1
|
Tabassum S, Wu S, Lee CH, Yang BSK, Gusdon AM, Choi HA, Ren XS. Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside. Neurotherapeutics 2024:e00515. [PMID: 39721917 DOI: 10.1016/j.neurot.2024.e00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with limited effective therapeutic options currently available. Recent research has highlighted the pivotal role of mitochondrial dysfunction in the pathophysiology of TBI, making mitochondria an attractive target for therapeutic intervention. This review comprehensively examines advancements in mitochondrial-targeted therapies for TBI, bridging the gap from basic research to clinical applications. We discuss the underlying mechanisms of mitochondrial damage in TBI, including oxidative stress, impaired bioenergetics, mitochondrial dynamics, and apoptotic pathways. Furthermore, we highlight the complex interplay between mitochondrial dysfunction, inflammation, and blood-brain barrier (BBB) integrity, elucidating how these interactions exacerbate injury and impede recovery. We also evaluate various preclinical studies exploring pharmacological agents, gene therapy, and novel drug delivery systems designed to protect and restore mitochondrial function. Clinical trials and their outcomes are assessed to evaluate the translational potential of mitochondrial-targeted therapies in TBI. By integrating findings from bench to bedside, this review emphasizes promising therapeutic avenues and addresses remaining challenges. It also provides guidance for future research to pave the way for innovative treatments that improve patient outcomes in TBI.
Collapse
Affiliation(s)
- Sidra Tabassum
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Silin Wu
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bosco Seong Kyu Yang
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M Gusdon
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huimahn A Choi
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang S Ren
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
2
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
3
|
Qian Y, Li X, Li G, Liu H, Li Q, Liu X, Zhang Y, He Z, Zhao Y, Fan H. Astrocyte-Derived Exosomal miR-148a-3p Suppresses Neuroinflammation and Restores Neurological Function in Traumatic Brain Injury by Regulating the Microglial Phenotype. eNeuro 2024; 11:ENEURO.0336-23.2024. [PMID: 38272675 PMCID: PMC10860656 DOI: 10.1523/eneuro.0336-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024] Open
Abstract
Interactions between astrocytes and microglia play an important role in the regeneration and repair of traumatic brain injury (TBI), and exosomes are involved in cell-cell interactions. A TBI model was constructed in rats. Brain extract (Ext) was isolated 1 d after TBI. Astrocyte-derived exosomes were obtained by coculturing Ext with primary astrocytes, and the morphology of exosomes was observed by electron microscopy. The isolated exosomes were cocultured with microglia to observe phenotypic changes in M1 and M2 markers. Aberrant RNA expression was detected in necrotic brain tissue and edematous brain tissue. The role of miR-148a-3p in regulating microglial phenotype was explored by knocking down or overexpressing miR-148a-3p. Finally, the effect of miR-148a-3p on TBI was studied in a rat TBI model. Astrocyte-derived exosomes stimulated by Ext promoted the transition of microglia from the M1 phenotype to the M2 phenotype. MiR-148a-3p was highly expressed in TBI. Transfecting miR-148a-3p promoted the transition of microglia from the M1 phenotype to the M2 phenotype and inhibited the lipopolysaccharide-induced inflammatory response in pre-microglia. In a rat TBI model, miR-148a-3p significantly improved the modified neurological severity score and attenuated brain injury, which promoted the transition of microglia from the M1 phenotype to the M2 phenotype. MiR-148a-3p alleviated TBI by inhibiting the nuclear factor κB pathway. Astrocyte-derived exosomal miR-148a-3p regulates the microglial phenotype, inhibits neuroinflammation, and restores neurological function in TBI. These results provide new potential targets for the treatment of TBI.
Collapse
Affiliation(s)
- Yan Qian
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Xin Li
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Guiliang Li
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Huali Liu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Qiaofen Li
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Xia Liu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Yang Zhang
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Zongying He
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Ying Zhao
- Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Hong Fan
- Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
4
|
Nema M, Dutta BJ, Singh S. Alpha-Lipoic acid alleviates imidacloprid-induced neuro-behavioral deficits in rats via Nrf2/HO-1 pathway. Toxicol Mech Methods 2024; 34:176-188. [PMID: 37904548 DOI: 10.1080/15376516.2023.2266027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Imidacloprid (IMI), a widely used pesticide in agriculture and a potential food contaminant, poses significant health concerns. This study sought to comprehensively evaluate its neurotoxic effects while investigating the potential protective role of alpha-lipoic acid (ALA), a naturally occurring dietary antioxidant renowned for its capacity to combat oxidative stress, support cardiovascular health, and maintain optimal nerve function. In this study, 28 rats were divided evenly into four groups and administered oral treatments of corn oil, IMI, IMI + ALA, and ALA, respectively. The results of the study indicated that rats exposed to IMI exhibited significant neurobehavioral impairments, decreased levels of antioxidant enzymes and acetylcholinesterase activity, reduced expression of HO-1 and Nrf2, and increased levels of pro-inflammatory cytokines like IL-6 and TNF-α in their hippocampal tissues. Furthermore, histopathological analysis of the brain tissues, specifically cortex and hippocampus, from the IMI-treated group revealed varying degrees of neuronal degeneration. In contrast, rats co-administered ALA alongside IMI showed noticeable improvements in all the assessed toxicological parameters. This study underscores the vital significance of ALA as a potential therapeutic adjunct in mitigating the adverse neurobehavioral consequences of insecticide exposure. By harnessing the Nrf2/HO-1 pathway, ALA demonstrates its ability to shield against IMI-induced neurotoxicity, offering a promising avenue for enhancing public health and safety. As a result, our findings advocate for the incorporation of ALA as a daily dietary supplement to fortify resilience against oxidative stress-related neurobehavioral deficits linked to pesticide exposure, thereby advancing our understanding of neuroprotection strategies in the face of environmental challenges.
