1
|
Wang H, Wu S, Jiang X, Li W, Li Q, Sun H, Wang Y. Acteoside alleviates salsolinol-induced Parkinson's disease by inhibiting ferroptosis via activating Nrf2/SLC7A11/GPX4 pathway. Exp Neurol 2024; 385:115084. [PMID: 39631720 DOI: 10.1016/j.expneurol.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Salsolinol (SAL), i.e.1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline, is a dopamine metabolite and endogenous neurotoxin that is toxic to dopaminergic neurons, and is involved in the genesis of Parkinson's disease (PD). However, the machinery underlying SAL induces neurotoxicity in PD are still being elucidated. In the present study, we first used RNA sequencing (RNAseq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to detect differentially expressed genes in SAL-treated SH-SY5Y cells. We found that ferroptosis-related pathway was enriched by SAL, which was validated by in vitro and in vivo SAL models. SAL inducing ferroptosis through downregulating SLC7A11/GPX4 in SH-SY5Y cells, which neurotoxic effect was reversed by ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (Fer-1). Acteoside, a phenylethanoid glycoside of plant origin with neuroprotective effect, attenuates SAL-induced neurotoxicity by inhibiting ferroptosis in in vitro and in vivo PD models through upregulating SLC7A11/GPX4. Mechanistically, acteoside activates Nrf2. Nrf2 inhibitor ML385 abolished acteoside-mediated increased SLC7A11/GPX4 and neuroprotection against SAL in SH-SY5Y cells. Meanwhile, the PI3K inhibitor LY294002 suppressed the acteoside-induced Nrf2 expression and ensued decreased expression of SLC7A11/GPX4 in SAL-treated SH-SY5Y cells. Taken together, these results demonstrate that salsolinol-induced PD through inducing ferroptosis via downregulating SLC7A11/GPX4. Acteoside attenuates SAL-induced PD through inhibiting ferroptosis via activating PI3K/Akt-dependant Nrf2. The present study revealed a novel molecular mechanisms underlining SAL-induced neurotoxicity via induction of ferroptosis in PD, and uncovered a new pharmacological effect against PD through inhibiting ferroptosis. This study highlights SAL-induced ferroptosis -dependent neurotoxicity as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Xiaodong Jiang
- Department of anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng 024005, China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Huiyan Sun
- Chifeng University Health Science Center, Chifeng 024000, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
2
|
Liu C, Ding X, Guo X, Zhao M, Zhang X, Li Z, Zhao R, Cao Y, Xing J. Recombinant human HspB5-ACD structural domain inhibits neurotoxicity by regulating pathological α-Syn aggregation. Int J Biol Macromol 2024; 255:128311. [PMID: 37992927 DOI: 10.1016/j.ijbiomac.2023.128311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
The treatment of Parkinson's disease is a global medical challenge. α-Synuclein (α-Syn) is the causative protein in Parkinson's disease and is closely linked to its progression. Therefore, inhibiting the pathological aggregation of α-Syn and its neurotoxicity is essential for the treatment of Parkinson's disease. In this study, α-Syn and recombinant human HspB5-ACD structural domain protein (AHspB5) were produced using the BL21(DE3) E. coli prokaryotic expression system, and then the role and mechanism of AHspB5 in inhibiting the pathological aggregation of α-Syn and its neurotoxicity were investigated. As a result, we expressed α-Syn and AHspB5 proteins and characterised the proteins. In vitro experiments showed that AHspB5 could inhibit the formation of α-Syn oligomers and fibrils; in cellular experiments, AHspB5 could prevent α-Syn-induced neuronal cell dysfunction, oxidative stress damage and apoptosis, and its mechanism of action was related to the TH-DA pathway and mitochondria-dependent apoptotic pathway; in animal experiments, AHspB5 could inhibit behavioural abnormalities, oxidative stress damage and loss of dopaminergic neurons. In conclusion, this work is expected to elucidate the mechanism and biological effects of AHspB5 on the pathological aggregation of α-Syn, providing a new pathway for the treatment of Parkinson's disease and laying the foundation for recombinant AHspB5.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xuying Ding
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Xiao Guo
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Xiaojun Zhang
- State key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Ziqing Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Yuyan Cao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Jiaying Xing
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
3
|
