1
|
Grigorieva YS, Naumova AA, Nikolaeva SD, Ivlev AP, Chernigovskaya EV, Glazova MV. Abnormal Astrocyte Heterogeneity in the Dentate Gyrus of Rats Prone to Audiogenic Seizures Can Be Corrected by the Nootropic Drug Piracetam. Hippocampus 2025; 35:e23679. [PMID: 39711014 DOI: 10.1002/hipo.23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Accumulating evidence indicates that inherited astrocyte dysfunction can be a primary trigger for epilepsy development; however, the available data are rather limited. In addition, astrocytes are considered as a perspective target for the design of novel and improvement of the existing antiepileptic therapy. Piracetam and related nootropic drugs are widely used in the therapy of various epileptic disorders, but detailed mechanisms of racetams action and, in particular, their effects on glial functions are poorly understood. In this study, we explored the functional state of astrocytes in the dentate gyrus (DG) of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures and compared the action of piracetam on the DG astrocytes in KM and normal Wistar rats. Wistar and naïve KM rats which received injections of saline (control) or piracetam (100 mg/kg) for 21 days were recruited in our studies. Comparative analysis of control Wistar and KM rats revealed genetically determined abnormalities in DG astrocytes of KM rats including an increased expression of NFIA but a decreased GFAP, ALDH1L1, EAATs, and glutamine synthetase (GS). Piracetam treatment normalized the expression of all studied markers, except NFIA, in KM rats, while in Wistar rats, it potentiated only GS and NFIA. The results suggested that the nootropic and antiepileptic effects of piracetam may be, at least partially, mediated by the modulation of astroglia functions. In addition, analysis of NFIA and GS colocalization revealed the novel pattern of astrocyte heterogeneity in the DG which was significantly altered in epileptic rats but corrected by piracetam.
Collapse
Affiliation(s)
- Yulia S Grigorieva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia
| | - Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
2
|
Wan X, Yin X, Chai X, Tian M, Wang J, Zhang J. Evaluation of Neurovascular Coupling in Early-Onset and Late-Onset Epilepsy of Unknown Etiology. J Magn Reson Imaging 2024. [PMID: 39670446 DOI: 10.1002/jmri.29678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Previous studies have shown neurovascular coupling (NVC) dysfunction in epilepsy, suggesting its role in the pathological mechanisms. However, it remains unclear whether NVC abnormalities exist in epilepsy of unknown etiology (EU). PURPOSE To integrate multiparametric MRI to assess NVC and its relationship with cognition in early-onset and late-onset EU patients. STUDY TYPE Prospective. POPULATION Ninety-six EU patients (46 early-onset, M/F = 20/26; 50 late-onset, M/F = 29/21) and 60 healthy controls (HCs, M/F = 25/35). FIELD STRENGTH/SEQUENCE 3.0 T, resting-state gradient echo-planar imaging, pseudo-continuous arterial spin labeling (pc-ASL), and T1-weighted brain volume sequence. ASSESSMENT Functional MRI data were analyzed to assess intrinsic brain activity including amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and functional connectivity strength (FCS), while pc-ASL provided cerebral blood flow (CBF) measurements. Coupling correlation coefficients and ratios of CBF to neural activity were calculated to evaluate global and regional NVC. STATISTICAL TESTS Two-sample t-test, Analysis of Variance, Kruskal-Wallis test, Chi-square test, Analysis of Covariance, family-wise error/Bonferroni correction, partial correlation analyses. Statistical significance was defined as P < 0.05. RESULTS Whole-brain analysis revealed increased ALFF values in both patient groups' left precentral and postcentral gyri. Both patient groups had lower global NVC coefficients than HCs, with reduced CBF-ALFF (0.28 vs. 0.30), CBF-fALFF (0.43 vs. 0.45), and CBF-ReHo (0.40 vs. 0.41) in early-onset patients, and lower CBF-fALFF (0.38 vs. 0.45) and CBF-ReHo (0.32 vs. 0.41) in late-onset patients. Regional analysis showed significantly decreased CBF/ALFF ratios in the left precentral and postcentral gyri (T = 3.85 to 5.33). Reduced global NVC in early-onset patients was significantly associated with poorer executive function (r = 0.323), while global coupling in late-onset patients was negatively correlated with disease duration (r = -0.348 to -0.426). DATA CONCLUSION This study showed abnormal global and regional NVC in both early-onset and late-onset EU patients, emphasizing the potential role of NVC in the pathophysiological mechanisms of EU. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xinyi Chai
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Fan Y, Chen J, Fan Z, Chirinos J, Stein JL, Sullivan PF, Wang R, Nadig A, Zhang DY, Huang S, Jiang Z, Guan PY, Qian X, Li T, Li H, Sun Z, Ritchie MD, O’Brien J, Witschey W, Rader DJ, Li T, Zhu H, Zhao B. Mapping rare protein-coding variants on multi-organ imaging traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317443. [PMID: 39606337 PMCID: PMC11601754 DOI: 10.1101/2024.11.16.24317443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Human organ structure and function are important endophenotypes for clinical outcomes. Genome-wide association studies (GWAS) have identified numerous common variants associated with phenotypes derived from magnetic resonance imaging (MRI) of the brain and body. However, the role of rare protein-coding variations affecting organ size and function is largely unknown. Here we present an exome-wide association study that evaluates 596 multi-organ MRI traits across over 50,000 individuals from the UK Biobank. We identified 107 variant-level associations and 224 gene-based burden associations (67 unique gene-trait pairs) across all MRI modalities, including PTEN with total brain volume, TTN with regional peak circumferential strain in the heart left ventricle, and TNFRSF13B with spleen volume. The singleton burden model and AlphaMissense annotations contributed 8 unique gene-trait pairs including the association between an approved drug target gene of KCNA5 and brain functional activity. The identified rare coding signals elucidate some shared genetic regulation across organs, prioritize previously identified GWAS loci, and are enriched for drug targets. Overall, we demonstrate how rare variants enhance our understanding of genetic effects on human organ morphology and function and their connections to complex diseases.
