1
|
Liu H, Jang J, French AS, Torkkeli PH. Sequence analysis, homology modeling, tissue expression, and potential functions of seven putative acetylcholinesterases in the spider Cupiennius salei. Eur J Neurosci 2024; 60:5785-5811. [PMID: 39230060 DOI: 10.1111/ejn.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Acetylcholine esterases (AChEs) are essential enzymes in cholinergic synapses, terminating neurotransmission by hydrolysing acetylcholine. While membrane bound AChEs at synaptic clefts efficiently perform this task, soluble AChEs are less stable and effective, but function over broader areas. In vertebrates, a single gene produces alternatively spliced forms of AChE, whereas invertebrates often have multiple genes, producing both enzyme types. Despite their significance as pesticide targets, the physiological roles of invertebrate AChEs remain unclear. Here, we characterized seven putative AChEs in the wandering spider, Cupiennius salei, a model species for neurophysiological studies. Sequence analyses and homology modeling predicted CsAChE7 as the sole stable, membrane-bound enzyme functioning at synaptic clefts, while the others are likely soluble enzymes. In situ hybridization of sections from the spider's nervous system revealed CsAChE7 transcripts co-localizing with choline acetyltransferase in cells that also exhibited AChE activity. CsAChE7 transcripts were also found in rapidly adapting mechanosensory neurons, suggesting a role in precise and transient activation of postsynaptic cells, contrasting with slowly adapting, also cholinergic, neurons expressing only soluble AChEs, which allow prolonged activation of postsynaptic cells. These findings suggest that cholinergic transmission is influenced not only by postsynaptic receptors but also by the enzymatic properties regulating acetylcholine clearance. We also show that acetylcholine is a crucial neurotransmitter in the spider's visual system and sensory and motor pathways, but absent in excitatory motor neurons at neuromuscular junctions, consistent with other arthropods. Our findings on sequence structures may have implications for the development of neurological drugs and pesticides.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Jinwon Jang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Andrew S French
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Päivi H Torkkeli
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Sridhar GR, Gumpeny L. Emerging significance of butyrylcholinesterase. World J Exp Med 2024; 14:87202. [PMID: 38590305 PMCID: PMC10999061 DOI: 10.5493/wjem.v14.i1.87202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Butyrylcholinesterase (BChE; EC 3.1.1.8), an enzyme structurally related to acetylcholinesterase, is widely distributed in the human body. It plays a role in the detoxification of chemicals such as succinylcholine, a muscle relaxant used in anesthetic practice. BChE is well-known due to variant forms of the enzyme with little or no hydrolytic activity which exist in some endogamous communities and result in prolonged apnea following the administration of succinylcholine. Its other functions include the ability to hydrolyze acetylcholine, the cholinergic neurotransmitter in the brain, when its primary hydrolytic enzyme, acetylcholinesterase, is absent. To assess its potential roles, BChE was studied in relation to insulin resistance, type 2 diabetes mellitus, cognition, hepatic disorders, cardiovascular and cerebrovascular diseases, and inflammatory conditions. Individuals who lack the enzyme activity of BChE are otherwise healthy, until they are given drugs hydrolyzed by this enzyme. Therefore, BChE is a candidate for the study of loss-of-function mutations in humans. Studying individuals with variant forms of BChE can provide insights into whether they are protected against metabolic diseases. The potential utility of the enzyme as a biomarker for Alzheimer's disease and the response to its drug treatment can also be assessed.
Collapse
Affiliation(s)
- Gumpeny R Sridhar
- Department of Endocrinology and Diabetes, Endocrine and Diabetes Centre, Visakhapatnam 530002, Andhra Pradesh, India
| | - Lakshmi Gumpeny
- Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India
| |
Collapse
|
3
|
Gruendel MS, Brenneisen W, Wollborn J, Haaker G, Meersch M, Gurlit S, Goebel U. Perioperative point-of-care-testing of plasmacholinesterases identifies older patients at risk for postoperative delirium: an observational prospective cohort study. BMC Geriatr 2024; 24:136. [PMID: 38321383 PMCID: PMC10848373 DOI: 10.1186/s12877-023-04627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Postoperative delirium (POD) is a severe perioperative complication that may increase mortality and length-of-stay in older patients. Moreover, POD is a major economic burden to any healthcare system. An altered expression of Acetylcholine- and Butyrylcholinesterases (AChE, BuChE) due to an unbalanced neuroinflammatory response to trauma or an operative stimulus has been reported to play an essential role in the development of POD. We investigated if perioperative measurement of cholinesterases (ChEs) can help identifying patients at risk for the occurrence of POD in both, scheduled and emergency surgery patients. METHODS This monocentric prospective observational cohort study was performed in a tertiary hospital (departments of orthopaedic surgery and traumatology). One hundred and fifty-one patients aged above 75 years were enrolled for scheduled (n = 76) or trauma-related surgery (n = 75). Exclusion criteria were diagnosed dementia and anticholinergic medication. Plasma samples taken pre- and postoperatively were analysed regarding AChE and BuChE activity. Furthermore, perioperative assessment using different cognitive tests was performed. The type of anaesthesia (general vs. spinal anaesthesia) was analysed. Primary outcome was the incidence of POD assessed by the approved Confusion Assessment Method (CAM) in combination with the expression of AChE and BuChE. RESULTS Of 151 patients included, 38 (25.2%) suffered from POD; 11 (14%) in scheduled and 27 (36%) in emergency patients. AChE levels showed no difference throughout groups or time course. Trauma patients had lower BuChE levels prior to surgery than scheduled patients (p < 0.001). Decline in BuChE levels correlated positively with the incidence of POD (1669 vs. 1175 U/l; p < 0.001). Emergency patients with BuChE levels below 1556 U/L were at highest risk for POD. There were no differences regarding length of stay between groups or incidence of POD. The type of anaesthesia had no influence regarding the incidence of POD. Only Charlson Comorbidity Index and Mini Nutrition Assessment demonstrated reliable strength in respect of POD. CONCLUSIONS Perioperative measurement of BuChE activity can be used as a tool to identify patients at risk of POD. As a point-of-care test, quick results may alter the patients' course prior to the development of POD. TRIAL REGISTRATION https://drks.de/search/de/trial/DRKS00017178 .
Collapse
Affiliation(s)
- Matthias S Gruendel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
| | - Wibke Brenneisen
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
| | - Jakob Wollborn
- Department of Anaesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, USA
| | - Gerrit Haaker
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
| | - Melanie Meersch
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Simone Gurlit
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany
- Department of Public Health, District Council, Muenster, Germany
| | - Ulrich Goebel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital GmbH, Hohenzollernring 70, Muenster, 48145, Germany.
| |
Collapse
|
4
|
Žunec S, Vadlja D, Ramić A, Zandona A, Maraković N, Brekalo I, Primožič I, Katalinić M. Profiling Novel Quinuclidine-Based Derivatives as Potential Anticholinesterase Drugs: Enzyme Inhibition and Effects on Cell Viability. Int J Mol Sci 2023; 25:155. [PMID: 38203326 PMCID: PMC10778980 DOI: 10.3390/ijms25010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cholinergic system, relying on the neurotransmitter acetylcholine (ACh), plays a significant role in muscle contraction, cognition, and autonomic nervous system regulation. The enzymes acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, responsible for hydrolyzing ACh, can fine-tune the cholinergic system's activity and are, therefore, excellent pharmacological targets to address a range of medical conditions. We designed, synthesized, and profiled 14 N-alkyl quaternary quinuclidines as inhibitors of human AChE and BChE and analyzed their impact on cell viability to assess their safety in the context of application as potential therapeutics. Our results showed that all of the 14 tested quinuclidines inhibited both AChE and BChE in the micromolar range (Ki = 0.26 - 156.2 μM). The highest inhibition potency was observed for two bisquaternary derivatives, 7 (1,1'-(decano)bis(3-hydroxyquinuclidinium bromide)) and 14 (1,1'-(decano)bis(3-hydroxyiminoquinuclidinium bromide)). The cytotoxic effect within 7-200 μM was observed only for monoquaternary quinuclidine derivatives, especially those with the C12-C16 alkyl chain. Further analysis revealed a time-independent mechanism of action, significant LDH release, and a decrease in the cells' mitochondrial membrane potential. Taking all results into consideration, we can confirm that a quinuclidine core presents a good scaffold for cholinesterase binding and that two bisquaternary quinuclidine derivatives could be considered as candidates worth further investigations as drugs acting in the cholinergic system. On the other hand, specific cell-related effects probably triggered by the free long alkyl chain in monoquaternary quinuclidine derivatives should not be neglected in future N-alkyl quaternary quinuclidine derivative structure refinements. Such an effect and their potential to interact with other specific targets, as indicated by a pharmacophore model, open up a new perspective for future investigations of these compounds' scaffold in the treatment of specific conditions and diseases other than cholinergic system-linked disorders.