Wang Y, Wu S, Li Q, Lang W, Li W, Jiang X, Wan Z, Sun H, Wang H. Salsolinol Induces Parkinson's Disease Through Activating NLRP3-Dependent Pyroptosis and the Neuroprotective Effect of Acteoside. Neurotox Res 2022; 40:1948-1962. [PMID: 36454451 DOI: 10.1007/s12640-022-00608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline (Salsolinol, SAL) is a dopamine metabolite that is toxic to dopaminergic neurons in vitro and in vivo, and is involved in the pathogenesis of Parkinson's disease (PD). However, the molecular mechanism by which SAL induces neurotoxicity in PD remains challenging for future investigations. This study found that SAL induced neurotoxicity in SH-SY5Y cells and mice. RNA sequencing (RNAseq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to detect differentially expressed genes in SAL-treated SH-SY5Y cells. We found that NLR family pyrin domain-containing 3 (NLRP3)-dependent pyroptosis was enriched by SAL, which was validated by in vitro and in vivo SAL models. Further, NLRP3 inflammasome-related genes (ASC, NLRP3, active caspase 1, IL-1β, and IL-18) were increased at the mRNA and protein level. Acteoside mitigates SAL-induced neurotoxicity by inhibiting NLRP3 inflammasome-related pyroptosis in in vitro and in vivo PD models. In summary, the present study suggests for the first time that NLRP3-dependent pyroptosis plays a role in the pathogenesis of SAL-induced PD, and acteoside mitigates SAL-induced pyroptosis-dependent neurotoxicity in in vitro and in vivo PD models. The present results demonstrated a new mechanism whereby SAL mediates neurotoxicity by activating NLRP3-dependent pyroptosis, further highlighting SAL-induced pyroptosis-dependent neurotoxicity as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China
| | - Weihong Lang
- Department of Psychological Medicine, The Affiliated Hospital of Chifeng University, Chifeng, 024005, People's Republic of China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, 024005, China
| | - Xiaodong Jiang
- Department of Anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng, 024005, China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Huiyan Sun
- Chifeng University Health Science Center, Chifeng, 024000, China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
4
|
Kurnik-Łucka M, Latacz G, Goryl J, Aleksandrovych V, Gil K. Salsolinol Protects SH-SY5Y Cells Against MPP + Damage and Increases Enteric S100-Immunoreactivity in Wistar Rats. Neurochem Res 2022; 48:1347-1359. [PMID: 36449199 PMCID: PMC10066146 DOI: 10.1007/s11064-022-03835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
A dopamine derivative, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, known as salsolinol (SAL), has increasingly gained attention since its first detection in the urine of Parkinson's disease patients treated with levodopa, and has been proposed as a possible neurotoxic contributor to the disease. Yet, so far, the neurobiological role of SAL remains unclear. Thus, the main aims of our study were to compare the neurotoxic potential of SAL with MPP+ (1-methyl-4-phenylpyridinium ion) in vitro, and to examine intestinal and metabolic alterations following intraperitoneal SAL administration in vivo. In vitro, SH-SY5Y neuroblastoma cell line was monitored following MPP+ and SAL treatment. In vivo, Wistar rats were subjected to SAL administration by either osmotic intraperitoneal mini-pumps or a single intraperitoneal injection, and after two weeks, biochemical and morphological parameters were assessed. SH-SY5Y cells treated with MPP+ (1000 μM) and SAL (50 µM) showed increase in cell viability and fluorescence intensity in comparison with the cells treated with MPP+ alone. In vivo, we predominantly observed decreased collagen content in the submucosal layer, decreased neuronal density with comparable ganglionic area in the jejunal myenteric plexus, and increased glial S100 expression in both enteric plexuses, yet with no obvious signs of inflammation. Besides, glucose and triglycerides levels were lower after single SAL-treatment (200 mg/kg), and low- to high-density lipoprotein (LDL/HDL) ratio and aspartate to alanine aminotransferases (AST/ALT) ratio levels were higher after continuous SAL-treatment (200 mg/kg in total over 2 weeks). Low doses of SAL were non-toxic and exhibited pronounced neuroprotective properties against MPP+ in SH-SY5Y cell line, which supports the use of SAL as a reference compound for in vitro studies. In vivo results give insight into our understanding of gastrointestinal remodeling following intraperitoneal SAL administration, and might represent morphological correlates of a microglial-related enteric neurodegeneration and dopaminergic dysregulation.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland.