Collapse
Affiliation(s)
- Mohit Nema
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
5
|
Ibrahim Fouad G, Ahmed KA. Remyelinating activities of Carvedilol or alpha lipoic acid in the Cuprizone-Induced rat model of demyelination. Int Immunopharmacol 2023; 118:110125. [PMID: 37028277 DOI: 10.1016/j.intimp.2023.110125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis (MS) is a complex and multifactorial neurodegenerative disease with unknown etiology, MS is featured by multifocal demyelinated lesions distributed throughout the brain. It is assumed to result from an interaction between genetic and environmental factors, including nutrition. Therefore, different therapeutic approaches are aiming to stimulate remyelination which could be defined as an endogenous regeneration and repair of myelin in the central nervous system. Carvedilol is an adrenergic receptor antagonist. Alpha lipoic acid (ALA) is a well-known antioxidant. Herein, we investigated the remyelination potential of Carvedilol or ALA post-Cuprizone (CPZ) intoxication. Carvedilol or ALA (20 mg/kg/d) was administrated orally for two weeks at the end of the five weeks of CPZ (0.6%) administration. CPZ provoked demyelination, enhanced oxidative stress, and stimulated neuroinflammation. Histological investigation of CPZ-induced brains showed obvious demyelination in the corpus callosum (CC). Both Carvedilol and ALA demonstrated remyelinating activities, with corresponding upregulation of the expression of MBP and PLP, the major myelin proteins, downregulation of the expression of TNF-α and MMP-9, and decrement of serum IFN-γ levels. Moreover, both Carvedilol and ALA alleviated oxidative stress, and ameliorated muscle fatigue. This study highlights the neurotherapeutic potential of Carvedilol or ALA in CPZ-induced demyelination, and offers a better model for the exploring of neuroregenerative strategies. The current study is the first to demonstrate a pro-remyelinating activity for Carvedilol, as compared to ALA, which might represent a potential additive benefit in halting demyelination and alleviating neurotoxicity. However, we could declare that Carvedilol showed a lower neuroprotective potential than ALA.
Collapse
|
6
|
Josifovska S, Panov S, Hadzi-Petrushev N, Mitrokhin V, Kamkin A, Stojchevski R, Avtanski D, Mladenov M. Positive Tetrahydrocurcumin-Associated Brain-Related Metabolomic Implications. Molecules 2023; 28:molecules28093734. [PMID: 37175144 PMCID: PMC10179939 DOI: 10.3390/molecules28093734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR's beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated. This paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease in various animal or cell culture models. In addition to its strong antioxidant properties, the effects of THC on the reduction of amyloid β aggregates are also well documented. The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction is also addressed and thoroughly reviewed, as is evidence from experimental studies about the mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal models of different brain disorders suggest that THC can be used as a dietary supplement to protect against traumatic brain injury and even improve brain function in Alzheimer's and Parkinson's diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective, anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently reviewed studies would be useful and should help define doses and methods of THC administration in different disease conditions.
Collapse
Affiliation(s)
- Slavica Josifovska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Sasho Panov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| |
Collapse
|
7
|
Zhuang YS, Wang X, Gao SQ, Miao SH, Li T, Gao CC, Han YL, Qiu JY, Zhou ML, Wang HD. Neuroprotective mechanisms of OXCT1 via the SIRT3-SOD2 pathway after traumatic brain injury. Brain Res 2023; 1808:148324. [PMID: 36921750 DOI: 10.1016/j.brainres.2023.148324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Ketones are not only utilized to produce energy but also play a neuroprotective role in many neurodegenerative diseases. However, whether this process has an impact on secondary brain damage after traumatic brain injury (TBI) remains unknown. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme in the intra-neuronal utilization of ketones. In this study, we investigated whether reduced expression of OXCT1 after TBI could impact neuroprotective mechanisms and exacerbate neurological dysfunction. MATERIALS AND METHODS Experimental TBI was induced by a modified version of the weight drop model, it is a model of severe head trauma. Expression of OXCT1 in the injured hippocampus of mice was measured at different time points using immunoblotting assays. The release of abnormal mitochondrial cytochrome c from neurons of the mouse injured lateral hippocampus was measured 1 week after TBI using immunoblotting assays. Neuronal death was assessed by Nissl staining and the level of reactive oxygen species (ROS) within the neurons of the injured lateral hippocampus was assessed by Dihydroethidium staining. Results OXCT1 was overexpressed in hippocampal neurons by injection of adeno-associated virus into the lateral ventricle. OXCT1 expression levels decreased significantly 1 week post-TBI. After comparing the data obtained from different groups of mice, OXCT1 was found to significantly increase the expression of SIRT3 and reduce the proportion of acetylated SOD2, thus decreasing the production of ROS in the injured hippocampal neurons, reducing neuronal death, and improving cognitive function. Conclusions OXCT1 has a critical previously unappreciated protective role in neurological impairment following TBI via the SIR3-SOD2 pathway. These findings highlight the potential of OXCT1 as a simple treatment for patients with TBI.
Collapse
Affiliation(s)
- Yun-Song Zhuang
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xue Wang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Sheng-Qing Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Shu-Hao Miao
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tao Li
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chao-Chao Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan-Ling Han
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jia-Yin Qiu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Han-Dong Wang
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, People's Republic of China; Department of Neurosurgery, Benq Medical Center, Nanjing Medical University, People's Republic of China.
| |
Collapse
|
8
|
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38:234-257. [PMID: 35579958 DOI: 10.1089/ars.2021.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Autophagy and apoptosis are two important cellular mechanisms behind brain injuries, which are severe clinical situations with increasing incidences worldwide. To search for more and better treatments for brain injuries, it is essential to deepen the understanding of autophagy, apoptosis, and their interactions in brain injuries. This article first analyzes how autophagy and apoptosis participate in the pathogenetic processes of brain injuries respectively and mutually, then summarizes some promising treatments targeting autophagy and apoptosis to show the potential clinical applications in personalized medicine and precision medicine in the future. Recent Advances: Most current studies suggest that apoptosis is detrimental to brain recovery. Several studies indicate that autophagy can cause unnecessary death of neurons after brain injuries, while others show that autophagy is beneficial for acute brain injuries (ABIs) by facilitating the removal of damaged proteins and organelles. Whether autophagy is beneficial or detrimental in ABIs depends on many factors, and the results from different research groups are diverse or even controversial, making this topic more appealing to be explored further. Critical Issues: Neuronal autophagy and apoptosis are two primary pathological processes in ABIs. How they interact with each other and how their regulations affect the outcome and prognosis of brain injuries remain uncertain, making these answers more critical. Future Directions: Insights into the interplay between autophagy and apoptosis and the accurate regulations of their balance in ABIs may promote personalized and precise treatments in the field of brain injuries. Antioxid. Redox Signal. 38, 234-257.