Collapse
Affiliation(s)
- Suzana Žunec
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Donna Vadlja
- Armed Forces of the Republic of Croatia, Trg Kralja Petra Krešimira IV br. 1, 10000 Zagreb, Croatia;
| | - Alma Ramić
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Nikola Maraković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Iva Brekalo
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Ines Primožič
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| |
Collapse
|
5
|
Acari A, Almammadov T, Dirak M, Gulsoy G, Kolemen S. Real-time visualization of butyrylcholinesterase activity using a highly selective and sensitive chemiluminescent probe. J Mater Chem B 2023. [PMID: 37377112 DOI: 10.1039/d3tb01022h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Butyrylcholinesterase (BChE), one of the critical human cholinesterases, plays crucial roles in numerous physiological and pathological processes. Accordingly, it is a striking and at the same time challenging target for bioimaging studies. Herein, we developed the first ever example of a 1,2-dixoetane-based chemiluminescent probe (BCC) for monitoring BChE activity in native biological contexts such as living cells and animals. BCC was initially shown to exhibit a highly selective and sensitive turn-on response in its luminescence signal upon reacting with BChE in aqueous solutions. Later, BCC was utilized to image endogenous BChE activity in normal and cancer cell lines. It was also shown through inhibition experiments that BChE can detect fluctuations of BChE levels successfully. In vivo imaging ability of BCC was demonstrated in healthy and tumor-bearing mice models. BCC enabled us to visualize the BChE activity in different regions of the body. Furthermore, it was successfully employed to monitor tumors derived from neuroblastoma cells with a very high signal to noise ratio. Thus, BCC appears as a highly promising chemiluminescent probe, which can be used to further understand the contribution of BChE to regular cellular processes and the formation of diseased states.
Collapse
Affiliation(s)
- Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| | - Toghrul Almammadov
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
- Univesity of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Musa Dirak
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Goktug Gulsoy
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
| | - Safacan Kolemen
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
- Koç University, Department of Chemistry, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), 34450 Istanbul, Turkey
| |
Collapse
|
6
|
Hailati S, Talihati Z, Abudurousuli K, Han MY, Nuer M, Khan N, Maihemuti N, Simayi J, Dilimulati D, Nueraihemaiti N, Zhou W. Exploring the hub genes and mechanisms of Daphne altaica treating esophageal squamous cell carcinoma based on network pharmacology and bioinformatics analysis. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04797-w. [PMID: 37087696 DOI: 10.1007/s00432-023-04797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC), is a frequent digestive tract malignant carcinoma with a high fatality rate. Daphne altaica (D. altaica), a medicinal plant that is frequently employed in Kazakh traditional medicine, and which has traditionally been used to cure cancer and respiratory conditions, but research on the mechanism is lacking. Therefore, we examined and verified the hub genes and mechanism of D. altaica treating ESCC. METHODS Active compounds and targets of D. altaica were screened by databases such as TCMSP, and ESCC targets were screened by databases such as GeneCards and constructed the compound-target network and PPI network. Meantime, data sets between tissues and adjacent non-cancerous tissues from GEO database (GSE100942, GPL570) were analyzed to obtain DEGs using the limma package in R. Hub genes were validated using data from the Kaplan-Meier plotter database, TIMER2.0 and GEPIA2 databases. Finally, AutoDock software was used to predict the binding sites through molecular docking. RESULTS In total, 830 compound targets were obtained from TCMSP and other databases. In addition, 17,710 disease targets were acquired based on GeneCards and other databases. In addition, we constructed the compound-target network and PPI network. Then, 127 DEGs were observed (82 up-regulated and 45 down-regulated genes). Hub genes were screened including TOP2A, NUF2, CDKN2A, BCHE, and NEK2, and had been validated with the help of several publicly available databases. Finally, molecular docking results showed more stable binding between five hub genes and active compounds. CONCLUSIONS In the present study, five hub genes were screened and validated, and potential mechanisms of action were predicted, which could provide a theoretical understanding of the treatment of ESCC with D. altaica.
Collapse
Affiliation(s)
- Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Ziruo Talihati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Kayisaier Abudurousuli
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Meng Yuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Muhadaisi Nuer
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Nawaz Khan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Nulibiya Maihemuti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Jimilihan Simayi
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China
| | - Wenting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Ürümqi, Xinjiang, People's Republic of China.
| |
Collapse
|
7
|
Ramadori GP. Organophosphorus Poisoning: Acute Respiratory Distress Syndrome (ARDS) and Cardiac Failure as Cause of Death in Hospitalized Patients. Int J Mol Sci 2023; 24:6658. [PMID: 37047631 PMCID: PMC10094912 DOI: 10.3390/ijms24076658] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Industrial production of food for animals and humans needs increasing amounts of pesticides, especially of organophosphates, which are now easily available worldwide. More than 3 million cases of acute severe poisoning are estimated to occur worldwide every year, and even more cases remain unreported, while 200,000-350,000 incidentally or intentionally poisoned people die every year. Diagnostic and therapeutic procedures in organophosphate poisoning have, however, remained unchanged. In addition to several neurologic symptoms (miosis, fasciculations), hypersecretion of salivary, bronchial, and sweat glands, vomiting, diarrhea, and loss of urine rapidly induce dehydration, hypovolemia, loss of conscience and respiratory distress. Within hours, signs of acidosis due to systemic hypoxia can be observed at first laboratory investigation after hospitalization. While determination of serum-cholinesterase does not have any diagnostic value, it has been established that hypoalbuminemia alone or accompanied by an increase in creatinine, lactate, or C-reactive protein serum levels has negative prognostic value. Increased serum levels of C-reactive protein are a sign of systemic ischemia. Protective mechanical ventilation should be avoided, if possible. In fact, acute respiratory distress syndrome characterized by congestion and increased weight of the lung, accompanied by heart failure, may become the cause of death. As the excess of acetylcholine at the neuronal level can persist for weeks until enough newly, locally synthesized acetylcholinesterase becomes available (the value of oximes in reducing this time is still under debate), after atropine administration, intravenous albumin and fluid infusion should be the first therapeutic interventions to reestablish normal blood volume and normal tissue oxygenation, avoiding death by cardiac arrest.
Collapse
|
8
|
Xu Y, Chen H, Liu X, Sun L, Fang Y. Enzymatic demulsification of long-chain alkanoylcholine-based oil-in-water emulsions and microemulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Banaei M, Forouzanfar M, Jafarinia M. Toxic effects of polyethylene microplastics on transcriptional changes, biochemical response, and oxidative stress in common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109423. [PMID: 35914709 DOI: 10.1016/j.cbpc.2022.109423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Aquatic ecosystems have become a place for accumulating microplastics (MPs). MPs can directly or indirectly damage organisms. Although studies of the toxicity of MPs, there are insufficient literature reports on the effects of MPs on freshwater aquatic life. Therefore, this study aimed to evaluate the effect of MPs toxicity on Cyprinus carpio. In this study, biochemical parameters, oxidative biomarkers, and gene expression were assayed in fish exposed to 0, 175, 350, 700, and 1400 μg L-1 of MPs for 30 days. MPs were detected in the liver and intestine of fish using FTIR-analysis. Mt1, Ces2, and P450 mRNA expression were enhanced in the hepatocytes of fish exposed to MPs, while Mt2 gene expression was significantly decreased. After exposure to MPs, MDA and carbonyl protein levels were higher than those of the reference group. The antioxidant capacity and glycogen contents in the hepatocytes significantly declined. MPs significantly inhibited glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), and catalase (CAT) activities. However, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased. MPs decreased the total protein, globulin levels, and butyrylcholinesterase (BChE) activity in blood. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and creatine phosphokinase (CPK) activities increased in treated-fish with MPs. Glucose, creatinine, cholesterol and triglyceride concentrations in fish exposed to MPs were significantly higher than that of the reference group. Consequently, MPs exposure could disrupt biochemical homeostasis, oxidative stress and alter the expression of genes involved in detoxification.
Collapse
Affiliation(s)
- Mehdi Banaei
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
10
|
Arslan M, Novak M, Rosenthal D, Hartmann CJ, Albrecht P, Samadzadeh S, Hefter H. Cholinesterase Deficiency Syndrome-A Pitfall in the Use of Butyrylcholinesterase as a Biomarker for Wilson's Disease. Biomolecules 2022; 12:1398. [PMID: 36291607 PMCID: PMC9599139 DOI: 10.3390/biom12101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
A family is described as having two recessively inherited metabolic diseases and three differently affected children. During the explantation of a drain tube grommet under general anesthesia, a prolonged resuscitation and wake-up period occurred in the key case when he was 8 years old. This led to a family screening for butyrylcholinesterase deficiency, which was confirmed not only in the key case but also in his 5-year-old sister; it was not confirmed in his 10-year-old brother. However, the key case not only had reduced serum levels of BCHE, but also elevated liver enzyme levels, which are atypical for BCHE deficiency. After the exclusion of viral and autoimmune hepatitis, Wilson's disease (WD) was eventually diagnosed and also confirmed in his elder brother, but not in his sister. This family is presented to highlight an extremely rare WD-patient in whom a low serum level of BCHE did not occur because of WD but because of BCHE deficiency.