Collapse
Affiliation(s)
- Yijun Fan
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julio Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rujin Wang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY, 10591, USA
| | - Ajay Nadig
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Y. Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuai Huang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Yi Guan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xinjie Qian
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ting Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haoyue Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zehui Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | - Joan O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA 19104, USA
| | - Walter Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingxin Zhao
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Eye-Brain Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Schneider Y, Gauer C, Andert M, Hoffmann A, Riemenschneider MJ, Krebs W, Chalmers N, Lötzsch C, Naumann UJ, Xiang W, Rothhammer V, Beckervordersandforth R, Schlachetzki JCM, Winkler J. Distinct forebrain regions define a dichotomous astrocytic profile in multiple system atrophy. Acta Neuropathol Commun 2024; 12:1. [PMID: 38167307 PMCID: PMC10759635 DOI: 10.1186/s40478-023-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The growing recognition of a dichotomous role of astrocytes in neurodegenerative processes has heightened the need for unraveling distinct astrocytic subtypes in neurological disorders. In multiple system atrophy (MSA), a rare, rapidly progressing atypical Parkinsonian disease characterized by increased astrocyte reactivity. However the specific contribution of astrocyte subtypes to neuropathology remains elusive. Hence, we first set out to profile glial fibrillary acidic protein levels in astrocytes across the human post mortem motor cortex, putamen, and substantia nigra of MSA patients and observed an overall profound astrocytic response. Matching the post mortem human findings, a similar astrocytic phenotype was present in a transgenic MSA mouse model. Notably, MSA mice exhibited a decreased expression of the glutamate transporter 1 and glutamate aspartate transporter in the basal ganglia, but not the motor cortex. We developed an optimized astrocyte isolation protocol based on magnetic-activated cell sorting via ATPase Na+/K+ transporting subunit beta 2 and profiled the transcriptomic landscape of striatal and cortical astrocytes in transgenic MSA mice. The gene expression profile of astrocytes in the motor cortex displayed an anti-inflammatory signature with increased oligodendroglial and pro-myelinogenic expression pattern. In contrast, striatal astrocytes were defined by elevated pro-inflammatory transcripts accompanied by dysregulated genes involved in homeostatic functions for lipid and calcium metabolism. These findings provide new insights into a region-dependent, dichotomous astrocytic response-potentially beneficial in the cortex and harmful in the striatum-in MSA suggesting a differential role of astrocytes in MSA-related neurodegenerative processes.
Collapse
Affiliation(s)
- Y Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - C Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - M Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - A Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - W Krebs
- Core Unit Bioinformatics, Data Integration and Analysis (CUBiDA), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - N Chalmers
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - C Lötzsch
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - U J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - W Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - V Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - R Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - J Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
5
|
Dang Y, Wang T. Research Progress on the Immune-Inflammatory Mechanisms of Posttraumatic Epilepsy. Cell Mol Neurobiol 2023; 43:4059-4069. [PMID: 37889439 DOI: 10.1007/s10571-023-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Posttraumatic epilepsy (PTE) is a severe complication arising from a traumatic brain injury caused by various violent actions on the brain. The underlying mechanisms for the pathogenesis of PTE are complex and have not been fully defined. Approximately, one-third of patients with PTE are resistant to antiepileptic therapy. Recent research evidence has shown that neuroinflammation is critical in the development of PTE. This article reviews the immune-inflammatory mechanisms regarding microglial activation, astrocyte proliferation, inflammatory signaling pathways, chronic neuroinflammation, and intestinal flora. These mechanisms offer novel insights into the pathophysiological mechanisms of PTE and have groundbreaking implications in the prevention and treatment of PTE. Immunoinflammatory cross-talk between glial cells and gut microbiota in posttraumatic epilepsy. This graphical abstract depicts the roles of microglia and astrocytes in posttraumatic epilepsy, highlighting the influence of the gut microbiota on their function. TBI traumatic brain injury, AQP4 aquaporin-4, Kir4.1 inward rectifying K channels.