Collapse
Affiliation(s)
- Chuyu He
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Yanjun Xu
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Jing Sun
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Layla Li
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
10
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Zhou J, Yang Z, Shen R, Zhong W, Zheng H, Chen Z, Tang J, Zhu J. Resveratrol Improves Mitochondrial Biogenesis Function and Activates PGC-1α Pathway in a Preclinical Model of Early Brain Injury Following Subarachnoid Hemorrhage. Front Mol Biosci 2021; 8:620683. [PMID: 33968980 PMCID: PMC8100450 DOI: 10.3389/fmolb.2021.620683] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) has been shown to play a pivotal role in the regulation of mitochondrial biogenesis in diseases. Resveratrol (RSV), a natural polyphenolic reagent, has powerful antioxidant properties and the ability to scavenge mitochondrial reactive oxygen species (ROS) in a variety of central nervous system diseases. However, the underlying molecular mechanisms of RSV on mitochondrial biogenesis in early brain injury (EBI) following subarachnoid hemorrhage (SAH) remain poorly understood. This study aimed to explore the potential neuroprotective effects of RSV on mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in a prechiasmatic cistern SAH model. PGC-1α expression and related mitochondrial biogenesis were detected. Amounts of nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) were determined to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis after SAH were observed in the temporal cortex. Resveratrol increased the expression of PGC-1α, NRF1, and TFAM, and promoted PGC-1α nuclear translocation. Moreover, RSV could scavenge excess ROS, increase the activity of superoxide dismutase (SOD), enhance the potential of mitochondrial membrane and ATP levels, reduce the number of mitochondrial DNA copy, and decrease the level of malondialdehyde (MDA). RSV significantly ameliorated the release of apoptosis-related cytokines, namely P53, cleaved caspase-3, cytochrome c, and BAX, leading to the amelioration of neuronal apoptosis, brain edema, and neurological impairment 24 h after SAH. These results indicate that resveratrol promotes mitochondrial biogenesis and function by activation of the PGC-1α signaling pathway in EBI following SAH.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zaijia Yang
- School of Medical Management, Hainan Medical University, Haikou, China
| | - Ruiming Shen
- Department of Rheumatology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wangwang Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huiduan Zheng
- Department of Neurology, Hainan Provincial People's Hospital, Haikou, China
| | - Zhenggang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jianjian Tang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Juan Zhu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Teegala R. Role of nutraceuticals in the management of severe traumatic brain injury. NUTRACEUTICALS IN BRAIN HEALTH AND BEYOND 2021:47-56. [DOI: 10.1016/b978-0-12-820593-8.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
McGeown JP, Hume PA, Theadom A, Quarrie KL, Borotkanics R. Nutritional interventions to improve neurophysiological impairments following traumatic brain injury: A systematic review. J Neurosci Res 2020; 99:573-603. [PMID: 33107071 DOI: 10.1002/jnr.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) accounts for significant global health burden. Effects of TBI can become chronic even following mild injury. There is a need to develop effective therapies to attenuate the damaging effects of TBI and improve recovery outcomes. This literature review using a priori criteria (PROSPERO; CRD42018100623) summarized 43 studies between January 1998 and July 2019 that investigated nutritional interventions (NUT) delivered with the objective of altering neurophysiological (NP) outcomes following TBI. Risk of bias was assessed for included studies, and NP outcomes recorded. The systematic search resulted in 43 of 3,748 identified studies met inclusion criteria. No studies evaluated the effect of a NUT on NP outcomes of TBI in humans. Biomarkers of morphological changes and apoptosis, oxidative stress, and plasticity, neurogenesis, and neurotransmission were the most evaluated NP outcomes across the 43 studies that used 2,897 animals. The risk of bias was unclear in all reviewed studies due to poorly detailed methodology sections. Taking these limitations into account, anti-oxidants, branched chain amino acids, and ω-3 polyunsaturated fatty acids have shown the most promising pre-clinical results for altering NP outcomes following TBI. Refinement of pre-clinical methodologies used to evaluate effects of interventions on secondary damage of TBI would improve the likelihood of translation to clinical populations.
Collapse
Affiliation(s)
- Joshua P McGeown
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.,National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Alice Theadom
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.,National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | | | - Robert Borotkanics
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
14
|
Turkyilmaz IB, Bilgin Sokmen B, Yanardag R. Alpha‐lipoic acid prevents brain injury in rats administered with valproic acid. J Biochem Mol Toxicol 2020; 34:e22580. [DOI: 10.1002/jbt.22580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Bahar Bilgin Sokmen
- Department of Chemistry, Faculty of Arts and Sciences Giresun University Giresun Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering Istanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
15
|
Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, Zhao K, Zhang H. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 2020; 17:89. [PMID: 32192523 PMCID: PMC7082961 DOI: 10.1186/s12974-020-01761-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The interaction between astrocytes and microglia plays a vital role in the damage and repair of brain lesions due to traumatic brain injury (TBI). Recent studies have shown that exosomes act as potent mediators involved in intercellular communication. METHODS In the current study, the expression of inflammatory factors and miR-873a-5p in the lesion area and oedema area was evaluated in 15 patients with traumatic brain injury. Exosomes secreted by astrocytes were detected by immunofluorescence, Western blot and electron microscopy. A mouse model of TBI and an in vitro model of LPS-induced primary microglia were established to study the protective mechanism of exosomes from miR-873a-5p overexpressing in TBI-induced nerve injury. RESULTS We discovered that exosomes derived from activated astrocytes promote microglial M2 phenotype transformation following TBI. More than 100 miRNAs were detected in these astrocyte-derived exosomes. miR-873a-5p is a major component that was highly expressed in human traumatic brain tissue. Moreover, miR-873a-5p significantly inhibited LPS-induced microglial M1 phenotype transformation and the subsequent inflammation through decreased phosphorylation of ERK and NF-κB p65. This effect also greatly improved the modified neurological severity score (mNSS) and attenuated brain injury in a strictly controlled cortical impact mouse model. CONCLUSIONS Taken together, our research indicates that miRNAs in the exosomes derived from activated astrocytes play a key role in the astrocyte-microglia interaction. miR-873a-5p, as one of the main components of these astrocyte-derived exosomes, attenuated microglia-mediated neuroinflammation and improved neurological deficits following TBI by inhibiting the NF-κB signalling pathway. These findings suggest a potential role for miR-873a-5p in treating traumatic brain injury.
Collapse
Affiliation(s)
- Xiaobing Long
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaolong Yao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiping Yang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weidong Tian
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Neurosurgery, First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Kai Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Shen R, Zhou J, Li G, Chen W, Zhong W, Chen Z. SS31 attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage possibly by the mitochondrial pathway. Neurosci Lett 2019; 717:134654. [PMID: 31785308 DOI: 10.1016/j.neulet.2019.134654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND SS31 has been shown to have neuroprotective effects in a number of neurological degenerative diseases. However, the mechanisms and its role of neuroprotection after subarachnoid hemorrhage (SAH) remain unexplored. The aim of the present study is to evaluate the neuroprotective effects of SS31 on early brain injury (EBI) induced by SAH in rats and the potential mechanisms of the protective effects of SS31. METHODS Sprague-Dawley rats were randomly divided into four groups: Sham, SAH, SAH + vehicle, and SAH + SS31 groups. The SAH-induced prechiasmatic cistern rat model was established in this study. Neurological scores were evaluated at 24 h and 72 h after SAH. The brain edema, blood-brain barrier (BBB) permeability, neuronal apoptosis, malondialdehyde (MDA), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities, as well as the expression of mitochondrial and cytosolic cytochrome C (Cyt C), and Bax were analyzed at 24 h after SAH. RESULTS When compared with the vehicle-treated group, treatment with SS31 significantly reduced MDA levels and restored the activities of GPx and SOD in the temporal cortex following SAH when compared with the vehicle-treated group. In addition, the levels of mitochondrial Cyt C and Bax respectively increased and decreased by SS31 treatment. Moreover, SS31 treatment ameliorated brain edema and Evans blue dye extravasation, improved neurological deficits, and decreased neuronal apoptosis at 24 h after SAH. CONCLUSION Our data provides initial evidence that SS31 could alleviate EBI after SAH through its antioxidant property and ability in inhibiting neuronal apoptosis, likely by modulating the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Ruiming Shen
- Department of Rheumatology, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Haikou, 570102, Hainan Province, China
| | - Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University,31 Longhua Road, Haikou, 570102, Hainan Province, China.