Collapse
Affiliation(s)
- Max Arslan
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Departments of Anesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Max Novak
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dietmar Rosenthal
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Christian J. Hartmann
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philipp Albrecht
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sara Samadzadeh
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Harald Hefter
- Departments of Neurology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Uzairu SM, Tijani Y, Gadaka MA, Modu B, Watafua M, Ahmad HA, Zakariya UA, Ibrahim A, Daja A, Zanna H, Sallau AB. Kinetics and computational study of butyrylcholinesterase inhibition by methylrosmarinate: relevance to Alzheimer's disease treatment. Heliyon 2022; 8:e10613. [PMID: 36148271 PMCID: PMC9485033 DOI: 10.1016/j.heliyon.2022.e10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Butyrylcholinesterase (BChE) performs a significant function in Alzheimer’s disease progression. Experimental studies have shown that the function of BChE in the attenuation of cholinergic neurotransmission is essentially altered in brains of advanced AD patients. Here, using the complimentary methods of enzyme kinetic studies, molecular modeling and protein-ligand interaction profiling, we sought to reveal the mechanistic and structural features of BChE-methyrosmarinate interactions. Molecular docking simulations revealed that methylrosmarinate dwelled well in the active centre of BChE, where it got involved in stabilizing non-covalent associations with myriad subsites. Enzyme kinetic experiments showed that the Vm and Ks values were 156.20 ± 3.11 U mg−1 protein and 0.13 ± 0.01 μM, respectively. The inhibition studies showed that methylrosmarinate apparently inhibited BChE in a linear mixed manner, with an IC50 value of 10.31 μM and a Ki value of 3.73 ± 1.52 μM. Taken together, the extremely reduced Ki value and the increased number of BChE–methylrosmarinate interactions presuppose that methylrosmarinate is a good inhibitor of BChE, despite the fact that the mechanism for the effect of BChE inhibition on several pathological conditions in vivo remains unexplored.
Collapse
Affiliation(s)
- Sani Muhammad Uzairu
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
- Corresponding author.
| | - Yahaya Tijani
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | - Madu Adamu Gadaka
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | - Babagana Modu
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | - Miriam Watafua
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | - Hadiza Ali Ahmad
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | | | - Aminu Ibrahim
- Department of Biochemistry, Bayero University, Kano, P.M.B. 30ll Kano, Nigeria
| | - Aliyu Daja
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | - Hassan Zanna
- Department of Biochemistry, University of Maiduguri, P.M.B. 1069 Maiduguri, Nigeria
| | | |
Collapse
|
12
|
Severi I, Abbatelli S, Perugini J, Di Mercurio E, Senzacqua M, Giordano A. Butyrylcholinesterase distribution in the mouse gastrointestinal tract: An immunohistochemical study. J Anat 2022; 242:245-256. [PMID: 36004682 PMCID: PMC9877478 DOI: 10.1111/joa.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a hydrolytic enzyme that together with acetylcholinesterase (AChE) belongs to the cholinesterase family. Whereas AChE has a well-established role in regulating cholinergic neurotransmission in central and peripheral synapses, the physiological role of BChE remains elusive. In this morphological immunohistochemical and double-label confocal microscopy study we investigated the distribution of BChE in the mouse gastrointestinal tract. BChE-positive cells were detected in the liver (both in hepatocytes and cholangiocytes), in the keratinised layers of the squamous epithelium of the oesophagus and forestomach, in the oxyntic mucosa of the stomach, in the mucus-secreting cells of duodenal Brunner glands and the small and large intestinal mucosa. Interestingly, BChE-positive cells were often detected close to gastrointestinal proliferative niches. In the oxyntic mucosa, the close proximity of ghrelin-producing and BChE-positive parietal cells suggests that BChE may be involved in ghrelin hydrolysation through paracrine action. To our knowledge, this is the first comprehensive morphological study performed to gain insight into the physiological role of BChE in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Silvia Abbatelli
- Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Jessica Perugini
- Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Martina Senzacqua
- Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| | - Antonio Giordano
- Department of Experimental and Clinical MedicineMarche Polytechnic UniversityAnconaItaly
| |
Collapse
|
13
|
Feronato SG, Silva MLM, Izbicki R, Farias TDJ, Shigunov P, Dallagiovanna B, Passetti F, dos Santos HG. Selecting Genetic Variants and Interactions Associated with Amyotrophic Lateral Sclerosis: A Group LASSO Approach. J Pers Med 2022; 12:jpm12081330. [PMID: 36013279 PMCID: PMC9410070 DOI: 10.3390/jpm12081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-system neurodegenerative disease that affects both upper and lower motor neurons, resulting from a combination of genetic, environmental, and lifestyle factors. Usually, the association between single-nucleotide polymorphisms (SNPs) and this disease is tested individually, which leads to the testing of multiple hypotheses. In addition, this classical approach does not support the detection of interaction-dependent SNPs. We applied a two-step procedure to select SNPs and pairwise interactions associated with ALS. SNP data from 276 ALS patients and 268 controls were analyzed by a two-step group LASSO in 2000 iterations. In the first step, we fitted a group LASSO model to a bootstrap sample and a random subset of predictors (25%) from the original data set aiming to screen for important SNPs and, in the second step, we fitted a hierarchical group LASSO model to evaluate pairwise interactions. An in silico analysis was performed on a set of variables, which were prioritized according to their bootstrap selection frequency. We identified seven SNPs (rs16984239, rs10459680, rs1436918, rs1037666, rs4552942, rs10773543, and rs2241493) and two pairwise interactions (rs16984239:rs2118657 and rs16984239:rs3172469) potentially involved in nervous system conservation and function. These results may contribute to the understanding of ALS pathogenesis, its diagnosis, and therapeutic strategy improvement.
Collapse
Affiliation(s)
| | | | - Rafael Izbicki
- Department of Statistics, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Ticiana D. J. Farias
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81310-020, Brazil
- Division of Biomedical Informatics, Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Patrícia Shigunov
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81310-020, Brazil
| | | | - Fabio Passetti
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81310-020, Brazil
| | | |
Collapse
|
14
|
Black and non-black population: investigation of the difference in butyrylcholinesterase activity in a healthy population in Salvador, Bahia. Ir J Med Sci 2022:10.1007/s11845-022-03087-7. [DOI: 10.1007/s11845-022-03087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
|
15
|
Cano-Rocabayera O, Monroy M, Moncaleano-Niño ÁM, Gómez-Cubillos MC, Ahrens MJ. An integrated biomarker approach: Non-monotonic responses to cadmium exposure in the suckermouth catfish Hypostomus plecostomus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106193. [PMID: 35588581 DOI: 10.1016/j.aquatox.2022.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental risk assessment in aquatic ecosystems typically uses biomarkers to detect interactions between potential hazards and biological systems. Next to knowing environmental contaminant levels in tissues and the environment, it is important to link to potentially deleterious effects at higher levels of biological organization such as biochemistry, physiology, and overall health status. In this laboratory study we assessed the toxicity of waterborne cadmium (Cd) over an exposure range of 0 - 100 µg l-1 for nine days to the loricariid suckermouth catfish Hypostomus plecostomus. We evaluated the integrated response of the fish at the biochemical to physiological level by means of a suite of tissue biomarkers of exposure and effects, including Cd concentrations in gills, liver metallothioneins (MT) and cholinesterase activity (ChE) in brain, before and after the inhibition of the alkaloid eserine, as well as whole-fish resting oxygen consumption rates and ingestion rate. Tissue biomarkers (MT and ChE) showed a non-monotonic relationship, with maximum/minimum responses at intermediate doses. i.e. 10 and 50 µg l-1, whereas biomarker responses of fish exposed at 100 µg l-1 more closely resembled biomarker responses seen at lower concentrations (< 10 µg l-1). Conversely, the oxygen consumption rate peaked at 100 µg l-1, suggesting a higher metabolic cost for higher metal exposure, with no significant correlation with fish body condition and food intake. Integrated Biomarker Response (IBR) values peaked at the intermediate exposure concentration of 50 µg l-1 Cd. The non-monotonic dose-response of the biochemical biomarkers of exposure, together with the higher metabolic rates of fish exposed to 50 - 100 µg l-1 of Cd and the non-significant effects on the more relevant physiological and histological variables suggests that H. plecostomus is capable of biochemically and physiologically regulating moderately high Cd concentrations, thus representing a suitable indicator organism to monitor metal pollution by Cd.
