1
|
Ahn YH, Tang Y, Illes P. The neuroinflammatory astrocytic P2X7 receptor: Alzheimer's disease, ischemic brain injury, and epileptic state. Expert Opin Ther Targets 2023; 27:763-778. [PMID: 37712394 DOI: 10.1080/14728222.2023.2258281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Astrocytes have previously been considered as cells supporting neuronal functions, but they are now recognized as active players in maintaining central nervous system (CNS) homeostasis. Astrocytes can communicate with other CNS cells, i.e. through the gliotransmitter ATP and P2X7 receptors (Rs). AREAS COVERED In this review, we will discuss how the P2X7R initiates the release of gliotransmitters and proinflammatory cytokines/chemokines, thereby establishing a dialog between astrocytes and neurons and, in addition, causing neuroinflammation. In astrocytes, dysregulation of P2X7Rs has been associated with neurodegenerative illnesses such as Alzheimer's disease (AD), as well as the consequences of cerebral ischemic injury and status epilepticus (SE). EXPERT OPINION Although all CNS cells are possible sources of ATP release, the targets of this ATP are primarily at microglial cells. However, astrocytes also contain ATP-sensitive P2X7Rs and have in addition the peculiar property over microglia to continuously interact with neurons via not only inflammatory mediators but also gliotransmitters, such as adenosine 5'-triphosphate (ATP), glutamate, γ-amino butyric acid (GABA), and D-serine. Cellular damage arising during AD, cerebral ischemia, and SE via P2X7R activation is superimposed upon the original disease, and their prevention by blood-brain barrier permeable pharmacological antagonists is a valid therapeutic option.
Collapse
Affiliation(s)
- Young Ha Ahn
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
| | - Yong Tang
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
| | - Peter Illes
- International Joint Research Center on Purinergic Signaling of Sichuan Province, Chengdu University of TCM, Chengdu, China
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21175996. [PMID: 32825423 PMCID: PMC7504621 DOI: 10.3390/ijms21175996] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.
Collapse
|
3
|
Fukushi I, Takeda K, Uchiyama M, Kurita Y, Pokorski M, Yokota S, Okazaki S, Horiuchi J, Mori Y, Okada Y. Blockade of astrocytic activation delays the occurrence of severe hypoxia-induced seizure and respiratory arrest in mice. J Comp Neurol 2019; 528:1257-1264. [PMID: 31769022 DOI: 10.1002/cne.24828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023]
Abstract
Seizures are induced when subjects are exposed to severe hypoxia. It is followed by ventilatory fall-off and eventual respiratory arrest, which may underlie the pathophysiology of death in patients with epilepsy and severe respiratory disorders. However, the mechanisms of hypoxia-induced seizures have not been fully understood. Because astrocytes are involved in various neurological disorders, we aimed to investigate whether astrocytes are operational in seizure generation and respiratory arrest in a severe hypoxic condition. We examined the effects of astrocytic activation blockade on responses of EEG and ventilation to severe hypoxia. Adult mice were divided into two groups; in one group (n = 24) only vehicle was injected, and in the other group (n = 24) arundic acid, an inhibitory modulator of astrocytic activation, was administered before initiation of recording. After recording EEG and ventilation by whole body plethysmography in room air, the gas in the recording chamber was switched to 5% oxygen (nitrogen balanced) until a seizure and ventilatory depression occurred, followed by prompt switch back to room air. Severe hypoxia initially increased ventilation, followed by a seizure and ventilatory suppression in all mice examined. Fourteen mice without arundic acid showed respiratory arrest during loading of hypoxia. However, 22 mice pretreated with arundic acid did not suffer from respiratory arrest. Time from the onset of hypoxia to the occurrence of seizures was significantly longer in the group with arundic acid than that in the group without arundic acid. We suggest that blockade of astrocytic activation delays the occurrence of seizures and prevents respiratory arrest.
