1
|
Qin H, Fu Y, Zhou K, Song H, Fang G, Chen Q, Pang Y. Toddalia asiatica extract attenuates adjuvant-induced arthritis by modulating colon Th17/Treg balance and colony homeostasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116542. [PMID: 37127142 DOI: 10.1016/j.jep.2023.116542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the adverse effects of the current principal treatments, there is still a great need for effective cures for rheumatoid arthritis (RA), an immune-mediated disease. Toddalia asiatica (L.) Lam is a traditional medicinal herb that can be used for RA treatment because of its anti-inflammatory and analgesic properties. AIM OF THE STUDY To investigate the possible effects of Toddalia asiatica extract (TAE) on intestinal immunity and the intestinal bacterial flora in a rat model of RA. MATERIALS AND METHODS The anti-arthritis effect of TAE was evaluated in arthritis rats induced by complete Freund's adjuvant-induced arthritis (AIA). Arthritis index (AI) scores, systemic inflammation scores, histopathologic changes in the colon and ankle were detected by hematoxylin and eosin staining. Western blot analysis was performed to assess the protein expression of IL-17A, RORC, IL-1β, IL-6, FOXP3, IL-10 in the colon. RT-PCR was performed to assess the expression of the colon's mRNA. Finally, changes to the gut microbiome by sequencing 16S rDNA. Microbial function prediction was performed using PICRUSt with the KEGG databases and correlation analysis was carried out by computing Spearman's rank correlations. RESULTS demonstrated that TAE administration at a dose of 3 g/kg dramatically decreased AI scores, systemic inflammation scores, and histopathologic lesions of the ankle and colon in AIA rats. TAE was found to significantly reduce the expression levels of Th17-related proteins and mRNAs (IL-17A, RORC, IL-1β and IL-6) in the colon, while increasing the expression levels of Treg-related proteins and mRNA (IL-10 and FOXP3), which helped restore the balance of Th17/Treg immune cells in the colon. Meanwhile, TAE was also found to be capable of remodeling the gut microbiota in AIA rats. Depleting RA-associated genera and thereby increasing α-diversity enriched the gut microbiota's diversity and shifted the community composition dramatically, leading to the increase of Firmicutes_unclassified, Ruminococcaceae_unclassified, Muribaculum, Subdoligranulum, Lachnospira, Marvinbryantia, and the reduction of RA-related bacteria Ligilactobacillus, Streptococcus and Eubacterium-eligens-group. Furthermore, PICRUSt analysis revealed that metabolic pathways were associated with TAE treatment, with metabolic pathways dominating. Among them, metabolic pathways were predominant. Correlation studies showed that a total of 9 microorganisms, including Ligilactobacillus, Eubacterium-eligens-group and Subdoligranulum, were significantly associated with Th17/Treg expression. CONCLUSIONS This study demonstrates that TAE is a low-toxicity poly alkaline drug that can rapidly and effectively improve joint symptoms in RA rats and increases beneficial intestinal bacteria and decreases harmful ones, which is associated with modulating Th17/Treg interactions in intestinal T cells and reversing microbial disorders.
Collapse
Affiliation(s)
- Huangguan Qin
- College of Zhuang Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, PR China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Yulei Fu
- College of Zhuang Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, PR China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Kan Zhou
- College of Zhuang Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, PR China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Huanhuan Song
- College of Zhuang Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, PR China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Gang Fang
- College of Zhuang Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, PR China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Yuzhou Pang
- College of Zhuang Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, 530022, PR China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
2
|