Collapse
Affiliation(s)
- Oriol Cano-Rocabayera
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Frankfurt am Main, Germany; Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| | - Mario Monroy
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 45 No. 26-85, Bogotá, 111321, Colombia
| | - Ángela Margarita Moncaleano-Niño
- Department of Biological Sciences, Universidad de Bogotá Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia; Department of Biology, Ichthyology Laboratory, Ecology and Systematics Unit (UNESIS), Pontifical Javeriana University, Transversal 4 No. 42-00, Bogotá, Colombia
| | - María Camila Gómez-Cubillos
- Department of Biological Sciences, Universidad de Bogotá Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Michael J Ahrens
- Department of Biological Sciences, Universidad de Bogotá Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| |
Collapse
|
16
|
Butyrylcholinesterase is a potential biomarker for Sudden Infant Death Syndrome. EBioMedicine 2022; 80:104041. [PMID: 35533499 PMCID: PMC9092508 DOI: 10.1016/j.ebiom.2022.104041] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Autonomic dysfunction has been implicated in the pathophysiology of the Sudden Infant Death Syndrome (SIDS). Butyrylcholinesterase (BChE) is an enzyme of the cholinergic system, a major branch of the autonomic system, and may provide a measure of autonomic (dys)function. This study was undertaken to evaluate BChE activity in infants and young children who had died from Sudden Infant Death or Sudden Unexpected Death. Methods In this case-control study we measured BChE activity and total protein in the eluate of 5μL spots punched from the dried blood spots taken at birth as part of the newborn screening program. Results for each of 67 sudden unexpected deaths classified by the coroner (aged 1 week-104 weeks) = Cases, were compared to 10 date of birth - and gender-matched surviving controls (Controls), with five cases reclassified to meet criteria for SIDS, including the criterion of age 3 weeks to 1 year. Findings Conditional logistic regression showed that in groups where cases were reported as “SIDS death” there was strong evidence that lower BChE specific activity (BChEsa) was associated with death (OR=0·73 per U/mg, 95% CI 0·60-0·89, P=0·0014), whereas in groups with a “Non-SIDS death” as the case there was no evidence of a linear association between BChEsa and death (OR=1·001 per U/mg, 95% CI 0·89-1·13, P=0·99). Interpretation BChEsa, measured in dried blood spots taken 2-3 days after birth, was lower in babies who subsequently died of SIDS compared to surviving controls and other Non-SIDS deaths. We conclude that a previously unidentified cholinergic deficit, identifiable by abnormal -BChEsa, is present at birth in SIDS babies and represents a measurable, specific vulnerability prior to their death. Funding All funding provided by a crowd funding campaign https://www.mycause.com.au/p/184401/damiens-legacy
Collapse
|
17
|
Moreira NCDS, Lima JEBDF, Marchiori MF, Carvalho I, Sakamoto-Hojo ET. Neuroprotective Effects of Cholinesterase Inhibitors: Current Scenario in Therapies for Alzheimer's Disease and Future Perspectives. J Alzheimers Dis Rep 2022; 6:177-193. [PMID: 35591949 PMCID: PMC9108627 DOI: 10.3233/adr-210061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive neurodegenerative disease conceptualized as a continuous process, ranging from mild cognitive impairment (MCI), to the mild, moderate, and severe clinical stages of AD dementia. AD is considered a complex multifactorial disease. Currently, the use of cholinesterase inhibitors (ChEI), such as tacrine, donepezil, rivastigmine, and galantamine, has been the main treatment for AD patients. Interestingly, there is evidence that ChEI also promotes neuroprotective effects, bringing some benefits to AD patients. The mechanisms by which the ChEI act have been investigated in AD. ChEI can modulate the PI3K/AKT pathway, which is an important signaling cascade that is capable of causing a significant functional impact on neurons by activating cell survival pathways to promote neuroprotective effects. However, there is still a huge challenge in the field of neuroprotection, but in the context of unravelling the details of the PI3K/AKT pathway, a new scenario has emerged for the development of more efficient drugs that act on multiple protein targets. Thus, the mechanisms by which ChEI can promote neuroprotective effects and prospects for the development of new drug candidates for the treatment of AD are discussed in this review.
Collapse
Affiliation(s)
| | | | - Marcelo Fiori Marchiori
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Baréa P, Barbosa VA, Yamazaki DADS, Gomes CMB, Novello CR, Costa WFD, Gauze GDF, Sarragiotto MH. Anticholinesterase activity of β-carboline-1,3,5-triazine hybrids. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
20
|
Butyrylcholinesterase-Protein Interactions in Human Serum. Int J Mol Sci 2021; 22:ijms221910662. [PMID: 34639003 PMCID: PMC8508650 DOI: 10.3390/ijms221910662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Measuring various biochemical and cellular components in the blood is a routine procedure in clinical practice. Human serum contains hundreds of diverse proteins secreted from all cells and tissues in healthy and diseased states. Moreover, some serum proteins have specific strong interactions with other blood components, but most interactions are probably weak and transient. One of the serum proteins is butyrylcholinesterase (BChE), an enzyme existing mainly as a glycosylated soluble tetramer that plays an important role in the metabolism of many drugs. Our results suggest that BChE interacts with plasma proteins and forms much larger complexes than predicted from the molecular weight of the BChE tetramer. To investigate and isolate such complexes, we developed a two-step strategy to find specific protein–protein interactions by combining native size-exclusion chromatography (SEC) with affinity chromatography with the resin that specifically binds BChE. Second, to confirm protein complexes′ specificity, we fractionated blood serum proteins by density gradient ultracentrifugation followed by co-immunoprecipitation with anti-BChE monoclonal antibodies. The proteins coisolated in complexes with BChE were identified by mass spectroscopy. These binding studies revealed that BChE interacts with a number of proteins in the human serum. Some of these interactions seem to be more stable than transient. BChE copurification with ApoA-I and the density of some fractions containing BChE corresponding to high-density lipoprotein cholesterol (HDL) during ultracentrifugation suggest its interactions with HDL. Moreover, we observed lower BChE plasma activity in individuals with severely reduced HDL levels (≤20 mg/dL). The presented two-step methodology for determination of the BChE interactions can facilitate further analysis of such complexes, especially from the brain tissue, where BChE could be involved in the pathogenesis and progression of AD.
Collapse
|
21
|
Awan S, Hashmi AN, Taj R, Munir S, Habib R, Batool S, Azam M, Qamar R, Nurulain SM. Genetic Association of Butyrylcholinesterase with Major Depressive Disorder. Biochem Genet 2021; 60:720-737. [PMID: 34414522 DOI: 10.1007/s10528-021-10125-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) is characterized as clinical depression, which primarily affects the mood and behaviour of an individual. In the present study butyrylcholinesterase (BChE), a co-regulatory cholinergic neurotransmitter enzyme implicated in several putative neuronal and non-neuronal physiological roles was investigated for its role in MDD. Eighty MDD patients and sixty-one healthy controls were recruited for the study. BChE activity was measured by Ellman's method using serum while DNA samples of the patients were genotyped for BCHE polymorphisms rs3495 (c.*189G > A) and rs1803274 (c.1699G > A) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and tetra-primer Amplification Refractory Mutation System- polymerase chain reaction (ARMS-PCR). The genotyping was further validated by Sanger Sequencing. Biochemical estimation of serum BChE levels revealed a statistically significant decrease of enzyme activity in MDD patients (69.96) as compared to healthy controls (90.97), which was independent of age and gender. BCHE single nucleotide polymorphism rs1803274 genotype GA was found to be associated with the disease under a dominant model (OR 2.32; 95% CI 1.09-4.96; p value = 0.025). Furthermore, risk allele-A frequency was higher in cases (p value = 0.013) than control. Carriers of rs1803274 GA genotype showed reduced mean BChE activity than wild-type allele GG homozygotes (p value = 0.040). Gender-based analysis revealed a protective role of rs3495 in females (χ2 = 6.87, p value = 0.032, RM: OR 0.173, CI = 0.043-0.699 (p value = 0.017). In addition, rs1803274 risk allele-A was observed to be significantly higher in males (χ2 = 4.258, p value = 0.039). In conclusion, the present study is indicative of a role of BChE in the pathophysiology of MDD where genetic polymorphisms were observed to effect BChE activity. Further replication studies in different ethnicities are recommended to validate the current observations.
Collapse
Affiliation(s)
- Sliha Awan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Aisha N Hashmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Rizwan Taj
- Department of Psychiatry, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Sadaf Munir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Rabia Habib
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Sajida Batool
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Maleeha Azam
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan. .,Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Tarlai Kalan, Park Road, Islamabad, 45550, Pakistan.
| | - Raheel Qamar
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan.,Science and Technology Sector, ICESCO, Rabat, Morocco
| | - Syed M Nurulain
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan.
| |
Collapse
|
22
|
Molęda Z, Zawadzka A, Czarnocki Z, Monjas L, Hirsch AKH, Budzianowski A, Maurin JK. "Clicking" fragment leads to novel dual-binding cholinesterase inhibitors. Bioorg Med Chem 2021; 42:116269. [PMID: 34130217 DOI: 10.1016/j.bmc.2021.116269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Cholinesterase inhibitors are potent therapeutics in the treatment of Alzheimer's disease. Among them, dual binding ligands have recently gained a lot of attention. We discovered novel dual-binding cholinesterase inhibitors, using "clickable" fragments, which bind to either catalytic active site (CAS) or peripheral anionic site (PAS) of the enzyme. Copper(I)-catalyzed azide-alkyne cycloaddition allowed to effectively synthesize a series of final heterodimers, and modeling and kinetic studies confirmed their ability to bind to both CAS and PAS. A potent acetylcholinesterase inhibitor with IC50 = 18 nM (compound 23g) was discovered. A target-guided approach to link fragments by the enzyme itself was tested using butyrylcholinesterase.
Collapse
Affiliation(s)
- Zuzanna Molęda
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| | - Anna Zawadzka
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Zbigniew Czarnocki
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Leticia Monjas
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Jan K Maurin
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
23
|
Al-Emam A. Butyryl-cholinesterase deficiency: A case report of delayed recovery after general anaesthesia. Toxicol Rep 2021; 8:1226-1228. [PMID: 34195013 PMCID: PMC8233168 DOI: 10.1016/j.toxrep.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/04/2022] Open
Abstract
Suggestive presentation of foreign body aspiration needs emergency bronchoscopy. Meticulous history and high index of suspicion is needed to diagnose butyryl-cholinesterase deficiency. Succinylcholine apnoea is treated by ventilation and recombinant enzyme could be the specific antidote. Genetic testing is needed to confirm the diagnosis of butyryl-cholinesterase deficiency. Succinylcholine apnoea patient and their family should be well-informed about the situation.