Collapse
Affiliation(s)
- Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Health Sciences, Iryo Sosei University, Iwaki, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Makoto Uchiyama
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuki Kurita
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mieczyslaw Pokorski
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Physiotherapy, Opole Medical School, Opole, Poland
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Japan
| | - Shuntaro Okazaki
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan.,Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Jouji Horiuchi
- Department of Biomedical Engineering, Graduate School of Science and Engineering, Toyo University, Kawagoe, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Japan
| |
Collapse
|
4
|
P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Mol Neurobiol 2018; 56:3159-3174. [DOI: 10.1007/s12035-018-1302-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
|
5
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
6
|
Helleringer R, Chever O, Daniel H, Galante M. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca 2+ Rises Mainly Mediated by K + and ATP Increases in the Extracellular Space. Front Cell Neurosci 2017; 11:349. [PMID: 29163059 PMCID: PMC5675856 DOI: 10.3389/fncel.2017.00349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD). Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.
Collapse
Affiliation(s)
- Romain Helleringer
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, UMR 7241, INSERM U1050, Labex Memolife, PSL Research University Paris, Paris, France
| | - Hervé Daniel
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacology and Biochemistry of the Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Orsay, France
| |
Collapse
|
7
|
Neuronal P2X7 Receptors Revisited: Do They Really Exist? J Neurosci 2017; 37:7049-7062. [PMID: 28747388 DOI: 10.1523/jneurosci.3103-16.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.
Collapse
|
8
|
Zhang PA, Xu QY, Xue L, Zheng H, Yan J, Xiao Y, Xu GY. Neonatal Maternal Deprivation Enhances Presynaptic P2X7 Receptor Transmission in Insular Cortex in an Adult Rat Model of Visceral Hypersensitivity. CNS Neurosci Ther 2016; 23:145-154. [PMID: 27976523 DOI: 10.1111/cns.12663] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/06/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Insular cortex (IC) is involved in processing the information of pain. The aim of this study was to investigate roles and mechanisms of P2X7 receptors (P2X7Rs) in IC in development of visceral hypersensitivity of adult rats with neonatal maternal deprivation (NMD). METHODS Visceral hypersensitivity was quantified by abdominal withdrawal reflex threshold to colorectal distension (CRD). Expression of P2X7Rs was determined by qPCR and Western blot. Synaptic transmission in IC was recorded by patch-clamp recording. RESULTS The expression of P2X7Rs and glutamatergic neurotransmission in IC was significantly increased in NMD rats when compared with age-matched controls. Application of BzATP (P2X7R agonist) enhanced the frequency of spontaneous excitatory postsynaptic currents (sEPSC) and miniature excitatory postsynaptic currents (mEPSC) in IC slices of control rats. Application of BBG (P2X7R antagonist) suppressed the frequencies of sEPSC and mEPSC in IC slices of NMD rats. Microinjection of BzATP into right IC significantly decreased CRD threshold in control rats while microinjection of BBG or A438079 into right IC greatly increased CRD threshold in NMD rats. CONCLUSION Data suggested that the enhanced activities of P2X7Rs in IC, likely through a presynaptic mechanism, contributed to visceral hypersensitivity of adult rats with NMD.
Collapse
Affiliation(s)
- Ping-An Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi-Ya Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lu Xue
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hang Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jun Yan
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China.,Chengdu Radio and TV University, Chengdu, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Illes P, Verkhratsky A. Purinergic neurone-glia signalling in cognitive-related pathologies. Neuropharmacology 2015; 104:62-75. [PMID: 26256423 DOI: 10.1016/j.neuropharm.2015.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/19/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Neuroglia, represented by astrocytes, oligodendrocytes, NG glia and microglia are homeostatic, myelinating and defensive cells of the brain. Neuroglial cells express various combinations of purinoceptors, which contribute to multiple intercellular signalling pathways in the healthy and diseased nervous system. Neurological diseases are invariably associated with profound neuroglial remodelling, which is manifest by reactive gliosis, pathological remodelling and functional atrophy of various types of glial cells. Gliopathology is disease and region specific and produces multiple glial phenotypes that may be neuroprotective or neurotoxic. In this review we summarise recent knowledge on the role of glial purinergic signalling in cognitive-related neurological diseases. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia.