Gaona-Tovar E, Estrada-Soto S, González-Trujano ME, Martínez-Vargas D, Hernandez-Leon A, Narváez-González F, Villalobos-Molina R, Almanza-Pérez JC. Antinociceptive and gastroprotective activities of Bocconia arborea S. Watson and its bioactive metabolite dihydrosanguinarine in murine models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115492. [PMID: 35724746 DOI: 10.1016/j.jep.2022.115492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bocconia arborea S. Watson (Papaveraceae) is known as "palo llora sangre" and is used in Mexican traditional medicine for the treatment of infections, it is also used as anxiolytic, analgesic, and antidiabetic, among others. AIM OF THE STUDY to evaluate the antinociceptive and gastroprotective activities of extracts from B. arborea and dihydrosanguinarine (DHS) in murine models. MATERIALS AND METHODS Organic extracts [hexane (HEX), dichloromethane (DCM) and methanol (MeOH)] were obtained by maceration. DHS was isolated and purified from HEX and DCM by precipitation and chromatographic column, respectively. Organic extracts and DHS were evaluated to determine their antinociceptive effect using formalin test in murine model. Also, the ambulatory effect of the HEX and DHS was determined in Open field test. The possible mechanism of action of DHS was explored in the presence of naltrexone (NTX, 1 mg/kg, i.p.), and picrotoxin (PTX, 1 mg/kg, i.p.). Gastric damage as possible adverse effect or gastroprotection were also investigated. Whereas DHS acute toxicological study was done, and 100 mg/kg of DHS was examined by electroencephalographic (EEG) analysis to discard neurotoxic effects. RESULTS The B. arborea extracts significantly showed effects in both neurogenic and inflammatory phases of the formalin test, where the HEX extract reached the major antinociceptive effect. A significant and dose-response (10, 30, and 100 mg/kg) antinociceptive activity was observed with the HEX (ED50 = 69 mg/kg) and DHS (ED50 = 85 mg/kg) resembling the effect of the reference analgesic drug tramadol (30 mg/kg). The significant effect of DHS was inhibited in the presence of NTX and PTX. Neither the extracts or DHS produced sedative effects or gastric damage per se at antinociceptive doses. The EEG analysis demonstrated central depressant activity but not sedative or neurotoxic effects at the highest antinociceptive dosage tested, and LD50 is higher than 2000 mg/kg. CONCLUSIONS HEX, DCM, and MeOH extracts showed significant antinociceptive activity, and DHS was identified as one of bioactive compounds without producing sedative, neurotoxic or gastric damage effects, as possible adverse effects reported for analgesic drugs. A role of opioid and GABAA neurotransmission appears to be involved as mechanisms of action of DHS, suggesting its potential for pain therapy and reinforcing the traditional use of B. arborea.
Collapse
Affiliation(s)
- Emmanuel Gaona-Tovar
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico.
| | - María Eva González-Trujano
- Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico.
| | - David Martínez-Vargas
- Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Alberto Hernandez-Leon
- Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Fernando Narváez-González
- ISSSTE Hospital Regional "Gral. Ignacio Zaragoza", Calz. Ignacio Zaragoza 1711, Ejército Constitucionalista, Chinam Pac de Juárez, Iztapalapa, 09220, Ciudad de México, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, 54090, Mexico
| | - Julio C Almanza-Pérez
- Lab. Farmacología, Depto. Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, 09340, Mexico
| |
Collapse
|
3
|
Pan Y, Li H, Shahidi F, Luo T, Deng Z. Interactions among dietary phytochemicals and nutrients: Role of cell membranes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Och A, Zalewski D, Komsta Ł, Kołodziej P, Kocki J, Bogucka-Kocka A. Cytotoxic and Proapoptotic Activity of Sanguinarine, Berberine, and Extracts of Chelidonium majus L. and Berberis thunbergii DC. toward Hematopoietic Cancer Cell Lines. Toxins (Basel) 2019; 11:E485. [PMID: 31443589 PMCID: PMC6784183 DOI: 10.3390/toxins11090485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/02/2023] Open
Abstract
Isoquinoline alkaloids belong to the toxic secondary metabolites occurring in plants of many families. The high biological activity makes these compounds promising agents for use in medicine, particularly as anticancer drugs. The aim of our study was to evaluate the cytotoxicity and proapoptotic activity of sanguinarine, berberine, and extracts of Chelidonium majus L. and Berberis thunbergii DC. IC10, IC50, and IC90 doses were established toward hematopoietic cancer cell lines using trypan blue staining. Alterations in the expression of 18 apoptosis-related genes in cells exposed to IC10, IC50, and IC90 were evaluated using real-time PCR. Sanguinarine and Chelidonium majus L. extract exhibit significant cytotoxicity against all studied cell lines. Lower cytotoxic activity was demonstrated for berberine. Berberis thunbergii DC. extract had no influence on cell viability. Berberine, sanguinarine, and Chelidonium majus L. extract altered the expression of apoptosis-related genes in all tested cell lines, indicating the induction of apoptosis. The presented study confirmed the substantial cytotoxicity and proapoptotic activity of sanguinarine, berberine, and Chelidonium majus L. extract toward the studied hematopoietic cell lines, which indicates the utility of these substances in anticancer therapy.
