1
|
Salmanzadeh H, Poojari A, Rabiee A, Zeitlin BD, Halliwell RF. Neuropharmacology of human TERA2.cl.SP12 stem cell-derived neurons in ultra-long-term culture for antiseizure drug discovery. Front Neurosci 2023; 17:1182720. [PMID: 37397467 PMCID: PMC10308080 DOI: 10.3389/fnins.2023.1182720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Modeling the complex and prolonged development of the mammalian central nervous system in vitro remains a profound challenge. Most studies of human stem cell derived neurons are conducted over days to weeks and may or may not include glia. Here we have utilized a single human pluripotent stem cell line, TERA2.cl.SP12 to derive both neurons and glial cells and determined their differentiation and functional maturation over 1 year in culture together with their ability to display epileptiform activity in response to pro-convulsant agents and to detect antiseizure drug actions. Our experiments show that these human stem cells differentiate in vitro into mature neurons and glia cells and form inhibitory and excitatory synapses and integrated neural circuits over 6-8 months, paralleling early human neurogenesis in vivo; these neuroglia cultures display complex electrochemical signaling including high frequency trains of action potentials from single neurons, neural network bursts and highly synchronized, rhythmical firing patterns. Neural activity in our 2D neuron-glia circuits is modulated by a variety of voltage-gated and ligand-gated ion channel acting drugs and these actions were consistent in both young and highly mature neuron cultures. We also show for the first time that spontaneous and epileptiform activity is modulated by first, second and third generation antiseizure agents consistent with animal and human studies. Together, our observations strongly support the value of long-term human stem cell-derived neuroglial cultures in disease modeling and neuropsychiatric drug discovery.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Atefeh Rabiee
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| | - Benjamin D. Zeitlin
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
| | - Robert F. Halliwell
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
2
|
Halliwell RF, Salmanzadeh H, Coyne L, Cao WS. An Electrophysiological and Pharmacological Study of the Properties of Human iPSC-Derived Neurons for Drug Discovery. Cells 2021; 10:cells10081953. [PMID: 34440722 PMCID: PMC8395001 DOI: 10.3390/cells10081953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
Human stem cell-derived neurons are increasingly considered powerful models in drug discovery and disease modeling, despite limited characterization of their molecular properties. Here, we have conducted a detailed study of the properties of a commercial human induced Pluripotent Stem Cell (iPSC)-derived neuron line, iCell [GABA] neurons, maintained for up to 3 months in vitro. We confirmed that iCell neurons display neurite outgrowth within 24 h of plating and label for the pan-neuronal marker, βIII tubulin within the first week. Our multi-electrode array (MEA) recordings clearly showed neurons generated spontaneous, spike-like activity within 2 days of plating, which peaked at one week, and rapidly decreased over the second week to remain at low levels up to one month. Extracellularly recorded spikes were reversibly inhibited by tetrodotoxin. Patch-clamp experiments showed that iCell neurons generated spontaneous action potentials and expressed voltage-gated Na and K channels with membrane capacitances, resistances and membrane potentials that are consistent with native neurons. Our single neuron recordings revealed that reduced spiking observed in the MEA after the first week results from development of a dominant inhibitory tone from GABAergic neuron circuit maturation. GABA evoked concentration-dependent currents that were inhibited by the convulsants, bicuculline and picrotoxin, and potentiated by the positive allosteric modulators, diazepam, chlordiazepoxide, phenobarbital, allopregnanolone and mefenamic acid, consistent with native neuronal GABAA receptors. We also show that glycine evoked robust concentration-dependent currents that were inhibited by the neurotoxin, strychnine. Glutamate, AMPA, Kainate and NMDA each evoked concentration-dependent currents in iCell neurons that were blocked by their selective antagonists, consistent with the expression of ionotropic glutamate receptors. The NMDA currents required the presence of the co-agonist glycine and were blocked in a highly voltage-dependent manner by Mg2+ consistent with the properties of native neuronal NMDA receptors. Together, our data suggest that such human iPSC-derived neurons may have significant value in drug discovery and development and may eventually largely replace the need for animal tissues in human biomedical research.