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Joanna Goryl
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland
| |
Collapse
|
5
|
Wang J, Cui JJ, Xu DS, Su YX, Liao JY, Wu S, Zou L, Guo YT, Shen Y, Bai WZ. Sensory and autonomic innervation of the local tissues at traditional acupuncture point locations GB14, ST2 and ST6. Acupunct Med 2022; 40:546-555. [PMID: 35579008 DOI: 10.1177/09645284221085579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To visualize and compare the sensory and autonomic innervation of the local tissues at the sites of different traditional acupuncture points in the rat forehead and face by histochemical examination. METHODS GB14 (Yangbai), ST2 (Sibai) and ST6 (Jiache) were selected as the representative traditional acupuncture points in this study, and the local tissues at these sites were dissected in rats after perfusion followed by double or triple fluorescent histochemical staining. Here, calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VAChT) were used to label the sensory, sympathetic and parasympathetic nerve fibers, respectively. RESULTS The CGRP+ sensory, TH+ sympathetic and VAChT+ parasympathetic nerve fibers were simultaneously demonstrated in the local tissues at GB14, ST2 and ST6. Although the three kinds of nerve fibers ran in parallel or intermingled with each other, by the analysis from the view of three-dimensional reconstruction, it was clear that each of them distributed in an independent pattern to their corresponding target tissues including the blood vessels, hair follicles, arrector pili and subcutaneous muscles, as well as sebaceous glands. CONCLUSION Our study demonstrated the sensory and autonomic innervation of the local tissues at GB14, ST2 and ST6, providing neurochemical evidence indicating that the CGRP+ sensory, TH+ sympathetic and VAChT+ parasympathetic nerve fibers form a neural network at these point locations that may respond to acupuncture stimulation.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Jing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong-Sheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Xin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie-Ying Liao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Ting Guo
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan-Zhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Huang J, Chai X, Wu Y, Hou Y, Li C, Xue Y, Pan J, Zhao Y, Su A, Zhu X, Zhao S. β-Hydroxybutyric acid attenuates heat stress-induced neuroinflammation via inhibiting TLR4/p38 MAPK and NF-κB pathways in the hippocampus. FASEB J 2022; 36:e22264. [PMID: 35333405 DOI: 10.1096/fj.202101469rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
Heat stress causes many pathophysiological responses in the brain, including neuroinflammation and cognitive deficits. β-Hydroxybutyric acid (BHBA) has been shown to have neuroprotective effects against inflammation induced by lipopolysaccharide. The aim of the present study was to evaluate the effects of BHBA on neuroinflammation induced by heat stress, as well as the underlying mechanisms. Mice were pretreated with vehicle, BHBA or minocycline (positive control group) and followed by heat exposure (43°C) for 15 min for 14 days. In mice subjected to heat stress, we found that treatment with BHBA or minocycline significantly decreased the level of serum cortisol, the expressions of heat shock protein 70 (HSP70), and the density of c-Fos+ cells in the hippocampus. Surprisingly, the ethological tests revealed that heat stress led to cognitive dysfunctions and could be alleviated by BHBA and minocycline administration. Further investigation showed that BHBA and minocycline significantly attenuated the activation of microglia and astrocyte induced by heat stress. Pro-inflammatory cytokines were attenuated in the hippocampus by BHBA and minocycline treatment. Importantly, compared with the heat stress group, mice in the BHBA treatment group and positive control group experienced a decrease in the expressions of toll-like receptor 4 (TLR4), phospho-p38 (p-p38), and nuclear factor kappa B (NF-κB). Our results elucidated that BHBA inhibits neuroinflammation induced by heat stress by suppressing the activation of microglia and astrocyte, and modulating TLR4/p38 MAPK and NF-κB pathways. This study provides new evidence that BHBA is a potential strategy for protecting animals from heat stress.
Collapse
Affiliation(s)
- Jian Huang
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Xuejun Chai
- Department of Basic Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Yan Hou
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Cixia Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Yuhuan Xue
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Jiarong Pan
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Aimin Su
- College of Life Sciences, Northwest A & F University, Yangling, P.R. China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, P.R. China
| |
Collapse
|
7
|
Segura-Aguilar J, Paris I. Mechanisms of Dopamine Oxidation and Parkinson’s Disease. HANDBOOK OF NEUROTOXICITY 2022:1433-1468. [DOI: 10.1007/978-3-031-15080-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Zhao R, Liu P, Song A, Liu J, Chu Q, Liu Y, Jiang Y, Dong C, Shi H, Yan Z. Network pharmacology study on the mechanism of Qiangzhifang in the treatment of panic disorder. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1350. [PMID: 34532487 PMCID: PMC8422112 DOI: 10.21037/atm-21-4090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Background Panic disorder (PD) is a kind of mental illness characterized by the symptom of recurring panic attacks. Qiangzhifang (QZF) is a novel decoction developed by Professor Zhaojun Yan based on a unique system of syndrome differentiation and clinical experience. It has achieved remarkable results after long-term clinical practice, but its mechanism of action is still unclear. This study aims to use network pharmacology and molecular docking to explore the mechanism of QZF in the treatment of PD. Methods We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), a literature search, and Encyclopedia of Traditional Chinese Medicine (ETCM) to find active ingredients and targets of QZF. We searched for PD targets in GeneCards, Online Mendelian Inheritance in Man (OMIM), the Comparative Toxicogenomics Database (CTD), and DrugBank. We established a PD target database, constructed a protein-protein interaction (PPI) network, and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis in order to screen possible pathways of action and analyze the mechanism. Results This study identified 84 effective components of QZF, 691 potential targets, 357 PD targets, and 97 intersectional targets. Enrichment analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that QZF was associated with 118 biological processes (BPs), 18 cellular components (CCs), 35 molecular functions (MFs) [false discovery rate (FDR) <0.01], and 62 pathways (FDR <0.01). QZF mainly acts on its targets AKT1, FOS, and APP through active ingredients such as quercetin, β-sitosterol, 4-(4'-hydroxybenzyloxy)benzyl methyl ether, harmine, 1,7-dimethoxyxanthone, and 1-hydroxy-3,7-dimethoxyxanthone to regulate serotonin, gamma-aminobutyric acid (GABA), cyclic adenosine monophosphate (cAMP), and other signal pathways to treat PD. Conclusions Through network pharmacology and molecular docking technology, we predicted the possible mechanism of QZF in the treatment of PD, revealed the interaction targets and potential value of QZF, and provided a basis for its clinical application.