Background Apnoea and prolonged paralysis after succinylcholine administration is not uncommon occurrence in anaesthetic practice. It occurs due to inherited or acquired deficiency of butyrylcholinesterase. Case report Here we report a case of succinylcholine apnoea for 2 h in a 5 years old girl who was anaesthetized for bronchoscopic extraction of a foreign body. She was subsequently kept on assisted ventilation. She recovered few minutes after I.V. atropine and naloxone. Laboratory investigation revealed low cholinesterase activity. Thus the girl was given 150 mL fresh frozen plasma. She has been discharged the next day after complete recovery. Conclusion As the genetic analysis was not available to confirm the diagnosis of atypical variant of cholinesterase. The family was advised to submit serum samples for assessment of cholinesterase activity and avoid exposure to cholinesterase inhibitors. Moreover, clear instructions were given to the family so they can warn the anaesthetists in case any family member undergoes general anesthesia for any reason in the future. Furthermore, they must be strongly advised to avoid exposure to anticholinesterases as they might have heightened sensitivity to these agents. It should be emphasized that Naloxone and atropine could help speed up recovery in such cases.
Collapse
Affiliation(s)
- Ahmed Al-Emam
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Forensic Medicine and Clinical Toxicology Department, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Rejc L, Gómez-Vallejo V, Joya A, Moreno O, Egimendia A, Castellnou P, Ríos-Anglada X, Cossío U, Baz Z, Passannante R, Tobalina-Larrea I, Ramos-Cabrer P, Giralt A, Sastre M, Capetillo-Zarate E, Košak U, Knez D, Gobec S, Marder M, Martin A, Llop J. Longitudinal evaluation of a novel BChE PET tracer as an early in vivo biomarker in the brain of a mouse model for Alzheimer disease. Am J Cancer Res 2021; 11:6542-6559. [PMID: 33995675 PMCID: PMC8120209 DOI: 10.7150/thno.54589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose: The increase in butyrylcholinesterase (BChE) activity in the brain of Alzheimer disease (AD) patients and animal models of AD position this enzyme as a potential biomarker of the disease. However, the information on the ability of BChE to serve as AD biomarker is contradicting, also due to scarce longitudinal studies of BChE activity abundance. Here, we report 11C-labeling, in vivo stability, biodistribution, and longitudinal study on BChE abundance in the brains of control and 5xFAD (AD model) animals, using a potent BChE selective inhibitor, [11C]4, and positron emission tomography (PET) in combination with computerised tomography (CT). We correlate the results with in vivo amyloid beta (Aβ) deposition, longitudinally assessed by [18F]florbetaben-PET imaging. Methods: [11C]4 was radiolabelled through 11C-methylation. Metabolism studies were performed on blood and brain samples of female wild type (WT) mice. Biodistribution studies were performed in female WT mice using dynamic PET-CT imaging. Specific binding was demonstrated by ex vivo and in vivo PET imaging blocking studies in female WT and 5xFAD mice at the age of 7 months. Longitudinal PET imaging of BChE was conducted in female 5xFAD mice at 4, 6, 8, 10 and 12 months of age and compared to age-matched control animals. Additionally, Aβ plaque distribution was assessed in the same mice using [18F]florbetaben at the ages of 2, 5, 7 and 11 months. The results were validated by ex vivo staining of BChE at 4, 8, and 12 months and Aβ at 12 months on brain samples. Results: [11C]4 was produced in sufficient radiochemical yield and molar activity for the use in PET imaging. Metabolism and biodistribution studies confirmed sufficient stability in vivo, the ability of [11C]4 to cross the blood brain barrier (BBB) and rapid washout from the brain. Blocking studies confirmed specificity of the binding. Longitudinal PET studies showed increased levels of BChE in the cerebral cortex, hippocampus, striatum, thalamus, cerebellum and brain stem in aged AD mice compared to WT littermates. [18F]Florbetaben-PET imaging showed similar trend of Aβ plaques accumulation in the cerebral cortex and the hippocampus of AD animals as the one observed for BChE at ages 4 to 8 months. Contrarily to the results obtained by ex vivo staining, lower abundance of BChE was observed in vivo at 10 and 12 months than at 8 months of age. Conclusions: The BChE inhibitor [11C]4 crosses the BBB and is quickly washed out of the brain of WT mice. Comparison between AD and WT mice shows accumulation of the radiotracer in the AD-affected areas of the brain over time during the early disease progression. The results correspond well with Aβ accumulation, suggesting that BChE is a promising early biomarker for incipient AD.
Collapse
|
25
|
De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 2021; 11:580. [PMID: 33920972 PMCID: PMC8071298 DOI: 10.3390/biom11040580] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.
Collapse
Affiliation(s)
- Danna De Boer
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| | - Nguyet Nguyen
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jia Mao
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jessica Moore
- Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA;
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| |
Collapse
|
26
|
Millet C, Plaud B, Delacour H. Phenotype and genotype characteristics of 58 patients showing a prolonged effect of succinylcholine: A four-year experience. Anaesth Crit Care Pain Med 2021; 40:100847. [PMID: 33774263 DOI: 10.1016/j.accpm.2021.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 10/21/2022]
Abstract
INTRODUCTION This study sought to describe the phenotype and genotype characteristics of patients referred to our laboratory to undergo further assessment due to a suspicion of a prolonged effect of suxamethonium attributed to BChE deficiency. METHODS All patients referred to our laboratory from January 2016 to December 2019 due to the suspicion of a prolonged effect of suxamethonium were included in this study. The determination of BChE activity and genotyping using complete nucleotide sequencing of the entire complementary DNA-coding region with flanking intron-exon boundaries were completed. RESULTS During this four-year period, 58 patients were referred to our laboratory for the investigation of prolonged neuromuscular block due to BChE deficiency. Among them, 52 showed a BChE deficiency related to BCHE gene mutations. The most commonly detected genotype was compound homozygous atypical variant (p.Asp98Gly)/homozygous Kalow variant (p.Ala569Thr) (p.[Asp98Gly;Ala567Thr];[p.Asp98Gly;Ala567Thr]). Further, we recorded four new BCHE variants, which seem to be associated with prolonged post suxamethonium apnoea: p.(Trp205Cys), p.(Leu222His), p.(Glu469Gln), and p.(Lys276Ter). CONCLUSION During a four-year period, among the 58 patients referred to our laboratory, we have found four new BCHE variants, which seem to be associated with prolonged post suxamethonium apnoea (p.(Trp205Cys), p.(Leu22His), p.(Glu469Gln), and p.(Lys276Ter)).
Collapse
Affiliation(s)
- Clément Millet
- Service d'Anesthésie et Soins Continus, Institut Gustave Roussy, 114, Rue Édouard-Vaillant, 94805 Villejuif Cedex, France
| | - Benoît Plaud
- Université de Paris & APHP. Nord, DMU PARABOL, Hôpital Saint-Louis, service d'anesthésie, de réanimation et centre de traitement des brûlés, 1, avenue Claude Vellefaux 75010 Paris, France
| | - Hervé Delacour
- Hôpital d'Instruction des Armées Bégin, Département des Laboratoires, 69, Avenue De Paris, 94160 Saint Mandé, France; Ecole Du Val-de-Grâce, 1, Place Alphonse Laveran, 75005 Paris, France.
| |
Collapse
|
27
|
The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis. Int J Mol Sci 2021; 22:ijms22042033. [PMID: 33670778 PMCID: PMC7922581 DOI: 10.3390/ijms22042033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia in elderly individuals, is marked by progressive neuron loss. Despite more than 100 years of research on AD, there is still no treatment to cure or prevent the disease. High levels of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain are neuropathological hallmarks of AD. However, based on postmortem analyses, up to 44% of individuals have been shown to have high Aβ deposits with no clinical signs, due to having a “cognitive reserve”. The biochemical mechanism explaining the prevention of cognitive impairment in the presence of Aβ plaques is still unknown. It seems that in addition to protein aggregation, neuroinflammatory changes associated with aging are present in AD brains that are correlated with a higher level of brain iron and oxidative stress. It has been shown that iron accumulates around amyloid plaques in AD mouse models and postmortem brain tissues of AD patients. Iron is required for essential brain functions, including oxidative metabolism, myelination, and neurotransmitter synthesis. However, an imbalance in brain iron homeostasis caused by aging underlies many neurodegenerative diseases. It has been proposed that high iron levels trigger an avalanche of events that push the progress of the disease, accelerating cognitive decline. Patients with increased amyloid plaques and iron are highly likely to develop dementia. Our observations indicate that the butyrylcholinesterase (BChE) level seems to be iron-dependent, and reports show that BChE produced by reactive astrocytes can make cognitive functions worse by accelerating the decay of acetylcholine in aging brains. Why, even when there is a genetic risk, do symptoms of the disease appear after many years? Here, we discuss the relationship between genetic factors, age-dependent iron tissue accumulation, and inflammation, focusing on AD.