Collapse
|
3
|
Song J, Yang X, Zhou Y, Chen L, Zhang X, Liu Z, Niu W, Zhan N, Fan X, Khan AA, Kuang Y, Song L, He G, Li W. Dysregulation of neuron differentiation in an autistic savant with exceptional memory. Mol Brain 2019; 12:91. [PMID: 31699123 PMCID: PMC6836402 DOI: 10.1186/s13041-019-0507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders without a unique or definite underlying pathogenesis. Although savant syndrome is common in ASD, few models are available for studying the molecular and cellular mechanisms of this syndrome. In this study, we generated urinary induced pluripotent stem cells (UiPSCs) from a 13-year-old male autistic savant with exceptional memory. The UiPSC-derived neurons of the autistic savant exhibited upregulated expression levels of ASD genes/learning difficulty-related genes, namely PAX6, TBR1 and FOXP2, accompanied by hypertrophic neural somas, enlarged spines, reduced spine density, and an increased frequency of spontaneous excitatory postsynaptic currents. Although this study involved only a single patient and a single control because of the rarity of such cases, it provides the first autistic savant UiPSC model that elucidates the potential cellular mechanisms underlying the condition.
Collapse
Affiliation(s)
- Jinjing Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiujuan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lei Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuxi Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute for Pediatric Research, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nengpeng Zhan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xuelian Fan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yifang Kuang
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lulu Song
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
Ahlfors JE, Azimi A, El-Ayoubi R, Velumian A, Vonderwalde I, Boscher C, Mihai O, Mani S, Samoilova M, Khazaei M, Fehlings MG, Morshead CM. Examining the fundamental biology of a novel population of directly reprogrammed human neural precursor cells. Stem Cell Res Ther 2019; 10:166. [PMID: 31196173 PMCID: PMC6567617 DOI: 10.1186/s13287-019-1255-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination.
Collapse
Affiliation(s)
| | - Ashkan Azimi
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Ontario, M5S 1A8 Canada
| | | | - Alexander Velumian
- Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, M5T 1P5 Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Ilan Vonderwalde
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 Canada
| | | | - Oana Mihai
- New World Laboratories, Laval, Quebec, H7V 5B7 Canada
| | - Sarathi Mani
- New World Laboratories, Laval, Quebec, H7V 5B7 Canada
| | - Marina Samoilova
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Michael G. Fehlings
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Ontario, M5T 1P5 Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8 Canada
| | - Cindi M Morshead
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8 Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Ontario, M5S 1A8 Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S3E1 Canada
| |
Collapse
|
5
|
Sánchez-González S, Diban N, Bianchi F, Ye H, Urtiaga A. Evidences of the Effect of GO and rGO in PCL Membranes on the Differentiation and Maturation of Human Neural Progenitor Cells. Macromol Biosci 2018; 18:e1800195. [PMID: 30253070 DOI: 10.1002/mabi.201800195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Indexed: 11/08/2022]
Abstract
The effect of doping graphene oxide (GO) and reduced graphene oxide (rGO) into poly(ε-caprolactone) (PCL) membranes prepared by solvent induced phase separation is evaluated in terms of nanomaterial distribution and compatibility with neural stem cell growth and functional differentiation. Raman spectra analyses demonstrate the homogeneous distribution of GO on the membrane surface while rGO concentration increases gradually toward the center of the membrane thickness. This behavior is associated with electrostatic repulsion that PCL exerted toward the polar GO and its affinity for the non-polar rGO. In vitro cell studies using human induced pluripotent cell derived neural progenitor cells (NPCs) show that rGO increases marker expression of NPCs differentiation with respect to GO (significantly to tissue culture plate (TCP)). Moreover, the distinctive nanomaterials distribution defines the cell-to-nanomaterial interaction on the PCL membranes: GO nanomaterials on the membrane surface favor higher number of active matured neurons, while PCL/rGO membranes present cells with significantly higher magnitude of neural activity compared to TCP and PCL/GO despite there being no direct contact of rGO with the cells on the membrane surface. Overall, this work evidences the important role of rGO electrical properties on the stimulation of neural cell electro-activity on PCL membrane scaffolds.