Collapse
Affiliation(s)
- Run Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pulin Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Anran Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianmin Liu
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Chu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingnan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunyun Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengda Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huishan Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Department of Psychosomatic Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Alrashidi H, Eaton S, Heales S. Biochemical characterization of proliferative and differentiated SH-SY5Y cell line as a model for Parkinson's disease. Neurochem Int 2021; 145:105009. [PMID: 33684546 DOI: 10.1016/j.neuint.2021.105009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a multifactorial neurodegenerative disease. The cellular pathology includes dopamine depletion, decrease in mitochondrial complex I enzyme activity, lysosomal glucocerebrosidase enzyme activity and glutathione levels. The SH-SY5Y human neuroblastoma cell line is one of the most widely used cell line models for Parkinson's disease. However, the consensus on its suitability as a model in its proliferative or differentiated state is lacking. In this study, we characterized and compared the biochemical processes most often studied in PD. This in proliferative and differentiated phenotypes of SH-SY5Y cells and several differences were found. Most notably, extracellular dopamine metabolism was significantly higher in differentiated SH-SY5Y. Furthermore, there was a greater variability in glutathione levels in proliferative phenotype (+/- 49%) compared to differentiated (+/- 16%). Finally, enzyme activity assay revealed significant increase in the lysosomal enzyme glucocerebrosidase activity in differentiated phenotype. In contrast, our study has found similarities between the two phenotypes in mitochondrial electron transport chain activity and tyrosine hydroxylase protein expression. The results of this study demonstrate that despite coming from the same cell line, these cells possess some key differences in their biochemistry. This highlights the importance of careful characterization of relevant disease pathways to assess the suitability of cell lines, such as SH-SY5Y cells, for modelling PD or other diseases, i.e. when using the same cell line but different differentiation states.
Collapse
Affiliation(s)
- Haya Alrashidi
- Genetics and Genomic Medicine, GOS Institute of Child Health, University College London, London, UK; Biochemistry Division, Faculty of Science, Kuwait University, Kuwait
| | - Simon Eaton
- Development Biology and Cancer, GOS Institute of Child Health, University College London, London, UK.
| | - Simon Heales
- Genetics and Genomic Medicine, GOS Institute of Child Health, University College London, London, UK; Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| |
Collapse
|
10
|
Voon SM, Ng KY, Chye SM, Ling APK, Voon KGL, Yap YJ, Koh RY. The Mechanism of Action of Salsolinol in Brain: Implications in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:725-740. [PMID: 32881676 DOI: 10.2174/1871527319666200902134129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
1-Methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol, commonly known as salsolinol, is a compound derived from dopamine. It was first discovered in 1973 and has gained attention for its role in Parkinson's disease. Salsolinol and its derivatives were claimed to play a role in the pathogenesis of Parkinson's disease as a neurotoxin that induces apoptosis of dopaminergic neurons due to its structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its ability to induce Parkinsonism. In this article, we discussed the biosynthesis, distribution and blood-brain barrier permeability of salsolinol. The roles of salsolinol in a healthy brain, particularly the interactions with enzymes, hormone and catecholamine, were reviewed. Finally, we discussed the involvement of salsolinol and its derivatives in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Shee Man Voon
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Kenny Gah Leong Voon
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Yiing Jye Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Zhang Z, Xu D, Wang J, Cui J, Wu S, Zou L, Shen Y, Jing X, Bai W. Correlated Sensory and Sympathetic Innervation Between the Acupoint BL23 and Kidney in the Rat. Front Integr Neurosci 2021; 14:616778. [PMID: 33505253 PMCID: PMC7829193 DOI: 10.3389/fnint.2020.616778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Objective: To investigate the sensory and sympathetic innervations associated with both acupoint “Shenshu” (BL23) and kidney in the rat for insight into the neuronal correlation between the Back-Shu Point and its corresponding visceral organ. Methods: The BL23 and kidney were selected as the representative acupoint and visceral organ in this study, in which their local nerve fibers were examined by using double fluorescent immunohistochemistry with calcitonin gene-related peptide (CGRP) and tyrosine hydroxylase (TH). Meanwhile, their neuronal correlation in the dorsal root ganglia (DRGs), spinal cord, and sympathetic (paravertebral) chain were investigated using a double fluorescent neural tracing technique with Alexa Fluor 488 and 594 conjugates with cholera toxin subunit B (AF488/594-CTB). Results: The local tissue of acupoint BL23 and the fibrous capsule of kidney distributed abundantly with CGRP- and TH-positive nerve fibers, corresponding to their sensory and sympathetic innervation. On the other hand, the sensory neurons associated with acupoint BL23 and kidney were labeled with AF488/594-CTB and distributed from thoracic (T) 11 to lumbar (L) 3 DRGs and from T10 to L2 DRGs, respectively, in which some of them in T12-T13 DRGs were simultaneously labeled with both AF488/594-CTB. Also, postganglionic neurons associated with both acupoint BL23 and kidney were found in the sympathetic chain at the same spinal segments but separately labeled with AF488-CTB and AF594-CTB. Conclusion: Our study demonstrates the neural characteristics of the acupoint BL23 and kidney in the rat from the perspective of neurochemistry and neural pathways, providing an example for understanding the neuronal correlation between the Back-Shu Points and their corresponding visceral organs. These results suggest that the stimulation of the Back-Shu Points may regulate the activities of the target-organs via the periphery sensory and sympathetic pathways.