| | - Ge Li
- The Second Ward, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Haikou, 570102, Hainan Province, China
| | - Wuyan Chen
- The First Ward, Department of Neurology, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Haikou, 570102, Hainan Province, China
| | - Wangwang Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University,31 Longhua Road, Haikou, 570102, Hainan Province, China
| | - Zhenggang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University,31 Longhua Road, Haikou, 570102, Hainan Province, China
| |
Collapse
|
17
|
Li F, Wang X, Zhang Z, Zhang X, Gao P. Dexmedetomidine Attenuates Neuroinflammatory-Induced Apoptosis after Traumatic Brain Injury via Nrf2 signaling pathway. Ann Clin Transl Neurol 2019; 6:1825-1835. [PMID: 31478596 PMCID: PMC6764501 DOI: 10.1002/acn3.50878] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/21/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Dexmedetomidine (DEX) exhibits neuroprotective effects as a multifunctional neuroprotective agent in numerous neurological disorders. However, in traumatic brain injury (TBI), the molecular mechanisms of these neuroprotective effects remain unclear. The present study investigated whether DEX, which has been reported to exert protective effects against TBI, could attenuate neuroinflammatory‐induced apoptosis and clarified the underlying mechanisms. Methods A weight‐drop model was established, and DEX was intraperitoneally injected 30 min after inducing TBI in rats. The water content in the brain tissue was measured. Terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) assays were performed on histopathological tissue sections to evaluate neuronal apoptosis. Enzyme‐linked immunosorbent assay and PCR were applied to detect the levels of the inflammatory factors, TNF‐α, IL‐1β, IL‐6, and NF‐κB. Results TBI–challenged rats exhibited significant neuronal apoptosis, which was characterized via the wet‐to‐dry weight ratio, neurobehavioral functions, TUNEL assay results and the levels of cleaved caspase‐3, Bax upregulation and Bcl‐2, which were attenuated by DEX. Western blot, immunohistochemistry, and PCR results revealed that DEX promoted Nrf2 expression and upregulated expression of the Nrf2 downstream factors, HO‐1 and NQO‐1. Furthermore, DEX treatment markedly prevented the downregulation of inflammatory response factors, TNF‐α, IL‐1β and NF‐κB, and IL‐6. Interpretation Administering DEX attenuated inflammation‐induced brain injury in a TBI model, potentially via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Fayin Li
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Xiaodong Wang
- Department of Neurosurgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Zhijie Zhang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Xianlong Zhang
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| | - Pengfei Gao
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 6 Beijing Road West, Huaian, 223002, Jiangsu, China
| |
Collapse
|
18
|
Xia D, Zhai X, Wang H, Chen Z, Fu C, Zhu M. Alpha lipoic acid inhibits oxidative stress-induced apoptosis by modulating of Nrf2 signalling pathway after traumatic brain injury. J Cell Mol Med 2019; 23:4088-4096. [PMID: 30989783 PMCID: PMC6533507 DOI: 10.1111/jcmm.14296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/04/2019] [Accepted: 03/07/2019] [Indexed: 11/29/2022] Open
Abstract
Alpha lipoic acid (ALA) is a powerful antioxidant which has been widely used in the treatment of different system diseases, such as cardiovascular and cerebrovascular diseases. But, there are few studies that refer to protective effects and potential mechanisms on traumatic brain injury (TBI). This study was carried out to investigate the neuroprotective effect following TBI and illuminate the underlying mechanism. Weight drop‐injured model in rats was induced by weight‐drop. ALA was administrated via intraperitoneal injection after TBI. Neurologic scores were examined following several tests. Neurological score was performed to measure behavioural outcomes. Nissl staining and TUNEL were performed to evaluate the neuronal apoptosis. Western blotting was engaged to analyse the protein content of the Nuclear factor erythroid 2‐related factor 2 (Nrf2) and its downstream protein factors, including hemeoxygenase‐1 (HO‐1) and quinine oxidoreductase‐1 (NQO1). ALA treatment alleviated TBI‐induced neuron cell apoptosis and improved neurobehavioural function by up‐regulation of Nrf2 expression and its downstream protein factors after TBI. This study presents new perspective of the mechanisms responsible for the neuronal apoptosis of ALA, with possible involvement of Nrf2 pathway.