Collapse
Affiliation(s)
- Sandra Sánchez-González
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n,, 39005, Santander, Spain
| | - Nazely Diban
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n,, 39005, Santander, Spain
| | - Fabio Bianchi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n,, 39005, Santander, Spain
| |
Collapse
|
6
|
Neagoe I, Liu C, Stumpf A, Lu Y, He D, Francis R, Chen J, Reynen P, Alaoui-Ismaili MH, Fukui H. The GluN2B subunit represents a major functional determinant of NMDA receptors in human induced pluripotent stem cell-derived cortical neurons. Stem Cell Res 2018; 28:105-114. [PMID: 29454156 DOI: 10.1016/j.scr.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Abnormal signaling pathways mediated by N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathogenesis of various CNS disorders and have been long considered as promising points of therapeutic intervention. However, few efforts have been previously described concerning evaluation of therapeutic modulators of NMDARs and their downstream pathways in human neurons with endogenous expression of NMDARs. In the present study, we assessed expression, functionality, and subunit composition of endogenous NMDARs in human induced pluripotent stem cell (hiPSC)-derived cortical neurons (iCell Neurons and iCell GlutaNeurons). We initially confirmed the expected pharmacological response of iCell Neurons and iCell GlutaNeurons to NMDA by patch-clamp recordings. Subsequent pharmacological interrogation using GluN2 subunit-selective antagonists revealed the predominance of GluN2B in both iCell Neurons and iCell GlutaNeurons. This observation was also supported by qRT-PCR and Western blot analyses of GluN2 subunit expression as well as pharmacological experiments using positive allosteric modulators with distinct GluN2 subunit selectivity. We conclude that iCell Neurons and iCell GlutaNeurons express functional GluN2B-containing NMDARs and could serve as a valuable system for development and validation of GluN2B-modulating pharmaceutical agents.
Collapse
Affiliation(s)
- Ioana Neagoe
- Evotec AG, Essener Bogen 7, 22419 Hamburg, Germany
| | - Chang Liu
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Stumpf
- Institute for Neurophysiology, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dongping He
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ross Francis
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul Reynen
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
7
|
Azmitia L, Capetian P. Single-Step Plasmid Based Reprogramming of Human Dermal Fibroblasts to Induced Neural Stem Cells. Methods Mol Biol 2018; 1842:31-41. [PMID: 30196399 DOI: 10.1007/978-1-4939-8697-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequent differentiation opened up the opportunity of deriving cell types in vitro which (like neurons) had a very restricted accessibility in the past. However, cell culture protocols for iPSC reprogramming, neural induction and differentiation tend to be labor and time intensive, costly and commonly depend on viral vector delivery. Single-step reprogramming to induced neural stem cells (iNSC) avoids many of the necessary intermediate steps of the aforementioned method but yields a cell type that proliferates over longer time spans and readily differentiates to mature neurons when required. Here we describe a plasmid based reprogramming protocol employing defined, commercially available components for induction and proliferation of iNSC, followed by a defined, small molecule based differentiation step toward mature neurons. The described method might be of particular interest for groups with limited resources and/or restricted access to higher biosafety level facilities required for viral transduction, but also for groups requiring a high throughput for dealing with large numbers of cell lines.
Collapse
Affiliation(s)
- Luis Azmitia
- Department of Neurosurgery, University of Kiel, Kiel, Germany
| | - Philipp Capetian
- Department of Neurology, University of Würzburg, Würzburg, Germany. .,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
8
|
Rabenstein M, Peter F, Joost S, Trilck M, Rolfs A, Frech MJ. Decreased calcium flux in Niemann-Pick type C1 patient-specific iPSC-derived neurons due to higher amount of calcium-impermeable AMPA receptors. Mol Cell Neurosci 2017; 83:27-36. [PMID: 28666962 DOI: 10.1016/j.mcn.2017.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 06/25/2017] [Indexed: 01/31/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene, resulting mainly in the accumulation of cholesterol and the ganglioside GM2. Recently, we described accumulations of these lipids in neuronal differentiated cells derived from NPC1 patient-specific induced pluripotent stem cells (iPSCs). As these lipids are essential for proper cell membrane composition, we were interested in the expression and function of voltage-gated ion channels and excitatory AMPA receptors (AMPARs) in neurons derived from three patient-specific iPSC lines. By means of patch clamp recordings and microfluorimetric measurements of calcium (Ca2+), we examined the expression of voltage-gated ion channels and AMPARs. Cells of the three used cell lines carrying the c.1836A>C/c.1628delC, the c.1180T>C or the c.3182T>C mutation demonstrated a significantly reduced AMPA-induced Ca2+-influx, suggesting an altered expression profile of these receptors. RT-qPCR revealed a significant upregulation of mRNA for the AMPA receptor subunits GluA1 and GluA2 and western blot analysis showed increased protein level of GluA2. Thus, we conclude that the observed reduced Ca2+-influx is based on an increase of GluA2 containing Ca2+-impermeable AMPARs. An attenuated function of GluRs in neurons potentially contributes to the progressive neurodegeneration observed in NPC1 and might represent an objective in regard of the development of new therapeutic approaches in NPC1.
Collapse
Affiliation(s)
- Michael Rabenstein
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Franziska Peter
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Sarah Joost
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Michaela Trilck
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| | - Moritz J Frech
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany.
| |
Collapse
|