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Zou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianghong Jing
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Altered urinary tetrahydroisoquinoline derivatives in patients with Tourette syndrome: reflection of dopaminergic hyperactivity? J Neural Transm (Vienna) 2020; 128:115-120. [PMID: 33355691 PMCID: PMC7815570 DOI: 10.1007/s00702-020-02289-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022]
Abstract
Tetrahydroisoquinolines (TIQs) such as salsolinol (SAL), norsalsolinol (NSAL) and their methylated derivatives N-methyl-norsalsolinol (NMNSAL) and N-methyl-salsolinol (NMSAL), modulate dopaminergic neurotransmission and metabolism in the central nervous system. Dopaminergic neurotransmission is thought to play an important role in the pathophysiology of chronic tic disorders, such as Tourette syndrome (TS). Therefore, the urinary concentrations of these TIQ derivatives were measured in patients with TS and patients with comorbid attention-deficit/hyperactivity disorder (TS + ADHD) compared with controls. Seventeen patients with TS, 12 with TS and ADHD, and 19 age-matched healthy controls with no medication took part in this study. Free levels of NSAL, NMNSAL, SAL, and NMSAL in urine were measured by a two-phase chromatographic approach. Furthermore, individual TIQ concentrations in TS patients were used in receiver-operating characteristics (ROC) curve analysis to examine the diagnostic value. NSAL concentrations were elevated significantly in TS [434.67 ± 55.4 nmol/l (standard error of mean = S.E.M.), two-way ANOVA, p < 0.0001] and TS + ADHD patients [605.18 ± 170.21 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] compared with controls [107.02 ± 33.18 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] and NSAL levels in TS + ADHD patients were elevated significantly in comparison with TS patients (two-way ANOVA, p = 0.017). NSAL demonstrated an AUC of 0.93 ± 0.046 (S.E.M) the highest diagnostic value of all metabolites for the diagnosis of TS. Our results suggest a dopaminergic hyperactivity underlying the pathophysiology of TS and ADHD. In addition, NSAL concentrations in urine may be a potential diagnostic biomarker of TS.
Collapse
|
13
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Dronjak S. Inhibition of the fatty acid amide hydrolase changes behaviors and brain catecholamines in a sex-specific manner in rats exposed to chronic unpredictable stress. Physiol Behav 2020; 227:113174. [PMID: 32966816 DOI: 10.1016/j.physbeh.2020.113174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/26/2023]
Abstract
Sex differences in the susceptibility to chronic unpredictable stress (CUS) and the effects of fatty acid amide hydrolase (FAAH) inhibitor URB597 in rats have been investigated in this study. In this context, we investigated the effects of prolonged treatment with URB597 on behavior, pro-inflammatory interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10), catecholamine content and the expression of its biosynthetic and degrading enzymes in the hippocampus, hypothalamus and medial prefrontal cortex (mPFC) of rats subjected to CUS. The results show that CUS increases anxiety-like and depression-like behaviors but it was more pronounced in females. The data suggests sex differences in brain cytokines, catecholamines and their enzymes of synthesis and degradation expression in response to CUS. Our findings indicate that the FAAH inhibitor URB597 differently regulated catecholamine levels and its enzymes of synthesis and degradation in the examined brain areas of male and female rats. URB treatment failed to reduce anxiety or restore reduced norepinephrine and did not affect enzymes of catecholamine degradation in the mPFC, hippocampus and hypothalamus of CUS female rats. These studies are important because they investigate the neurochemical consequences of stress related mood disorders that might lead to the development of sex specific treatments.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
14
|
Misztal T, Hasiec M, Szlis M, Tomaszewska-Zaremba D, Marciniak E. Stimulatory effect of dopamine derivative, salsolinol, on pulsatile luteinizing hormone secretion in seasonally anestrous sheep: Focus on dopamine, kisspeptin and gonadotropin-releasing hormone. Anim Reprod Sci 2019; 208:106102. [PMID: 31405485 DOI: 10.1016/j.anireprosci.2019.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022]
Abstract