| |
Collapse
|
10
|
Rubini P, Pagel G, Mehri S, Marquardt P, Riedel T, Illes P. Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:943-54. [DOI: 10.1007/s00210-014-1005-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/05/2014] [Indexed: 02/02/2023]
|
11
|
Ficker C, Rozmer K, Kató E, Andó RD, Schumann L, Krügel U, Franke H, Sperlágh B, Riedel T, Illes P. Astrocyte-neuron interaction in the substantia gelatinosa of the spinal cord dorsal horn via P2X7 receptor-mediated release of glutamate and reactive oxygen species. Glia 2014; 62:1671-86. [PMID: 24895290 DOI: 10.1002/glia.22707] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
The substantia gelatinosa (SG) of the spinal cord processes incoming painful information to ascending projection neurons. Whole-cell patch clamp recordings from SG spinal cord slices documented that in a low Ca(2+) /no Mg(2+) (low X(2+) ) external medium adenosine triphosphate (ATP)/dibenzoyl-ATP, Bz-ATP) caused inward current responses, much larger in amplitude than those recorded in a normal X(2+) -containing bath medium. The effect of Bz-ATP was antagonized by the selective P2X7 receptor antagonist A-438079. Neuronal, but not astrocytic Bz-ATP currents were strongly inhibited by a combination of the ionotropic glutamate receptor antagonists AP-5 and CNQX. In fact, all neurons and some astrocytes responded to NMDA, AMPA, and muscimol with inward current, demonstrating the presence of the respective receptors. The reactive oxygen species H2 O2 potentiated the effect of Bz-ATP at neurons but not at astrocytes. Hippocampal CA1 neurons exhibited a behavior similar to, but not identical with SG neurons. Although a combination of AP-5 and CNQX almost abolished the effect of Bz-ATP, H2 O2 was inactive. A Bz-ATP-dependent and A-438079-antagonizable reactive oxygen species production in SG slices was proven by a microelectrode biosensor. Immunohistochemical investigations showed the colocalization of P2X7-immunoreactivity with microglial (Iba1), but not astrocytic (GFAP, S100β) or neuronal (MAP2) markers in the SG. It is concluded that SG astrocytes possess P2X7 receptors; their activation leads to the release of glutamate, which via NMDA- and AMPA receptor stimulation induces cationic current in the neighboring neurons. P2X7 receptors have a very low density under resting conditions but become functionally upregulated under pathological conditions.
Collapse
Affiliation(s)
- Christoph Ficker
- Rudolf Boehm Institute for Pharmacology und Toxicology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
13
|
P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology 2013; 73:122-37. [PMID: 23727220 DOI: 10.1016/j.neuropharm.2013.05.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 02/07/2023]
Abstract
Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.
Collapse
Key Words
- 2-MeSATP
- 2-methylthio ATP
- 2′(3′)-O-(4-benzoylbenzoyl)adenosine-5′-triphosphate
- 2′,3′-O-(2,4,6-trinitrophenyl) adenosine 5′-triphosphate
- 3-(4,5-dimethylthioazol-2-yl)-2,5-diphenyltetrazoliumbromid
- 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one
- 5-BDBD
- Adult neural progenitor cells
- BBG
- Brain subventricular zone
- Brilliant Blue G
- Bz-ATP
- CNS
- E(max)
- EC(50)
- EGF
- Extracellular ATP
- FGF-2
- GAPDH
- GFAP
- MTT
- Msi1
- NPC
- P2X7 receptors
- PPADS
- SVZ
- TNP-ATP
- X(2) concentration
- [Ca(2+)](i)
- central nervous system
- concentration of agonist producing 50% of E(max)
- divalent cation concentration
- epidermal growth factor
- fibroblast growth factor-2
- glial fibrillary acidic protein
- glyceraldehyde 3-phosphate dehydrogenase
- intracellular Ca(2+) concentration
- maximal effect
- musashi1
- neural progenitor cell
- pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid
- subventricular zone
- wild-type
- wt
- α,β-meATP
- α,β-methylene ATP
Collapse
|