1
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Mungo E, Bergandi L, Salaroglio IC, Doublier S. Pyruvate Treatment Restores the Effectiveness of Chemotherapeutic Agents in Human Colon Adenocarcinoma and Pleural Mesothelioma Cells. Int J Mol Sci 2018; 19:ijms19113550. [PMID: 30423827 PMCID: PMC6274794 DOI: 10.3390/ijms19113550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence supports the idea that a dysfunction in cell metabolism could sustain a resistant phenotype in cancer cells. As the success of chemotherapeutic agents is often questioned by the occurrence of multidrug resistance (MDR), a multiple cross-resistance towards different anti-cancer drugs represent a major obstacle to cancer treatment. The present study has clarified the involvement of the carbon metabolites in a more aggressive tumor colon adenocarcinoma phenotype and in a chemoresistant mesothelioma, and the role of pyruvate treatment in the reversion of the potentially related resistance. For the first time, we have shown that human colon adenocarcinoma cells (HT29) and its chemoresistant counterpart (HT29-dx) displayed different carbon metabolism: HT29-dx cells had a higher glucose consumption compared to HT29 cells, whereas human malignant mesothelioma (HMM) cells showed a lower glucose consumption compared to HT29 cells, accompanied by a lower pyruvate production and, consequently, a higher production of lactate. When treated with pyruvate, both HT29-dx and HMM cells exhibited a re-established accumulation of doxorubicin and a lower survival ability, a decreased activity of multidrug resistance protein 1 (MRP1) and a restored mitochondrial respiratory chain function, improving the effectiveness of the chemotherapeutic agents in these resistant cancer cells.
Collapse
Affiliation(s)
- Eleonora Mungo
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| | | | - Sophie Doublier
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
3
|
Smith SK, Gosrani SP, Lee CA, McCarty GS, Sombers LA. Carbon-Fiber Microbiosensor for Monitoring Rapid Lactate Fluctuations in Brain Tissue Using Fast-Scan Cyclic Voltammetry. Anal Chem 2018; 90:12994-12999. [DOI: 10.1021/acs.analchem.8b03694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samantha K. Smith
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Saahj P. Gosrani
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Christie A. Lee
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Gregory S. McCarty
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Leslie A. Sombers
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
McNair LF, Kornfelt R, Walls AB, Andersen JV, Aldana BI, Nissen JD, Schousboe A, Waagepetersen HS. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates. Neurochem Res 2016; 42:810-826. [DOI: 10.1007/s11064-016-2116-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
|
5
|
Cordeiro C, de Vries M, Ngabi W, Oomen P, Cremers T, Westerink B. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens Bioelectron 2015; 67:677-86. [DOI: 10.1016/j.bios.2014.09.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 01/30/2023]
|
6
|
El Hage M, Baverel G, Conjard-Duplany A, Martin G. Effect of glucose on glutamine metabolism in rat brain slices: a cellular metabolomic study with Effect of glucose ¹³C NMR. Neuroscience 2013; 248:243-51. [PMID: 23769890 DOI: 10.1016/j.neuroscience.2013.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
To examine the effect of glucose on the cerebral metabolism of glutamine, rat brain slices were incubated with 5mM [3-(13)C]glutamine without and with 5mM unlabeled glucose. Tissue plus medium extracts were analyzed by using enzymatic and (13)C NMR techniques and fluxes through the enzymatic steps involved were calculated with a mathematical model. We demonstrate that glucose increased alanine, pyruvate and glutamate accumulations and decreased ammonium ions accumulation, aspartate accumulation and labeling, and GABA labeling. In order to determine the participation of glutamine synthetase when glucose was added to the incubation medium, we incubated rat brain slices with 5mM [3-(13)C]glutamine plus 5mM unlabeled glucose without and with 2mM methionine sulfoximine (MSO). The results indicate that 77% of the newly appeared glutamine was formed via glutamine synthetase and 23% from endogenous sources; the stimulation of [3-(13)C]glutamine removal by MSO also strongly suggests the existence of a cycle between [3-(13)C]glutamine and [3-(13)C]glutamate. This work also demonstrates that glucose increased fluxes through hexokinase, pyruvate kinase, lactate dehydrogenase, alanine aminotransferase, pyruvate carboxylase, pyruvate dehydrogenase, citrate synthase, flux from α-ketoglutarate to glutamate and flux through glutamine synthetase whereas it inhibited fluxes through aspartate aminotransferase, glutamic acid decarboxylase and GABA aminotransferase.
Collapse
Affiliation(s)
- M El Hage
- Metabolys Inc., Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France.
| | - G Baverel
- Metabolys Inc., Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| | - A Conjard-Duplany
- EA 4611, Biochimie et Physiopathologie Métaboliques, Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| | - G Martin
- EA 4611, Biochimie et Physiopathologie Métaboliques, Laennec Faculty of Medicine, 69372 Lyon Cedex 08, France
| |
Collapse
|
7
|
El Hage M, Masson J, Conjard-Duplany A, Ferrier B, Baverel G, Martin G. Brain slices from glutaminase-deficient mice metabolize less glutamine: a cellular metabolomic study with carbon 13 NMR. J Cereb Blood Flow Metab 2012; 32:816-24. [PMID: 22373647 PMCID: PMC3345920 DOI: 10.1038/jcbfm.2012.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the brain, glutaminase is considered to have a key role in the provision of glutamate, a major excitatory neurotransmitter. Brain slices obtained from wild-type (control) and glutaminase-deficient (GLS1+/-) mice were incubated without glucose and with 5 or 1 mmol/L [3-(13)C]glutamine as substrate. At the end of the incubation, substrate removal and product formation were measured by both enzymatic and carbon 13 nuclear magnetic resonance ((13)C-NMR) techniques. Slices from GLS1+/- mice consumed less [3-(13)C]glutamine and accumulated less [3-(13)C]glutamate. They also produced less (13)CO(2) but accumulated amounts of (13)C-aspartate and (13)C-gamma-aminobutyric acid (GABA) that were similar to those found with brain slices from control mice. The newly formed glutamine observed in slices from control mice remained unchanged in slices from GLS1+/- mice. As expected, flux through glutaminase in slices from GLS1+/- mice was found diminished. Fluxes through all enzymes of the tricarboxylic acid cycle were also reduced in brain slices from GLS1+/- mice except through malate dehydrogenase with 5 mmol/L [3-(13)C]glutamine. The latter diminutions are consistent with the decreases in the production of (13)CO(2) also observed in the slices from these mice. It is concluded that the genetic approach used in this study confirms the key role of glutaminase for the provision of glutamate.
Collapse
Affiliation(s)
- Maha El Hage
- Metabolys, Faculté de Médecine R.T.H. Laennec, 7–11 rue G. Paradin, Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|