Collapse
Affiliation(s)
- Anna Och
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland.
| |
Collapse
|
5
|
Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater Celandine's Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today's Pharmacology. Front Pharmacol 2018; 9:299. [PMID: 29713277 PMCID: PMC5912214 DOI: 10.3389/fphar.2018.00299] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
As antique as Dioscorides era are the first records on using Chelidonium as a remedy to several sicknesses. Inspired by the "signatura rerum" principle and an apparent ancient folk tradition, various indications were given, such as anti-jaundice and cholagogue, pain-relieving, and quite often mentioned-ophthalmological problems. Central and Eastern European folk medicine has always been using this herb extensively. In this region, the plant is known under many unique vernacular names, especially in Slavonic languages, associated or not with old Greek relation to "chelidon"-the swallow. Typically for Papaveroidae subfamily, yellow-colored latex is produced in abundance and leaks intensely upon injury. Major pharmacologically relevant components, most of which were first isolated over a century ago, are isoquinoline alkaloids-berberine, chelerythrine, chelidonine, coptisine, sanguinarine. Modern pharmacology took interest in this herb but it has not ended up in gaining an officially approved and evidence-based herbal medicine status. On the contrary, the number of relevant studies and publications tended to drop. Recently, some controversial reports and sometimes insufficiently proven studies appeared, suggesting anticancer properties. Anticancer potential was in line with anecdotical knowledge spread in East European countries, however, in the absence of directly-acting cytostatic compounds, some other mechanisms might be involved. Other properties that could boost the interest in this herb are antimicrobial and antiviral activities. Being a common synanthropic weed or ruderal plant, C. majus spreads in all temperate Eurasia and acclimates well to North America. Little is known about the natural variation of bioactive metabolites, including several aforementioned isoquinoline alkaloids. In this review, we put together older and recent literature data on phytochemistry, pharmacology, and clinical studies on C. majus aiming at a critical evaluation of state-of-the-art from the viewpoint of historical and folk indications. The controversies around this herb, the safety and drug quality issues and a prospective role in phytotherapy are discussed as well.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
| | - Anna Jezierska-Domaradzka
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| | | | - Ireneusz Sowa
- Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Adam M. Matkowski
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
6
|
Han N, Yang Z, Liu Z, Liu H, Yin J. Research Progress on Natural Benzophenanthridine Alkaloids and their Pharmacological Functions: A Review. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Benzophenanthridine alkaloids belong to the benzyl isoquinoline family of alkaloids, which are mainly found in Papaveraceae and Rutaceae. To date, over 100 compounds have been isolated from natural herbal medicines which display a variety of pharmacological functions. In this paper, we have summarized the work since 1980 and our own research on benzophenanthridine alkaloids in terms of their chemical structures and distribution, biosynthesis, biotransformation and metabolism, spectral characteristics, pharmacological activities and toxicity. This review lays the foundation for further research into benzophenanthridine alkaloids and their potential applications.
Collapse
Affiliation(s)
- Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiyou Yang
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huijing Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
7
|
Jursky F, Baliova M, Juhasova A. Structural insights into the benzophenanthridines binding to human glycine transporter GlyT1. Eur J Pharmacol 2015; 765:1-6. [PMID: 26272436 DOI: 10.1016/j.ejphar.2015.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/20/2015] [Accepted: 08/07/2015] [Indexed: 11/29/2022]
Abstract
We previously identified cysteine 475 as a key residue for the inhibitory action of sanguinarine on the human glycine transporter GlyT1c. To define potential benzophenanthridine binding pocket more closely, we created a structural homology model of GlyT1 and also mutated several amino acids in the vicinity of cysteine 475. Even though this area contains the molecular determinants of the glycine and sodium permeation pathways, and several mutations resulted in an inactive transporter, we found that the mutation of a polar aromatic tyrosine 370 to purely aromatic phenylalanine, but not to an aliphatic leucine, significantly increased the sensitivity of GlyT1 to both sanguinarine and chelerythrine. The reduction of sanguinarine to dihydrosanguinarine completely eliminated the alkaloid's inhibitory potency. Both these results suggest that aromaticity is important in the interaction of benzophenanthridines with GlyT1. Even though tyrosine 370 is part of the conformationaly highly flexible glycine binding site, and is accesible during the transport process from both intra and extracellular sites, the cytoplasmic location of the second alkaloid sensitive residue, cysteine 475, suggests that the benzophenanthridines might attack the area of the GlyT1 intracellular gates.
Collapse
Affiliation(s)
- Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia.
| | - Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| | - Anna Juhasova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
8
|
Ambidalmines A–E and ambidimerine F: Bioactive dihydrobenzophenanthridine alkaloids from Corydalis ambigua var. amurensis. Eur J Med Chem 2014; 84:417-24. [DOI: 10.1016/j.ejmech.2014.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 11/24/2022]
|
9
|
Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 2012; 63:1227-37. [DOI: 10.1016/j.neuropharm.2012.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/06/2012] [Accepted: 07/11/2012] [Indexed: 01/02/2023]
|
10
|
Molecular basis for differential glycine transporters sensitivity to sanguinarine. Toxicol Lett 2012; 212:262-7. [DOI: 10.1016/j.toxlet.2012.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 02/05/2023]
|