Collapse
Affiliation(s)
- Dayong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiaofu Zhai
- Department of Neurosurgery, Huai'an Second People's Hospital, Xuzhou Medical College, Huai'an, Jiangsu Province, China
| | - Honglian Wang
- Department of Radiology, Huai'an Fourth people's Hospital, Huai'an, Jiangsu Province, China
| | - Zhiyong Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chuanjing Fu
- Department of Neurosurgery, Jiangsu Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Meihua Zhu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
19
|
Niu F, Dong J, Xu X, Zhang B, Liu B. Mitochondrial Division Inhibitor 1 Prevents Early-Stage Induction of Mitophagy and Accelerated Cell Death in a Rat Model of Moderate Controlled Cortical Impact Brain Injury. World Neurosurg 2019; 122:e1090-e1101. [DOI: 10.1016/j.wneu.2018.10.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
|
20
|
Fang J, Zhu Y, Wang H, Cao B, Fei M, Niu W, Zhou Y, Wang X, Li X, Zhou M. Baicalin Protects Mice Brain From Apoptosis in Traumatic Brain Injury Model Through Activation of Autophagy. Front Neurosci 2019; 12:1006. [PMID: 30686973 PMCID: PMC6334745 DOI: 10.3389/fnins.2018.01006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Autophagy is associated with secondary injury following traumatic brain injury (TBI) and is expected to be a therapeutic target. Baicalin, a neuroprotective agent, has been proven to exert multi-functional bioactive effects in brain injury diseases. However, it is unknown if Baicalin influences autophagy after TBI. In the present study, we aimed to explore the effects that Baicalin had on TBI in a mice model, focusing on autophagy as a potential mechanism. We found that Baicalin administration significantly improved motor function, reduced cerebral edema, and alleviated disruption of the blood-brain barrier (BBB) after TBI in mice. Besides, TBI-induced apoptosis was reversed by Baicalin evidenced by Nissl staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and the level of cleaved caspase-3. More importantly, Baicalin enhanced autophagy by detecting the autophagy markers (LC3, Beclin 1, and p62) using western blot and LC3 immunofluorescence staining, ameliorating mitochondrial apoptotic pathway evidenced by restoration of the TBI-induced translocation of Bax and cytochrome C. However, simultaneous treatment with 3-MA inhibited Baicalin-induced autophagy and abolished its protective effects on mitochondrial apoptotic pathway. In conclusion, we demonstrated that Baicalin enhanced autophagy, ameliorated mitochondrial apoptosis and protected mice brain in TBI mice model.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Bailu Cao
- Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Endocrinology, Jinling Hospital, Nanjing, China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Xiang Li
- Department of Neurosurgery, Jiangsu Provincial Second Chinese Medicine Hospital, Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Zhào H, Liu Y, Zeng J, Li D, Huang Y. Troxerutin cerebroprotein hydrolysate injection ameliorates neurovascular injury induced by traumatic brain injury - via endothelial nitric oxide synthase pathway regulation. Int J Neurosci 2018; 128:1118-1127. [PMID: 29883225 DOI: 10.1080/00207454.2018.1486828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neurovascular dysfunction caused by traumatic brain injury (TBI) is characterized by cerebralvascular damage, blood-brain barrier (BBB) breakdown, brain edema, etc. This study was designed to assess the protective role of 5 days troxerutin cerebroprotein hydrolysate (TCH) injection treatment against TBI, as well as the potential mechanism. METHODS The weight-drop model of TBI in male Sprague-Dawley rats was chosen to induce TBI model, rats either with TCH or a vehicle via intraperitoneal injection were examined 3 days after TBI. RESULTS TCH resulted in alleviation of neurological deficits, reduction of infarct volume, improvement of regional cerebral blood flow (rCBF), amelioration of neuronal death, astrocyte proliferation, endothelial cell loss, and BBB dysintegrity. These effects of TCH treatment against TBI were through endothelial nitric oxide synthase (eNOS) coupling/decoupling status adjustment, which not only increased nitric oxide (NO) level, but also decreased peroxynitrate level expression. CONCLUSIONS All the results indicated that TCH injection has multifaceted protective effects of neurovascular unit (NVU) against TBI via eNOS pathway regulation.
Collapse
Affiliation(s)
- Hóngyi Zhào
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China.,b Department of Neurology , No 261 Hospital of PLA , Beijing , PR China
| | - Yu Liu
- b Department of Neurology , No 261 Hospital of PLA , Beijing , PR China
| | - Jing Zeng
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China
| | - Dandan Li
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China
| | - Yonghua Huang
- a Department of Neurology , Army General Hospital of PLA , Beijing , PR China
| |
Collapse
|
22
|
Gao YY, Zhang ZH, Zhuang Z, Lu Y, Wu LY, Ye ZN, Zhang XS, Chen CL, Li W, Hang CH. Recombinant milk fat globule-EGF factor-8 reduces apoptosis via integrin β3/FAK/PI3K/AKT signaling pathway in rats after traumatic brain injury. Cell Death Dis 2018; 9:845. [PMID: 30154436 PMCID: PMC6113274 DOI: 10.1038/s41419-018-0939-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/08/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests neuronal apoptosis has the potential to lead to more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that milk fat globule-EGF factor-8 (MFG-E8) provides neuroprotection through modulation of inflammation, oxidative stress, and especially apoptosis in cerebral ischemia and neurodegenerative disease. However, the effects of MFG-E8 on neuronal apoptosis in TBI have not yet been investigated. Therefore, we explored the role of MFG-E8 on anti-apoptosis and its potential mechanism following TBI. In the first set of experiments, adult male Sprague–Dawley (SD) rats were randomly divided into Sham and TBI groups that were each further divided into five groups representing different time points (6 h, 24 h, 72 h, and 7 days) (n = 9 each). Western blotting, quantitative real-time PCR, and immunofluorescence staining were performed to identify the expression and cellular localization of MFG-E8. In the second set of experiments, four groups were randomly assigned: Sham group, TBI + Vehicle group, and TBI + rhMFG-E8 (1 and 3 µg) (n = 15). Recombinant human MFGE8 (rhMFG-E8) was administrated as two concentrations through intracerebroventricular (i.c.v.) injection at 1 h after TBI induction. Brain water content, neurological severity score, western blotting, and immunofluorescence staining were measured at 24 and 72 h following TBI. In the final set of experiments, MFG-E8 siRNA (500 pmol/3 µl), integrin β3 siRNA (500 pmol/3 µl), and PI3K inhibitor LY294002 (5 and 20 µM) were injected i.c.v. and thereafter rats exposed to TBI. Western blotting, immunofluorescence staining, brain water content, neurological severity score, and Fluoro-Jade C (FJC) staining were used to investigate the effect of the integrin-β3/FAK/PI3K/AKT signaling pathway on MFG-E8-mediated anti-apoptosis after TBI. The expression of MFG-E8 was mainly located in microglial cells and increased to peak at 24 h after TBI. Treatment with rhMFG-E8 (3 µg) markedly decreased brain water content, improved neurological deficits, and reduced neuronal apoptosis at 24 and 72 h after TBI. rhMFG-E8 significantly enhanced the expression of integrin-β3/FAK/PI3K/AKT pathway-related components. Administration of integrin-β3 siRNA and LY294002 (5 and 20 µM) abolished the effect of rhMFG-E8 on anti-apoptosis and neuroprotection after TBI. This study demonstrated for the first time that rhMFG-E8 inhibits neuronal apoptosis and offers neuroprotection. This is suggested to occur through the modulation of the integrin-β3/FAK/PI3K/AKT signaling pathway, highlighting rhMFG-E8 as a potentially promising therapeutic strategy for TBI patients.
