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022]
|
18
|
Reinhardt P, Glatza M, Hemmer K, Tsytsyura Y, Thiel CS, Höing S, Moritz S, Parga JA, Wagner L, Bruder JM, Wu G, Schmid B, Röpke A, Klingauf J, Schwamborn JC, Gasser T, Schöler HR, Sterneckert J. Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS One 2013; 8:e59252. [PMID: 23533608 PMCID: PMC3606479 DOI: 10.1371/journal.pone.0059252] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.
Collapse
Affiliation(s)
- Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Michael Glatza
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Kathrin Hemmer
- Stem Cell Biology and Regeneration Group, Institute of Cell Biology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, North Rhine-Westphalia, Germany
| | - Yaroslav Tsytsyura
- Westfälische Wilhelms-Universität Münster, Institute for Medical Physics and Biophysics, Cellular Biophysics Group, Münster, North Rhine-Westphalia, Germany
| | - Cora S. Thiel
- Westfälische Wilhelms-Universität Münster, Institute for Medical Physics and Biophysics, Cellular Biophysics Group, Münster, North Rhine-Westphalia, Germany
| | - Susanne Höing
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Sören Moritz
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Juan A. Parga
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
- Center for Research in Molecular Medicine and Chronic Diseases at the University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Lydia Wagner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Jan M. Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
| | - Benjamin Schmid
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases, Tübingen, Baden-Württemburg, Germany
| | - Albrecht Röpke
- Institute for Human Genetics, University of Münster, Münster, North Rhine Westphalia, Germany
| | - Jürgen Klingauf
- Westfälische Wilhelms-Universität Münster, Institute for Medical Physics and Biophysics, Cellular Biophysics Group, Münster, North Rhine-Westphalia, Germany
| | - Jens C. Schwamborn
- Stem Cell Biology and Regeneration Group, Institute of Cell Biology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, North Rhine-Westphalia, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases, Tübingen, Baden-Württemburg, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
- Medical Faculty, University of Münster, Münster, North Rhine-Westphalia, Germany
- * E-mail: (HRS); (JS)
| | - Jared Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, North Rhine Westphalia, Germany
- * E-mail: (HRS); (JS)
| |
Collapse
|
19
|
Liu W, Deng Y, Liu Y, Gong W, Deng W. Stem Cell Models for Drug Discovery and Toxicology Studies. J Biochem Mol Toxicol 2013; 27:17-27. [DOI: 10.1002/jbt.21470] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Wenwei Liu
- Medical College; Hubei University of Arts and Science; Xiangyang; Hubei; People's Republic of China
| | - Yaguang Deng
- Medical College; Hubei University of Arts and Science; Xiangyang; Hubei; People's Republic of China
| | | | - Wenrong Gong
- Medical College; Hubei University of Arts and Science; Xiangyang; Hubei; People's Republic of China
| | | |
Collapse
|
20
|
Tralau T, Luch A. Drug-mediated toxicity: illuminating the ‘bad’ in the test tube by means of cellular assays? Trends Pharmacol Sci 2012; 33:353-64. [DOI: 10.1016/j.tips.2012.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/12/2012] [Accepted: 03/28/2012] [Indexed: 12/19/2022]
|