In the present study, there was testing of the hypothesis that a centrally administered dopamine (DA) derivative, salsolinol, could affect pulsatile luteinizing hormone (LH) secretion in seasonally anestrous sheep by affecting the neuronal components of the estradiol (E2) negative feedback. In two experiments performed during early spring (increasing day length - March/April), salsolinol or Ringer-Locke solution (control) were administered into the third brain ventricle (IIIv): 1) in several injections for three consecutive days; and 2) in several hour-long infusions. In addition to determining the LH concentration (in both experiments), the abundances of gonadotropin-releasing hormone (GnRH) and kisspeptin mRNA were examined in the hypothalamus and LHβ subunit mRNA in the pituitary (Experiment 1). In Experiment 2, concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in perfusates collected from the infundibular nucleus/median eminence (IN/ME) by the push-pull method. In both experiments, salsolinol increased both LH pulse frequency (P < 0.05) and plasma LH concentration (P < 0.001) compared to controls. The injected salsolinol also increased (P < 0.05) the abundance of GnRH mRNA in the mediobasal hypothalamus and kisspeptin mRNA in the arcuate nucleus. The two doses of infused salsolinol decreased DA to undetectable concentrations and DOPAC concentration by 60% in perfusates collected from the IN/ME. In conclusion, exogenous salsolinol functioning centrally stimulates pulsatile LH secretion in sheep during seasonal anestrus. It is suggested that salsolinol may have this effect by reducing the activity of the hypothalamic neuroendocrine dopaminergic system, which results in an increase in both kisspeptin and GnRH neurons activity.
Collapse
Affiliation(s)
- Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| | - Małgorzata Hasiec
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Dorota Tomaszewska-Zaremba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| |
Collapse
|
15
|
Hasiec M, Misztal T. Adaptive Modifications of Maternal Hypothalamic-Pituitary-Adrenal Axis Activity during Lactation and Salsolinol as a New Player in this Phenomenon. Int J Endocrinol 2018; 2018:3786038. [PMID: 29849616 PMCID: PMC5914094 DOI: 10.1155/2018/3786038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Both basal and stress-induced secretory activities of the hypothalamic-pituitary-adrenal (HPA) axis are distinctly modified in lactating females. On the one hand, it aims to meet the physiological demands of the mother, and on the other hand, the appropriate and stable plasma cortisol level is one of the essential factors for the proper offspring development. Specific adaptations of HPA axis activity to lactation have been extensively studied in several animal species and humans, providing interesting data on the HPA axis plasticity mechanism. However, most of the data related to this phenomenon are derived from studies in rats. The purpose of this review is to highlight these adaptations, with a particular emphasis on stress reaction and differences that occur between species. Existing data on breastfeeding women are also included in several aspects. Finally, data from the experiments in sheep are presented, indicating a new regulatory factor of the HPA axis-salsolinol-which typical role was revealed in lactation. It is suggested that this dopamine derivative is involved in both maintaining basal and suppressing stress-induced HPA axis activities in lactating dams.
Collapse
Affiliation(s)
- Malgorzata Hasiec
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
| |
Collapse
|
16
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
17
|
Hashizume T, Watanabe R, Inaba Y, Sawai K, Fülöp F, Nagy GM. Hypothalamic dopamine is required for salsolinol-induced prolactin secretion in goats. Anim Sci J 2017; 88:1588-1594. [DOI: 10.1111/asj.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Yuki Inaba
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ken Sawai
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; Faculty of Pharmacy; University of Szeged; Szeged Hungary
| | - György Miklos Nagy
- Department of Anatomy; Ross University School of Medicine; Roseau Commonwealth of Dominica
| |
Collapse
|
18
|
Marciniak E, Hasiec M, Fülöp F, Misztal T. Salsolinol-a potential inhibitor of the gonadotropic axis in sheep during lactation. Domest Anim Endocrinol 2017; 58:97-103. [PMID: 27792889 DOI: 10.1016/j.domaniend.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
This study tested the hypothesis that salsolinol, a derivative of dopamine, affects GnRH and LH secretion in lactating sheep. In the in vivo experiment, the structural analogue of salsolinol, 1-methyl-3,4-dihydroisoquinoline (1-MeDIQ), was infused into the infundibular nucleus-median eminence of sheep at the fifth wk of lactation to antagonize salsolinol's action. Simultaneously, cerebrospinal fluid from the third brain ventricle, to determine GnRH concentration, and plasma samples, to measure LH concentration, were collected. In the in vitro experiment, the anterior pituitary (AP) explants from weaned sheep were incubated in culture medium containing 2 doses of salsolinol, 20 and 100 μg/mL (S20 and S100, respectively). The concentration of LH in the collected media and relative expression of LHβ subunit messenger RNA in the AP explants were determined. No significant difference was found in mean GnRH concentration in response to 1-MeDIQ infusion, but both mean plasma LH concentration and LH pulse frequency increased significantly (P < 0.001 and P < 0.05, respectively) compared with those in controls. Significantly higher LH concentrations occurred during the first (P < 0.001), second (P < 0.001), and fourth (P < 0.05) h of 1-MeDIQ infusion. In the in vitro study, both the S20 and S100 doses of salsolinol caused a significant decrease in the mean medium LH concentration compared with that in the control (P < 0.01 and P < 0.001, respectively). Salsolinol had no effect on the relative LHβ subunit messenger RNA expression in the incubated tissue. In conclusion, salsolinol is a potential inhibitor of the secretory activity of the gonadotropic axis in lactating sheep, at least at the AP level. Although no significant changes in GnRH release were directly confirmed, an increase in the frequency of LH pulses does not allow to exclude the central action of salsolinol.