Collapse
Affiliation(s)
- Yong-Yue Gao
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China
| | - Zi-Huan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, PR China
| | - Zong Zhuang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China
| | - Yue Lu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China
| | - Ling-Yun Wu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China
| | - Zhen-Nan Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, PR China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China
| | - Chun-Lei Chen
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Wei Li
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China.
| | - Chun-Hua Hang
- Department of Neurosurgery, The Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Zhongshan Road 321, Nanjing, 210008, Jiangsu Province, PR China.
| |
Collapse
|
23
|
Sanadgol N, Golab F, Askari H, Moradi F, Ajdary M, Mehdizadeh M. Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 2018; 33:27-37. [PMID: 29022246 DOI: 10.1007/s11011-017-0099-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS), is a disease that degenerates myelin in central nervous system (CNS). Reactive oxygen species (ROSs) are toxic metabolites, and accumulating data indicate that ROSs-mediated apoptosis of oligodendrocytes (OLGs) plays a major role in the pathogenesis of MS under oxidative stress conditions. In this study, we investigated the role of endogenous antioxidant alpha-lipoic acid (ALA) as ROSs scavenger in the OLGs loss and myelin degeneration during cuprizone (cup)-induced demyelination in the experimental model of MS. Our results have shown that ALA treatment significantly increased population of mature OLGs (MOG+ cells), as well as decreased oxidative stress (ROSs, COX-2 and PGE2) and apoptosis mediators (caspase-3 and Bax/Bcl2 ratio) in corpus callosum (CC). Surprisingly, ALA significantly stimulates population of NG2 chondroitin sulfate proteoglycan positive glia (NG2+ cells or polydendrocytes), from week 4 afterward. Accordingly ALA could prevents apoptosis, delays demyelination and recruits OLGs survival and regeneration mechanisms in CC. We conclude that ALA has protective effects against toxic demyelination via reduction of redox signaling, and alleviation of polydendrocytes vulnerability to excitotoxic challenge.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Science, P.O. Box 14665-354, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Fu C, Wang Q, Zhai X, Gao J. Sinomenine reduces neuronal cell apoptosis in mice after traumatic brain injury via its effect on mitochondrial pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:77-84. [PMID: 29379271 PMCID: PMC5759853 DOI: 10.2147/dddt.s154391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Sinomenine (SIN) has been shown to have protective effects against brain damage following traumatic brain injury (TBI). However, the mechanisms and its role in these effects remain unclear. This study was conducted to investigate the potential mechanisms of the protective effects of SIN. Methods The weight-drop model of TBI in Institute of Cancer Research (ICR) mice were treated with SIN or a vehicle via intraperitoneal administration 30 min after TBI. All mice were euthanized 24 h after TBI and after neurological scoring, a series of tests were performed, including brain water content and neuronal cell death in the cerebral cortex. Results The level of cytochrome c (Cyt c), malondialdehyde (MDA), glutathione peroxidase (GPx) and superoxide dismutase 1 (SOD) were restored to some degree following the SIN treatment. The SIN treatment significantly decreased caspase-3 expression and reduced the number of positive cells by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and improved the survival of neuronal cells. Additionally, the pretreatment levels of MDA were restored, while Bax translocation to mitochondria and Cyt c release into the cytosol were reduced by the SIN treatment. Conclusion SIN protected neuronal cells by protecting them against apoptosis via mechanisms that involve the mitochondria following TBI.
Collapse
Affiliation(s)
- Chuanjing Fu
- Department of Neurosurgery, Jiangsu Hospital of Traditional Chinese Medicine, Nanjing
| | - Qi Wang
- Department of Radiology, The Fourth People's Hospital of Huai'an
| | - Xiaofu Zhai
- Department of Neurosurgery, The Second People's Hospital of Huai'an, Xuzhou Medical College, Huai'an, People's Republic of China
| | - Juemin Gao
- Department of Neurosurgery, Jiangsu Hospital of Traditional Chinese Medicine, Nanjing
| |
Collapse
|
25
|
Li X, Wang H, Wen G, Li L, Gao Y, Zhuang Z, Zhou M, Mao L, Fan Y. Neuroprotection by quercetin via mitochondrial function adaptation in traumatic brain injury: PGC-1α pathway as a potential mechanism. J Cell Mol Med 2017; 22:883-891. [PMID: 29205806 PMCID: PMC5783850 DOI: 10.1111/jcmm.13313] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/09/2017] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Guodao Wen
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Liwen Li
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
26
|
Venegoni W, Shen Q, Thimmesch AR, Bell M, Hiebert JB, Pierce JD. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017; 73:1331-1338. [PMID: 28103389 DOI: 10.1111/jan.13259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. BACKGROUND One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. DESIGN Discussion paper. DATA SOURCES Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. IMPLICATIONS FOR NURSING Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. CONCLUSION The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury.
Collapse
Affiliation(s)
| | - Qiuhua Shen
- School of Nursing, University of Kansas, Kansas, USA
| | | | - Meredith Bell
- School of Nursing, University of Kansas, Kansas, USA
| | | | | |
Collapse
|
27
|
dl-3-n-Butylphthalide (NBP) Provides Neuroprotection in the Mice Models After Traumatic Brain Injury via Nrf2-ARE Signaling Pathway. Neurochem Res 2017; 42:1375-1386. [DOI: 10.1007/s11064-017-2186-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/25/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
|
28
|
Chan YL, Saad S, Al-Odat I, Oliver BG, Pollock C, Jones NM, Chen H. Maternal L-Carnitine Supplementation Improves Brain Health in Offspring from Cigarette Smoke Exposed Mothers. Front Mol Neurosci 2017; 10:33. [PMID: 28243190 PMCID: PMC5303734 DOI: 10.3389/fnmol.2017.00033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023] Open
Abstract
Maternal cigarette smoke exposure (SE) causes detrimental changes associated with the development of chronic neurological diseases in the offspring as a result of oxidative mitochondrial damage. Maternal L-Carnitine administration has been shown to reduce renal oxidative stress in SE offspring, but its effect in the brain is unknown. Here, we investigated the effects of maternal L-Carnitine supplementation on brain markers of oxidative stress, autophagy, mitophagy and mitochondrial energy producing oxidative phosphorylation (OXPHOS) complexes in SE offspring. Female Balb/c mice (8 weeks) were exposed to cigarette smoke prior to mating, during gestation and lactation with or without L-Carnitine supplementation (1.5 mM in drinking water). In 1 day old male SE offspring, brain mitochondrial damage was suggested by increased mitochondrial fusion and reduced autophagosome markers; whereas at 13 weeks, enhanced brain cell damage was suggested by reduced fission and autophagosome markers, as well as increased apoptosis and DNA fragmentation markers, which were partially reversed by maternal L-Carnitine supplementation. In female SE offspring, enhanced mitochondrial regeneration was suggested by decreased fission and increased fusion markers at day 1. At 13 weeks, there was an increase in brain energy demand, oxidative stress and mitochondrial turnover, reflected by the protein changes of OXPHOS complex, fission and autophagosome markers, as well as the endogenous antioxidant, which were also partially normalized by maternal L-Carnitine supplementation. However, markers of apoptosis and DNA fragmentation were not significantly changed. Thus L-Carnitine supplementation may benefit the brain health of the offspring from smoking mothers.