Collapse
|
28
|
Yamazaki DAS, Rozada AMF, Baréa P, Reis EC, Basso EA, Sarragiotto MH, Seixas FAV, Gauze GF. Novel arylcarbamate-N-acylhydrazones derivatives as promising BuChE inhibitors: Design, synthesis, molecular modeling and biological evaluation. Bioorg Med Chem 2021; 32:115991. [PMID: 33440318 DOI: 10.1016/j.bmc.2020.115991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
A novel series of arylcarbamate-N-acylhydrazones derivatives have been designed and synthesized as potential anti-cholinesterase agents. In vitro studies revealed that these compounds demonstrated selective for butyrylcholinesterase (BuChE) with potent inhibitory activity. The compounds 10a-d, 12b and 12d were the most potent BuChE inhibitors with IC50 values of 0.07-2.07 µM, highlighting the compound 10c (IC50 = 0.07 µM) which showed inhibitory activity 50 times greater than the reference drug donepezil (IC50 = 3.54 µM). The activity data indicates that the position of the carbamate group in the aromatic ring has a greater influence on the inhibitory activity of the derivatives. The enzyme kinetics studies indicate that the compound 10c has a non-competitive inhibition against BuChE with Ki value of 0.097 mM. Molecular modeling studies corroborated the in vitro inhibitory mode of interaction and show that compound 10c is stabilized into hBuChE by strong hydrogen bond interaction with Tyr128, π-π stacking interaction with Trp82 and CH⋯O interactions with His438, Gly121 and Glu197. Based on these data, compound10cwas identified as low-cost promising candidate for a drug prototype for AD treatment.
Collapse
Affiliation(s)
- Diego A S Yamazaki
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Andrew M F Rozada
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Paula Baréa
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Elaine C Reis
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Ernani A Basso
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | | | - Flávio A V Seixas
- Department of Technology, State University of Maringá, Umuarama, PR, Brazil
| | - Gisele F Gauze
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil.
| |
Collapse
|
29
|
Leung MR, Zeev-Ben-Mordehai T. Cryo-electron microscopy of cholinesterases, present and future. J Neurochem 2020; 158:1236-1243. [PMID: 33222205 PMCID: PMC8518539 DOI: 10.1111/jnc.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) exist in a variety of oligomeric forms, each with defined cellular and subcellular distributions. Although crystal structures of AChE and BChE have been available for many years, structures of the physiologically relevant ChE tetramer were only recently solved by cryo‐electron microscopy (cryo‐EM) single‐particle analysis. Here, we briefly review how these structures contribute to our understanding of cholinesterase oligomerization, highlighting the advantages of using cryo‐EM to resolve structures of protein assemblies that cannot be expressed recombinantly. We argue that the next frontier in cholinesterase structural biology is to image membrane‐anchored ChE oligomers directly in their native environment—the cell.
Collapse
Affiliation(s)
- Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,The Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Cao J, Wang M, Yu H, She Y, Cao Z, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7298-7315. [PMID: 32551623 DOI: 10.1021/acs.jafc.0c01962] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - He Yu
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006, Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| |
Collapse
|
32
|
Jasiecki J, Wasąg B. Butyrylcholinesterase Protein Ends in the Pathogenesis of Alzheimer's Disease-Could BCHE Genotyping Be Helpful in Alzheimer's Therapy? Biomolecules 2019; 9:biom9100592. [PMID: 31601022 PMCID: PMC6843418 DOI: 10.3390/biom9100592] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023] Open
Abstract
Late-onset Alzheimer’s disease (AD) is clinically characterized by a progressive decline of memory and other cognitive functions leading to the loss of the ability to perform everyday activities. Only a few drugs have been approved to treat AD dementia over the past century since the first AD patient was diagnosed. Drugs increasing the availability of neurotransmitters at synapses in the brain are used clinically in the treatment of AD dementia, and cholinesterase inhibitors (ChEIs) are the mainstay of the therapy. A detrimental effect on cognitive function has been reported in patients with pharmacological inhibition of acetylcholinesterase (AChE) by ChEIs and reduced butyrylcholinesterase (BChE) activity due to the single nucleotide polymorphisms. The BChE K-variant (rs1803274), the most common genetic variant of the BCHE gene, was thought to reduce enzyme activity reflecting the lower clinical response to rivastigmine in AD patients. During ChEIs therapy, patients carrying reduced-activity BChE do not present such improved attention like patients with the wild-type enzyme. On the other hand, alterations in the BCHE gene causing enzyme activity reduction may delay AD onset in patients at risk by preserving the level of cortical acetylcholine (ACh). Based on our previous results, we conclude that SNPs localized outside of the coding sequence, in 5’UTR (rs1126680) and/or intron 2 (rs55781031) of the BCHE gene, but not solely K-variant alteration (p.A539T) itself, are responsible for reduced enzyme activity. Therefore, we suspect that not BChE-K itself, but these coexisting SNPs (rs1126680 and rs55781031), could be associated with deleterious changes in cognitive decline in patients treated with ChEIs. Based on the results, we suggest that SNPs (rs1126680) and/or (rs55781031) genotyping should be performed to identify subjects at risk for lowered efficacy ChEIs therapy, and such patients should be treated with a lower rivastigmine dosage. Finally, our sequence analysis of the N-terminal end of N-BChE revealed evolutionarily conserved amino acid residues that can be involved in disulfide bond formation and anchoring of N-BChE in the cell membrane.
Collapse
Affiliation(s)
- Jacek Jasiecki
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, 80-416 Gdańsk, Poland
- Correspondence: ; Tel.: +48-58-3491972
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
- Laboratory of Clinical Genetics, University Clinical Centre, 80-952 Gdańsk, Poland
| |
Collapse
|
33
|
Martínez-Morcillo S, Pérez-López M, Míguez MP, Valcárcel Y, Soler F. Comparative study of esterase activities in different tissues of marine fish species Trachurus trachurus, Merluccius merluccius and Trisopterus luscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:12-22. [PMID: 31078771 DOI: 10.1016/j.scitotenv.2019.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Pesticides are one of the most frequently anthropogenic xenobiotics detected in water. Among these, the organophosphorus pesticides (OPs) are very widely used in agriculture due to their broad spectrum of activity and their low price, but they also have high potent effects as neurotoxic compounds in non-target organisms. The aim of this study was to evaluate biomarkers acetylcholinesterase (AChE), butyrylcholinesterase (BChE), propionylcholinesterase (PChE) and carboxylesterase (CbE) in the representative Atlantic fish species Trachurus trachurus, Merluccius merluccius and Trisopterus luscus from "Rías Gallegas", a traditional Spanish fishing area. These esterase activities were evaluated in the brain, muscle and liver to determine the most adequate tissue to measure such enzymatic activities. The sensitivity of AChE and CbE activities from different tissues the widely used organophosphorus insecticide chlorpyrifos (CP), and its toxic metabolite (CP-oxon) was also tested. AChE activity was predominant in all tissues of the analysed species (particularly in brain constituting from 78.33%, 89.83% and 88.43% of total ChEs in Trachurus trachurus, Merluccius merluccius and Trisopterus luscus, respectively). Under in vitro exposure, esterases were shown to be highly sensitive to CP and especially to CP-oxon. Moreover, a similar effect observed on AChE and CbE activities could suggest that CbE activity might contribute efficiently against the toxic effects of CP, especially in muscle and the liver. The presence of BChE, PChE and upper CbE activities in muscle and the liver and their OP-sensibilities can be used to study their function in the pesticide biochemical detoxification pathways with a prominent role as a safeguarding mechanism against pesticide toxicity.
Collapse
Affiliation(s)
- S Martínez-Morcillo
- Toxicology Unit, Veterinary School, University of Extremadura, Caceres, Spain.
| | - M Pérez-López
- Toxicology Unit, Veterinary School, University of Extremadura, Caceres, Spain
| | - M P Míguez
- Toxicology Unit, Veterinary School, University of Extremadura, Caceres, Spain
| | - Y Valcárcel
- Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, Madrid, Spain
| | - F Soler
- Toxicology Unit, Veterinary School, University of Extremadura, Caceres, Spain
| |
Collapse
|
34
|
Jasiecki J, Żuk M, Krawczyńska N, Jońca J, Szczoczarz A, Lewandowski K, Waleron K, Wasąg B. Haplotypes of butyrylcholinesterase K-variant and their influence on the enzyme activity. Chem Biol Interact 2019; 307:154-157. [PMID: 31071335 DOI: 10.1016/j.cbi.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/11/2019] [Accepted: 05/05/2019] [Indexed: 10/26/2022]
Abstract
Butyrylcholinesterase (BChE) is a serine hydrolase widely distributed throughout the body. It provides protection against administrated or inhaled poisons by hydrolyzing or sequestering the toxic compounds. The most frequent genetic variant of BCHE gene - K variant (p.A539T) is located in the C-terminal tetramerization domain, outside of the catalytic center. Many studies tried to reveal the nature of the lower activity of BChE K-variant but results and conclusions were often contradictory. The aim of this study is to estimate K allele frequency and its coexisting alterations in BCHE gene in a population of 162 individuals, as well as, assess influence on the enzyme activity in serum. We present three haplotypes of BChE-K variant, two of them coexist in strong linkage disequilibrium with alterations in 5'UTR (rs1126680), intron 2 (rs55781031) or in exon 2 (rs1799807). We demonstrate a negative role of these alterations on enzyme activity. By oneself BCHE-K (with no other alterations in BCHE gene) haplotype exhibits wild type enzyme activity. Based on our previous and presented results we conclude that SNPs localized outside the coding sequence, in 5'UTR or/and in intron 2 of BCHE gene, but not solely in K-variant alteration (p.A539T) itself, are responsible for reduced enzyme activity.