Collapse
Affiliation(s)
- E Marciniak
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - M Hasiec
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - F Fülöp
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - T Misztal
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| |
Collapse
|
19
|
Marciniak E, Górski K, Hasiec M, Misztal T. Hypothalamic-pituitary GnRH/LH axis activity is affected by salsolinol in sheep during lactation: Effects of intracerebroventricular infusions of salsolinol and its antagonizing analogue. Theriogenology 2016; 86:1931-8. [PMID: 27393219 DOI: 10.1016/j.theriogenology.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/10/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of the study was to test the hypothesis that salsolinol, a derivative of dopamine, is involved in the regulation of hypothalamic-pituitary gonadotropic (GnRH/LH) axis activity in lactating sheep. In the first experiment performed on sheep during the fifth week of lactation, a structural analogue of salsolinol (1-MeDIQ) was infused into the third brain ventricle (IIIv) to antagonize its action within the central nervous system (CNS). A push-pull perfusion of the infundibular nucleus/median eminence was performed simultaneously, and blood samples were collected from the jugular vein. In the second experiment, sheep received infusions of salsolinol into the IIIv, 48 hours after the weaning of their 8-week-old lambs. Blood samples were collected during the experimental periods, and the anterior pituitary (AP) tissue was dissected immediately after the end of the experiment. Perfusate GnRH concentration (experiment 1), plasma LH concentration (experiments 1 and 2), and relative LHβ mRNA levels in the AP tissue (experiment 2) were assayed. Blocking of salsolinol action in the CNS of lactating sheep caused a significant (P < 0.001) decrease in the perfusate GnRH concentrations in comparison with controls. Treatment with 1-MEDIQ also significantly decreased (P < 0.001) the LH concentration in the blood plasma. In turn, salsolinol infused 48 hours after lamb weaning significantly (P < 0.001) increased plasma LH concentration, reflected in the significant (P < 0.05) increase in the amplitude of LH pulses in the treated sheep as compared to the control animals. There was no significant difference in the relative levels of LHβ-subunit mRNA in the AP between control and salsolinol-infused sheep. The results lead to a conclusion that salsolinol affects the secretory activity of the GnRH/LH axis in sheep during lactation. Whether salsolinol infused into the IIIv evokes this stimulatory effect by itself or by modulation of other regulatory systems needs to be clarified.