Collapse
Affiliation(s)
- Yik Lung Chan
- Center for Health Technologies, School of Life Sciences, Faculty of Science, University of Technology SydneyUltimo, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of SydneyGlebe, NSW, Australia
| | - Sonia Saad
- Center for Health Technologies, School of Life Sciences, Faculty of Science, University of Technology SydneyUltimo, NSW, Australia; Renal Group Kolling Institute, Royal North Shore HospitalSt Leonards, NSW, Australia
| | - Ibrahim Al-Odat
- Center for Health Technologies, School of Life Sciences, Faculty of Science, University of Technology Sydney Ultimo, NSW, Australia
| | - Brian G Oliver
- Center for Health Technologies, School of Life Sciences, Faculty of Science, University of Technology SydneyUltimo, NSW, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of SydneyGlebe, NSW, Australia
| | - Carol Pollock
- Renal Group Kolling Institute, Royal North Shore Hospital St Leonards, NSW, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, University of New South Wales Kensington, NSW, Australia
| | - Hui Chen
- Center for Health Technologies, School of Life Sciences, Faculty of Science, University of Technology Sydney Ultimo, NSW, Australia
| |
Collapse
|
29
|
Ding H, Wang H, Zhu L, Wei W. Ursolic Acid Ameliorates Early Brain Injury After Experimental Traumatic Brain Injury in Mice by Activating the Nrf2 Pathway. Neurochem Res 2017; 42:337-346. [PMID: 27734181 DOI: 10.1007/s11064-016-2077-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023]
Abstract
Previous studies have indicated oxidative stress and inflammatory injury as significant contributors to the secondary damage associated with traumatic brain injury (TBI). Ursolic acid (UA) has been demonstrated to exert anti-oxidative and anti-inflammatory effects on cerebral ischemia by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. However, the effects of UA on TBI remain unclear. The aim of this study is to evaluate the potential roles of UA in the activation of the Nrf2 pathway using an experimental TBI model and the underlying mechanism. Wild-type (WT) and Nrf2(-/-) mice were divided into eight groups: (1) sham; (2) TBI; (3) TBI + vehicle; (4) TBI + 50 mg/kg UA; (5) TBI + 100 mg/kg UA; (6) TBI + 150 mg/kg UA; (7) TBI + Nrf2(-/-) + vehicle; (8) TBI + Nrf2(-/-) + UA. All mice underwent the TBI with the exception of the sham group. The neurologic outcomes of the mice were evaluated at 24 h after TBI, as well as the expression of Nrf2, NQO1, HO1,SOD, GPx, and MDA. Treatment of UA significantly ameliorated brain edema and the neurological insufficiencies after TBI. In addition, UA treatment markedly strengthened the nuclear translocation of Nrf2 protein and increased the expression of NQO1 and HO1. Moreover, UA significantly increased the expression of AKT, an Nrf2 upstream factor, suggesting that UA play a neuroprotective role through the activation of the Nrf2-ARE signal pathway. On the contrary, UA showed no neuroprotective effect on the Nrf2(-/-) mice. These data indicated that UA increases the activity of antioxidant enzymes and attenuated brain injury via Nrf2 factor.
Collapse
Affiliation(s)
- Hui Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu, 210002, People's Republic of China.
| | - Lin Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu, 210002, People's Republic of China
| | - Wuting Wei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, Jiangsu, 210002, People's Republic of China
| |
Collapse
|
30
|
Wei G, Chen B, Lin Q, Li Y, Luo L, He H, Fu H. Tetrahydrocurcumin Provides Neuroprotection in Experimental Traumatic Brain Injury and the Nrf2 Signaling Pathway as a Potential Mechanism. Neuroimmunomodulation 2017; 24:348-355. [PMID: 29669346 DOI: 10.1159/000487998] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/22/2018] [Indexed: 01/10/2023] Open
Abstract
The protective effect of tetrahydrocurcumin (THC) after experimental traumatic brain injury (TBI) has been demonstrated, as demonstrated by the inhibition of oxidative stress, mitochondrial dysfunction, and apoptosis. However, the mechanisms underlying this effect are still not well understood. This study was to investigate the neuroprotective effects of THC, and its potential mechanisms, in a rat model of TBI. To this end, rats were divided into 4 groups: the sham group, the TBI group, the TBI + vehicle (V) group, and the TBI + THC group. THC or V was administered via intraperitoneal injection to rats in the TBI + V and TBI + THC groups 30 min after TBI. After euthanasia (24 h after TBI), neurological scores, brain water content, and neuronal cell death in the cerebral cortex were recorded. Brain samples were collected after neurological scoring for further analysis. THC treatment alleviated brain edema, attenuated TBI-induced neuronal cell apoptosis, and improved neurobehavioral function. In addition, NFE2-related factor 2 (Nrf2) expression was upregulated following TBI. These results suggest that THC improves neurological outcome after TBI, possibly by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Guan Wei
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Bingji Chen
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qingjiang Lin
- Emergency Department, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yasong Li
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Liangqin Luo
- Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesia, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Huangde Fu
- Department of Neurosurgery, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| |
Collapse
|
31
|
Chen H, Chan YL, Nguyen LT, Mao Y, de Rosa A, Beh IT, Chee C, Oliver B, Herok G, Saad S, Gorrie C. Moderate traumatic brain injury is linked to acute behaviour deficits and long term mitochondrial alterations. Clin Exp Pharmacol Physiol 2016; 43:1107-1114. [DOI: 10.1111/1440-1681.12650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Chen
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Yik Lung Chan
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Long The Nguyen
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Yilin Mao
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Alicia de Rosa
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Ing Tsyr Beh
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- School of Chemical Life Sciences; Singapore Polytechnic; Singapore
| | - Candice Chee
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- School of Chemical Life Sciences; Singapore Polytechnic; Singapore
| | - Brian Oliver
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - George Herok
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| | - Sonia Saad
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
- Kolling Institute of Medical Research; University of Sydney; St Leonards NSW Australia
| | - Catherine Gorrie
- School of Life Sciences; Faculty of Science; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
32
|
The effect of subarachnoid erythrocyte lysate on brain injury: a preliminary study. Biosci Rep 2016; 36:BSR20160100. [PMID: 27279653 PMCID: PMC4945991 DOI: 10.1042/bsr20160100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/08/2016] [Indexed: 02/01/2023] Open
Abstract
We found that more severe brain injury was caused by subarachnoid erythrocyte lysate, and inflammation associated with Prx2 might be involved in mechanism of brain injury. Abundant erythrocytes remain and lyse partially in the subarachnoid space after severe subarachnoid haemorrhage (SAH). But the effect of subarachnoid erythrocyte lysate on brain injury is still not completely clear. In this study, autologous erythrocytes (the non-lysate group) and their lysate (the lysate group) were injected separately into the cistern magna of rabbits to induce a model of experimental SAH, although the control group received isotonic sodium chloride solution instead of erythrocyte solution. Results showed that vasospasm of the basilar artery was observed at 72 h after experimental SAH, but there was no significant difference between the non-lysate group and the lysate group. Brain injury was more severe in the lysate group than in the non-lysate group. Meanwhile, the levels of peroxiredoxin 2 (Prx2), IL-6 and TNF-α in brain cortex and in CSF were significantly higher in the lysate group than those in the non-lysate group. These results demonstrated that brain injury was more likely to be caused by erythrocyte lysate than by intact erythrocytes in subarachnoid space, and inflammation response positively correlated with Prx2 expression might be involved in mechanism of brain injury after SAH.