Collapse
Affiliation(s)
- Jacek Jasiecki
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Monika Żuk
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland; Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Natalia Krawczyńska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Jońca
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Szczoczarz
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Krzysztof Waleron
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland; Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|
35
|
Jasiecki J, Limon-Sztencel A, Żuk M, Chmara M, Cysewski D, Limon J, Wasąg B. Synergy between the alteration in the N-terminal region of butyrylcholinesterase K variant and apolipoprotein E4 in late-onset Alzheimer's disease. Sci Rep 2019; 9:5223. [PMID: 30914707 PMCID: PMC6435664 DOI: 10.1038/s41598-019-41578-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
While the life expectancy of the population has increased, Alzheimer’s disease (AD) has emerged as one of the greatest health problems of old age. AD is characterized by neuronal loss and cognitive decline. In the AD brain, there is a decrease in levels of acetylcholinesterase (AChE) and an increase in the levels of the related enzyme butyrylcholinesterase (BChE), that accumulate in plaques and tangles. Apolipoprotein E (ApoE) is a major cholesterol carrier and plays an important role in maintaining lipid homeostasis. APOE-ε4 constitutes the most important known genetic risk factor for late-onset AD. It has been proposed that the BCHE-K allele (Ala539Thr) acts in synergy with the APOE-ε4 allele to promote risk for AD. However, there is insufficient evidence to support a correlation. Most studies focused only on the coding regions of the genes. In this study, we analyzed sequence regions beyond the BCHE coding sequence. We found synergy between APOE-ε4 and SNPs localized in 5′UTR (rs1126680) and in intron 2 (rs55781031) of the BCHE-K allele (rs1803274) in 18% of patients with late-onset AD (n = 55). The results show that the coexistence of the APOE-ε4 allele and 3 SNPs in the BCHE gene is associated with a highly elevated risk of late-onset AD. SNP (rs1126680) in 5′UTR of the BCHE gene is located 32 nucleotides upstream of the 28 amino acid signal peptide. Mass spectrometry analysis of the BChE protein produced by SNP (rs1126680) showed that the mutation caused an in frame N-terminal extension of 41 amino acids of the BChE signal peptide. The resultant variant with a 69 amino acid signal peptide, designated N-BChE, may play a role in development of AD.
Collapse
Affiliation(s)
- Jacek Jasiecki
- Faculty of Pharmacy with Subfaculty of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Anna Limon-Sztencel
- Consultant Psychiatry, St. Adalbert Hospital, Copernicus Gdańsk, Gdańsk, Poland
| | - Monika Żuk
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Magdalena Chmara
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Limon
- Polish Academy of Sciences, Gdańsk Branch, Gdańsk, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland. .,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland.
| |
Collapse
|
36
|
Teralı K, Dalmizrak O, Uzairu SM, Ozer N. New insights into the interaction between mammalian butyrylcholinesterase and amitriptyline: a combined experimental and computational approach. TURKISH JOURNAL OF BIOCHEMISTRY 2019. [DOI: 10.1515/tjb-2018-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Today, there is a growing recognition in the scientific community of the many roles of butyrylcholinesterase (BChE) in both physiological and pathological contexts.
Objective
Here, we aim at providing an accurate and comprehensive understanding of the mechanistic and structural aspects of mammalian BChE inhibition by the tricyclic antidepressant amitriptyline (AMI).
Materials and methods
The present work involves enzyme kinetic studies as well as protein–ligand docking and interaction profiling studies.
Results
We verify that AMI acts as an effective, mixed-type inhibitor of mammalian BChE, with an IC50 value of 10 μM and a Ki value of 2.25 μM. We also provide evidence showing that AMI penetrates deep into the active-site gorge of BChE where it interacts noncovalently with both the choline-binding and catalytic residues.
Conclusion
These findings could facilitate the prevention of the adverse metabolic sequelae of acquired BChE deficiency and also the design of new reversible anticholinesterase drugs.
Collapse
|
37
|
Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proc Natl Acad Sci U S A 2018; 115:13270-13275. [PMID: 30538207 DOI: 10.1073/pnas.1817009115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.
Collapse
|
38
|
Peng ZL, Huang LW, Yin J, Zhang KN, Xiao K, Qing GZ. Association between early serum cholinesterase activity and 30-day mortality in sepsis-3 patients: A retrospective cohort study. PLoS One 2018; 13:e0203128. [PMID: 30161257 PMCID: PMC6117034 DOI: 10.1371/journal.pone.0203128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022] Open
Abstract
Low serum cholinesterase (SCHE) activity has been associated with poor prognoses in a variety of conditions, including sepsis. However, such an association has not been well characterized since the Third International Consensus Definitions Task Force modified the definition of sepsis to "life-threatening organ dysfunction due to a dysregulated host response to infection" (known as sepsis-3) in 2016. In the current retrospective cohort study, we examined whether 30-day mortality in sepsis-3 patients is associated with SCHE activity. A total of 166 sepsis-3 patients receiving treatment at an emergency intensive care unit (EICU) were included. The 30-day death rate was 33.1% (55/166). SCHE activity upon EICU admission was lower in nonsurvivors (3.3 vs. 4.5 KU/L in survivors, p = 0.0002). Subjects with low SCHE activity (defined as <4 KU/L) had higher 30-day mortality rates than subjects with normal SCHE activity (45.5%, 40/88 vs. 19.2%, 15/78; p<0.001). A multivariate logistic regression analysis revealed an association between 30-day mortality and lower SCHE activity after adjustments for relevant factors, such as acute multiple organ dysfunction. The odds ratio (OR) for every unit decrease in SCHE activity was 2.11 (95% confidence interval (CI), 1.37-3.27; p = 0.0008). The area under the curve (AUC) of SCHE activity for predicting 30-day mortality was 0.67 (95% CI 0.59-0.74), and the AUC of lactate for predicting 30-day mortality was 0.64 (95% CI 0.57-0.70). Using a combination of SCHE and lactate, the AUC was 0.74 (95% CI 0.69-0.83). These data suggest that lower SCHE activity is an independent risk factor for 30-day mortality in sepsis-3 patients.
Collapse
Affiliation(s)
- Zheng-Liang Peng
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- * E-mail: (ZLP); (GZQ)
| | - Liang-Wei Huang
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Jian Yin
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Ke-Na Zhang
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Kang Xiao
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Guo-Zhong Qing
- EICU, First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- * E-mail: (ZLP); (GZQ)
| |
Collapse
|
39
|
Kozlova DI, Kochkina EG, Dubrovskaya NM, Zhuravin IA, Nalivaeva NN. Effect of Prenatal Hypoxia on Cholinesterase Activity in Blood Serum of Rats. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Josviak ND, Batistela MS, Souza RKM, Wegner NR, Bono GF, Sulzbach CD, Simão-Silva DP, Piovezan MR, Souza RLR, Furtado-Alle L. Plasma butyrylcholinesterase activity: a possible biomarker for differential diagnosis between Alzheimer's disease and dementia with Lewy bodies? Int J Neurosci 2017; 127:1082-1086. [PMID: 28504037 DOI: 10.1080/00207454.2017.1329203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Butyrylcholinesterase (BChE) is an enzyme encoded by BCHE gene, responsible for secondary hydrolysis of the acetylcholine. K and -116A BCHE variants were associated with decrease in plasma BChE activity, and their influence has been investigated in diseases with a cholinergic deficit such as Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). In order to check the influence of BCHE genetic variants on enzymatic activity, all patients and controls were genotyped for K and -116A variants. We found lower plasma BChE activity in DLB patients compared to elderly controls and to AD independent of the presence of K or -116A variants. Our results suggest that the reduction of total plasma BChE activity is probably associated with a feedback mechanism and provides a future perspective of using this enzyme as a possible plasmatic marker for differential diagnosis between AD and DLB.