Collapse
Affiliation(s)
- Elżbieta Marciniak
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Konrad Górski
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Małgorzata Hasiec
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Tomasz Misztal
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| |
Collapse
|
20
|
Inaba Y, Kato Y, Itou A, Chiba A, Sawai K, Fülöp F, Nagy GM, Hashizume T. Effects of extracerebral dopamine on salsolinol- or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats. Anim Sci J 2016; 87:1522-1527. [DOI: 10.1111/asj.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Yuki Inaba
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Yuki Kato
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Azumi Itou
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Aoi Chiba
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ken Sawai
- Faculty of Agriculture; Iwate University; Morioka Japan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; Faculty of Pharmacy, University of Szeged; Szeged Hungary
| | - György Miklos Nagy
- Neuromorphological and Neuroedocrine Research Laboratory; Department of Human Morphology, Hungarian Academy of Science and Semmelweis University; Budapest Hungary
| | | |
Collapse
|
21
|
Hasiec M, Herman AP, Misztal T. Salsolinol: a potential modulator of the activity of the hypothalamic-pituitary-adrenal axis in nursing and postweaning sheep. Domest Anim Endocrinol 2015; 53:26-34. [PMID: 26057577 DOI: 10.1016/j.domaniend.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
The most well-known physiological action of salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is the stimulation of prolactin secretion, especially during lactation. In addition, our recent work demonstrated that salsolinol inhibits the stress-induced activity of the hypothalamic-pituitary-adrenal (HPA) axis in lactating sheep. Here, we investigated whether salsolinol regulates the basal activity of the HPA axis in lactating sheep and whether its inhibitory action on the stress-induced activity of the HPA axis is present during the postweaning period. The first experiment was performed during the fifth week of lactation, in which unstressed sheep received an intracerebroventricular infusion of an antagonistic analogue of salsolinol, 1-MeDIQ (1-methyl-3,4-dihydroisoquinoline). Simultaneously, the infundibular nucleus and/or median eminence was perfused using the push-pull method. Sheep that received 1-MeDIQ infusion showed significantly higher concentration of plasma ACTH during the second, third, and fourth hour (P < 0.001, P < 0.01, and P < 0.001, respectively) and cortisol during the third and fourth hour (P < 0.001 and P < 0.01, respectively) than did sheep that received control infusion. There was no significant difference in the mean perfusate corticotropin-releasing hormone concentration between the 1-MeDIQ and control treatments. In the second experiment, sheep received an intracerebroventricular infusion of salsolinol during the ninth week of lactation and 48 h after lamb weaning. A comparison between the control groups in the first and second experiments revealed that sheep after weaning (ninth week of lactation) had significantly higher mean ACTH (P < 0.001) and cortisol (P < 0.001) concentrations during the first 2 h of the experiment than the nursing females (fifth week of lactation) had. Salsolinol significantly reduced the increased concentrations of ACTH and cortisol (P < 0.01) in sheep after lamb weaning. However, there was no difference in the expression of proopiomelanocortin messenger RNA within the anterior pituitary between the control and salsolinol-treated groups. In conclusion, salsolinol regulates the basal activity of the HPA axis in lactating sheep. In addition, the HPA axis of postweaning females is more sensitive to stressors associated with the experimental procedures, and salsolinol attenuates ACTH and cortisol release in this phenomenon.
Collapse
Affiliation(s)
- M Hasiec
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition of the Polish Academy of Sciences, 05-110 Jablonna, Poland
| | - A P Herman
- Laboratory of Molecular Biology, The Kielanowski Institute of Animal Physiology and Nutrition of the Polish Academy of Sciences, 05-110 Jablonna, Poland
| | - T Misztal
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition of the Polish Academy of Sciences, 05-110 Jablonna, Poland.
| |
Collapse
|
22
|
Hasiec M, Tomaszewska-Zaremba D, Misztal T. Suckling and salsolinol attenuate responsiveness of the hypothalamic-pituitary-adrenal axis to stress: focus on catecholamines, corticotrophin-releasing hormone, adrenocorticotrophic hormone, cortisol and prolactin secretion in lactating sheep. J Neuroendocrinol 2014; 26:844-52. [PMID: 25205344 DOI: 10.1111/jne.12222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/12/2014] [Accepted: 08/30/2014] [Indexed: 01/01/2023]
Abstract
In mammals, the responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to stress is reduced during lactation and this mainly results from suckling by the offspring. The suckling stimulus causes a release of the hypothalamic 1-metyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) (a derivative of dopamine), one of the prolactin-releasing factors. To investigate the involvement of salsolinol in the mechanism suppressing stress-induced HPA axis activity, we conducted a series of experiments on lactating sheep, in which they were treated with two kinds of isolation stress (isolation from the flock with lamb present or absent), combined with suckling and/or i.c.v infusion of salsolinol and 1-methyl-3,4-dihydro-isoqinoline (1-MeDIQ; an antagonistic analogue of salsolinol). Additionally, a push-pull perfusion of the infundibular nucleus/median eminence (IN/ME) and blood sample collection with 10-min intervals were performed during the experiments. Concentrations of perfusate corticotrophin-releasing hormone (CRH) and catecholamines (noradrenaline, dopamine and salsolinol), as well as concentrations of plasma adenocorticotrophic hormone (ACTH), cortisol and prolactin, were assayed. A significant increase in perfusate noradrenaline, plasma ACTH and cortisol occurred in response to both kinds of isolation stress. Suckling and salsolinol reduced the stress-induced increase in plasma ACTH and cortisol concentrations. Salsolinol also significantly reduced the stress-induced noradrenaline and dopamine release within the IN/ME. Treatment with 1-MeDIQ under the stress conditions significantly diminished the salsolinol concentration and increased CRH and cortisol concentrations. Stress and salsolinol did not increase the plasma prolactin concentration, in contrast to the suckling stimulus. In conclusion, salsolinol released in nursing sheep may have a suppressing effect on stress-induced HPA axis activity and peripheral prolactin does not appear to participate in its action.
Collapse
Affiliation(s)
- M Hasiec
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | | | | |
Collapse
|