Collapse
|
33
|
Gao Y, Li J, Wu L, Zhou C, Wang Q, Li X, Zhou M, Wang H. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: autophagy and the PI3K/AKT pathways as a potential mechanism. J Surg Res 2016; 206:67-76. [PMID: 27916377 DOI: 10.1016/j.jss.2016.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tetrahydrocurcumin provides neuroprotection in multiple neurologic disorders by modulating oxidative stress, inflammatory responses, and autophagy. However, in traumatic brain injury (TBI), it is unclear whether a beneficial effect of tetrahydrocurcumin exists. In this study, we hypothesized that administration of tetrahydrocurcumin provides neuroprotection in a rat model of TBI. MATERIAL AND METHODS Behavioral studies were performed by recording and analyzing beam-walking scores. The role of tetrahydrocurcumin on neurons death was assessed via Nissl staining. We then performed Western blot analyses, terminal deoxynucleotidyl transferase 2'-deoxyuridine-5'-triphosphate (dUTP) nick end labeling assays and immunofluorescence staining to evaluate autophagy and apoptosis. Phospho-protein kinase B (p-AKT) was also assessed via Western blotting. RESULTS Our data indicated that administration of tetrahydrocurcumin alleviated brain edema, attenuated TBI-induced neuron cell death, decreased the degree of apoptosis and improved neurobehavioral function, which were accompanied by enhanced autophagy and phospho-AKT after TBI. Moreover, the autophagy inhibitor 3-methyladenine and the PI3K kinase inhibitor LY294002 partially reversed the neuroprotection of tetrahydrocurcumin after TBI. CONCLUSIONS This study indicates that tetrahydrocurcumin protects neurons from TBI-induced apoptotic neuronal death, which may be through modulation autophagy and PI3K/AKT pathways. Thus, tetrahydrocurcumin may be an attractive therapeutic agent for TBI.
Collapse
Affiliation(s)
- Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jie Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Lingyun Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenhui Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
34
|
Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res 2016; 1640:77-93. [PMID: 26872596 DOI: 10.1016/j.brainres.2016.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury is a complicated disease to treat due to the complex multi-factorial secondary injury cascade that is initiated following the initial impact. This secondary injury cascade causes nonmechanical tissue damage, which is where therapeutic interventions may be efficacious for intervention. One therapeutic target that has shown much promise following brain injury are mitochondria. Mitochondria are complex organelles found within the cell. At a superficial level, mitochondria are known to produce the energy substrate used within the cell called ATP. However, their importance to overall cellular homeostasis is even larger than their production of ATP. These organelles are necessary for calcium cycling, ROS production and play a role in the initiation of cell death pathways. When mitochondria become dysfunctional, they can become dysregulated leading to a loss of cellular homeostasis and eventual cell death. Within this review there will be a deep discussion into mitochondrial bioenergetics followed by a brief discussion into traumatic brain injury and how mitochondria play an integral role in the neuropathological sequelae following an injury. The review will conclude with a discussion pertaining to the therapeutic approaches currently being studied to ameliorate mitochondrial dysfunction following brain injury. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- H M Yonutas
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - H J Vekaria
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States
| | - P G Sullivan
- University of Kentucky, 741 South Limestone Street, BBSRB 475, 30536 Lexington, United States.
| |
Collapse
|
35
|
Lucke-Wold BP, Naser ZJ, Logsdon AF, Turner RC, Smith KE, Robson MJ, Bailes JE, Lee JM, Rosen CL, Huber JD. Amelioration of nicotinamide adenine dinucleotide phosphate-oxidase mediated stress reduces cell death after blast-induced traumatic brain injury. Transl Res 2015; 166:509-528.e1. [PMID: 26414010 DOI: 10.1016/j.trsl.2015.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023]
Abstract
A total of 1.7 million traumatic brain injuries (TBIs) occur each year in the United States, but available pharmacologic options for the treatment of acute neurotrauma are limited. Oxidative stress is an important secondary mechanism of injury that can lead to neuronal apoptosis and subsequent behavioral changes. Using a clinically relevant and validated rodent blast model, we investigated how nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression and associated oxidative stress contribute to cellular apoptosis after single and repeat blast injuries. Nox4 forms a complex with p22phox after injury, forming free radicals at neuronal membranes. Using immunohistochemical-staining methods, we found a visible increase in Nox4 after single blast injury in Sprague Dawley rats. Interestingly, Nox4 was also increased in postmortem human samples obtained from athletes diagnosed with chronic traumatic encephalopathy. Nox4 activity correlated with an increase in superoxide formation. Alpha-lipoic acid, an oxidative stress inhibitor, prevented the development of superoxide acutely and increased antiapoptotic markers B-cell lymphoma 2 (t = 3.079, P < 0.05) and heme oxygenase 1 (t = 8.169, P < 0.001) after single blast. Subacutely, alpha-lipoic acid treatment reduced proapoptotic markers Bax (t = 4.483, P < 0.05), caspase 12 (t = 6.157, P < 0.001), and caspase 3 (t = 4.573, P < 0.01) after repetitive blast, and reduced tau hyperphosphorylation indicated by decreased CP-13 and paired helical filament staining. Alpha-lipoic acid ameliorated impulsive-like behavior 7 days after repetitive blast injury (t = 3.573, P < 0.05) compared with blast exposed animals without treatment. TBI can cause debilitating symptoms and psychiatric disorders. Oxidative stress is an ideal target for neuropharmacologic intervention, and alpha-lipoic acid warrants further investigation as a therapeutic for prevention of chronic neurodegeneration.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Zachary J Naser
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Medicine, Professional Studies in Health Sciences, Drexel University College of Medicine, Philadelphia, PA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Kelly E Smith
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa
| | - Matthew J Robson
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tenn
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Ill
| | - John M Lee
- Department of Pathology, NorthShore University HealthSystem, University of Chicago Pritzker School of Medicine, Evanston, Ill
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WVa; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WVa; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WVa.
| |
Collapse
|