Collapse
Affiliation(s)
- N D Josviak
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - M S Batistela
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - R K M Souza
- b Ambulatory of Memory and Behavior Disorders , Neurology Institute of Curitiba , Curitiba , Brazil
| | - N R Wegner
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - G F Bono
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - C D Sulzbach
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - D P Simão-Silva
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - M R Piovezan
- c Department of Neurology , Clinical Hospital of the Federal University of Paraná , Curitiba , Brazil
| | - R L R Souza
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| | - L Furtado-Alle
- a Department of Genetics , Federal University of Parana , Curitiba , Brazil
| |
Collapse
|
41
|
Mora JR, Nuñez O, Rincón L, Torres FJ. Understanding the role of Zn 2+ in the hydrolysis of glycylserine: a mechanistic study by using density functional theory. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1269961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jose R. Mora
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
| | - Oswaldo Nuñez
- Departamento de Ingeniería Química, Laboratorio de Fisicoquímica orgánica y Química ambiental, Universidad Simón Bolívar , Caracas, Venezuela
| | - Luis Rincón
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Química, Facultad de Ciencias, Universidad de Los Andes , Mérida, Venezuela
| | - F. Javier Torres
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT-USFQ), Universidad San Francisco de Quito (USFQ) , Quito, Ecuador
| |
Collapse
|
42
|
Bertrand L, Monferrán MV, Mouneyrac C, Bonansea RI, Asis R, Amé MV. Sensitive biomarker responses of the shrimp Palaemonetes argentinus exposed to chlorpyrifos at environmental concentrations: Roles of alpha-tocopherol and metallothioneins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:72-81. [PMID: 27588703 DOI: 10.1016/j.aquatox.2016.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/15/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to evaluate the toxic effects of chlorpyrifos (CPF) at environmental concentrations on the shrimp Palaemonetes argentinus, a South American native species. Organisms were exposed to environmentally relevant concentrations of CPF (from 3.5 to 94.5ngCPFL(-1)) at laboratory conditions for 96h. A wide battery of biochemical responses including bioaccumulation, damage and defense biomarkers were measured in cephalothorax and abdomen of shrimp. The concentration of CPF was below the detection limit of the method in both body sectors (8ngCPFg(-1)ww), probably indicating fast biotransformation of the parental compound. Our results showed that CPF exposure inhibits acetylcholinesterase activity from 3.5ngCPFL(-1), a concentration below the suggested Argentinean guidelines for the protection of aquatic biota. Moreover, oxidative stress was evidenced by increased H2O2 content and increased levels of TBARs and carbonyl groups in proteins. The induction of antioxidant enzymes like catalase, glutathione S-transferase and glutathione peroxidase seems not be sufficient to prevent oxidative damages. In addition, the mobilization of α-tocopherol from abdomen to cephalothorax was observed and reported for the first time in non-reproductive condition. Likewise, a strong diminution of metallothioneins occurred in cephalothorax from the lowest CPF concentration while induction occurred from the same treatment in abdomen as an oxidative stress response. Finally, significant correlation between Integrated Biomarker Response values and exposure concentrations suggest the usefulness of P. argentinus as bioindicator of CPF exposure at concentrations as low as environmental ones.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq., Medina Allende, 5000 Córdoba, Argentina
| | - Magadalena Victoria Monferrán
- Instituto de Ciencia y Tecnología de Alimentos Córdoba-ICYTAC, Facultad de Ciencias Químicas, CONICET, UNC, Av. Juan Filloy s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, MMS EA2160, LUNAM Université, 3 Place André Leroy, BP10808, 49008 Angers Cedex 01, France
| | - Rocio Inés Bonansea
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq., Medina Allende, 5000 Córdoba, Argentina
| | - Ramón Asis
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq., Medina Allende, 5000 Córdoba, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq., Medina Allende, 5000 Córdoba, Argentina.
| |
Collapse
|
43
|
Sarikurkcu C, Kocak MS, Uren MC, Calapoglu M, Sihoglu Tepe A. Potential sources for the management global health problems and oxidative stress: Stachys byzantina and S. iberica subsp. iberica var. densipilosa. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Klein-Júnior LC, Viaene J, Tuenter E, Salton J, Gasper AL, Apers S, Andries JP, Pieters L, Henriques AT, Vander Heyden Y. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A. J Chromatogr A 2016; 1463:71-80. [DOI: 10.1016/j.chroma.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 01/12/2023]
|
45
|
Ozarowski M, Mikolajczak PL, Piasecka A, Kachlicki P, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kaminska E, Kujawska M, Jodynis-Liebert J, Gryszczynska A, Opala B, Lowicki Z, Seremak-Mrozikiewicz A, Czerny B. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:9729818. [PMID: 27239217 PMCID: PMC4864554 DOI: 10.1155/2016/9729818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
Abstract
Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration.
Collapse
Affiliation(s)
- Marcin Ozarowski
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, 61-861 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Przemyslaw L. Mikolajczak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Anna Piasecka
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland
| | - Piotr Kachlicki
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland
| | - Radoslaw Kujawski
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Anna Bogacz
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 14 Sw. Marii Magdaleny, 61-861 Poznan, Poland
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Joanna Bartkowiak-Wieczorek
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 14 Sw. Marii Magdaleny, 61-861 Poznan, Poland
| | - Michal Szulc
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Ewa Kaminska
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Malgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Agnieszka Gryszczynska
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Bogna Opala
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Zdzislaw Lowicki
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
- Laboratory of Molecular Biology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Boguslaw Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Zolnierska 48, 70-204 Szczecin, Poland
| |
Collapse
|
46
|
Jasiecki J, Jońca J, Żuk M, Szczoczarz A, Janaszak-Jasiecka A, Lewandowski K, Waleron K, Wasąg B. Activity and polymorphisms of butyrylcholinesterase in a Polish population. Chem Biol Interact 2016; 259:70-77. [PMID: 27109752 DOI: 10.1016/j.cbi.2016.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 11/20/2022]
Abstract
Butyrylcholinesterase (BChE) activity assay and inhibitor phenotyping can help to identify individuals at risk of prolonged paralysis following the administration of neuromuscular blocking agents, like succinylcholine, pesticides and nerve agents. In this study, the activity of BChE and its sensitivity to inhibition by dibucaine and fluoride was evaluated in 1200 Polish healthy individuals. In addition, molecular analysis of all exons, exon-intron boundaries and the 3'UTR sequence of the BCHE gene was performed in a group of 72 subjects with abnormal BChE activity (<2000 U/L and >5745 U/L) or with DN (Dibucaine Number) or FN (Fluoride-Number) values outside the reference range (DN < 78 and FN < lower than wild type). In a studied group, BChE activity range was similar to those observed in other populations. BChE activity screening allowed to detect UA and UF phenotypes in 26 (2.2%) and 15 (1.2%) individuals, respectively. Observed UA or UF phenotypes were confirmed by direct sequencing and heterozygous c.293A > G or c.1253G > T substitutions were identified in all cases. Nine out of 18 (50%) individuals with BChE activity below 2000 U/L had a mutation in 5'UTR (32G/A), intron 2 (c.1518-121T/C) or exon 4 (c.1699G/A; the K variant mutation). Majority of the individuals with BChE activity ≥6000 U/L were wild type. To summarize, the range of BChE activity in a Polish population is similar to those observed in other countries. We conclude that the BChE phenotyping assay is a reliable method for identification of individuals with the UA and UF genotypes.
Collapse
Affiliation(s)
| | | | - Monika Żuk
- Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
47
|
Fogle EJ, Marlier JF, Stillman A, Gao X, Rao Y, Robins LI. An investigation into the butyrylcholinesterase-catalyzed hydrolysis of formylthiocholine using heavy atom kinetic isotope effects. Bioorg Chem 2016; 65:57-60. [DOI: 10.1016/j.bioorg.2016.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 11/16/2022]
|
48
|
Butyrylcholinesterase identification in a phenylvalerate esterase-enriched fraction sensitive to low mipafox concentrations in chicken brain. Arch Toxicol 2016; 91:909-919. [DOI: 10.1007/s00204-016-1670-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|
49
|
Ozer MS, Sarikurkcu C, Tepe B. Phenolic composition, antioxidant and enzyme inhibitory activities of ethanol and water extracts of Chenopodium botrys. RSC Adv 2016. [DOI: 10.1039/c6ra13229d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, we aimed to evaluate the phenolic composition, antioxidant, and enzyme inhibitory activities of ethanol and water extracts of Chenopodium botrys L.
Collapse
Affiliation(s)
- Mehmet Sabih Ozer
- Celal Bayar University
- Faculty of Science and Literature
- Department of Chemistry
- Manisa
- Turkey
| | - Cengiz Sarikurkcu
- Suleyman Demirel University
- Faculty of Pharmacy
- Department of Analytical Chemistry
- Isparta
- Turkey
| | - Bektas Tepe
- Kilis 7 Aralik University
- Faculty of Science and Literature
- Department of Molecular Biology and Genetics
- Kilis
- Turkey
| |
Collapse
|
50
|
Llorent-Martínez EJ, Ortega-Barrales P, Zengin G, Uysal S, Ceylan R, Guler GO, Mocan A, Aktumsek A. Lathyrus aureus and Lathyrus pratensis: characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of their enzyme inhibitory and antioxidant activities. RSC Adv 2016. [DOI: 10.1039/c6ra17170b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study suggest that Lathyrus species may be further used in phytopharmaceuticals or food industry applications.
Collapse
Affiliation(s)
- E. J. Llorent-Martínez
- University of Castilla-La Mancha
- Regional Institute for Applied Chemistry Research (IRICA)
- Ciudad Real 13071
- Spain
| | - P. Ortega-Barrales
- Department of Physical and Analytical Chemistry
- University of Jaén
- E-23071 Jaén
- Spain
| | - G. Zengin
- Selcuk University
- Science Faculty
- Department of Biology
- Konya
- Turkey
| | - S. Uysal
- Selcuk University
- Science Faculty
- Department of Biology
- Konya
- Turkey
| | - R. Ceylan
- Selcuk University
- Science Faculty
- Department of Biology
- Konya
- Turkey
| | - G. O. Guler
- Necmettin Erbakan University
- Ahmet Kelesoglu Education Faculty
- Department of Biological Education
- Konya
- Turkey
| | - A. Mocan
- Department of Pharmaceutical Botany
- “Iuliu Hatieganu” University of Medicine and Pharmacy
- Cluj-Napoca
- Romania
| | - A. Aktumsek
- Selcuk University
- Science Faculty
- Department of Biology
- Konya
- Turkey
| |
Collapse
|