Collapse
Affiliation(s)
- Yangbin Dang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China
| | - Tiancheng Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
6
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y, Li J. Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci 2023; 17:1217451. [PMID: 37732313 PMCID: PMC10507181 DOI: 10.3389/fnins.2023.1217451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes comprise half of the cells in the central nervous system and play a critical role in maintaining metabolic homeostasis. Metabolic dysfunction in astrocytes has been indicated as the primary cause of neurological diseases, such as depression, Alzheimer's disease, and epilepsy. Although the metabolic functionalities of astrocytes are well known, their relationship to neurological disorders is poorly understood. The ways in which astrocytes regulate the metabolism of glucose, amino acids, and lipids have all been implicated in neurological diseases. Metabolism in astrocytes has also exhibited a significant influence on neuron functionality and the brain's neuro-network. In this review, we focused on metabolic processes present in astrocytes, most notably the glucose metabolic pathway, the fatty acid metabolic pathway, and the amino-acid metabolic pathway. For glucose metabolism, we focused on the glycolysis pathway, pentose-phosphate pathway, and oxidative phosphorylation pathway. In fatty acid metabolism, we followed fatty acid oxidation, ketone body metabolism, and sphingolipid metabolism. For amino acid metabolism, we summarized neurotransmitter metabolism and the serine and kynurenine metabolic pathways. This review will provide an overview of functional changes in astrocyte metabolism and provide an overall perspective of current treatment and therapy for neurological disorders.
Collapse
Affiliation(s)
- Yong-mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying-bei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ya-nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wen-gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Wang J, Gao Y, Xiao L, Lin Y, Huang L, Chen J, Liang G, Li W, Yi W, Lao J, Zhang B, Gao TM, Zhong M, Yang X. Increased NMDARs in neurons and glutamine synthetase in astrocytes underlying autistic-like behaviors of Gabrb1-/- mice. iScience 2023; 26:107476. [PMID: 37599823 PMCID: PMC10433130 DOI: 10.1016/j.isci.2023.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations of the GABA-A receptor subunit β1 (GABRB1) gene are found in autism patients. However, it remains unclear how mutations in Gabrb1 may lead to autism. We generated Gabrb1-/- mouse model, which showed autistic-like behaviors. We carried out RNA-seq on the hippocampus and found glutamatergic pathway may be involved. We further carried out single-cell RNA sequencing on the whole brain followed by qRT-PCR, immunofluorescence, electrophysiology, and metabolite detection on specific cell types. We identified the up-regulated Glul/Slc38a3 in astrocytes, Grin1/Grin2b in neurons, glutamate, and the ratio of Glu/GABA in the hippocampus. Consistent with these results, increased NMDAR-currents and reduced GABAAR-currents in the CA1 neurons were detected in Gabrb1-/- mice. NMDAR antagonist memantine or Glul inhibitor methionine sulfoximine could rescue the abnormal behaviors in Gabrb1-/- mice. Our data reveal that upregulation of the glutamatergic synapse pathway, including NMDARs at neuronal synapses and glutamine exported by astrocytes, may lead to autistic-like behaviors.
Collapse
Affiliation(s)
- Jing Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liuyan Xiao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Lin
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinfa Chen
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanmei Liang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiming Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yi
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianpei Lao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
9
|
Andersen JV, Schousboe A. Glial Glutamine Homeostasis in Health and Disease. Neurochem Res 2023; 48:1100-1128. [PMID: 36322369 DOI: 10.1007/s11064-022-03771-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Glutamine is an essential cerebral metabolite. Several critical brain processes are directly linked to glutamine, including ammonia homeostasis, energy metabolism and neurotransmitter recycling. Astrocytes synthesize and release large quantities of glutamine, which is taken up by neurons to replenish the glutamate and GABA neurotransmitter pools. Astrocyte glutamine hereby sustains the glutamate/GABA-glutamine cycle, synaptic transmission and general brain function. Cerebral glutamine homeostasis is linked to the metabolic coupling of neurons and astrocytes, and relies on multiple cellular processes, including TCA cycle function, synaptic transmission and neurotransmitter uptake. Dysregulations of processes related to glutamine homeostasis are associated with several neurological diseases and may mediate excitotoxicity and neurodegeneration. In particular, diminished astrocyte glutamine synthesis is a common neuropathological component, depriving neurons of an essential metabolic substrate and precursor for neurotransmitter synthesis, hereby leading to synaptic dysfunction. While astrocyte glutamine synthesis is quantitatively dominant in the brain, oligodendrocyte-derived glutamine may serve important functions in white matter structures. In this review, the crucial roles of glial glutamine homeostasis in the healthy and diseased brain are discussed. First, we provide an overview of cellular recycling, transport, synthesis and metabolism of glutamine in the brain. These cellular aspects are subsequently discussed in relation to pathological glutamine homeostasis of hepatic encephalopathy, epilepsy, Alzheimer's disease, Huntington's disease and amyotrophic lateral sclerosis. Further studies on the multifaceted roles of cerebral glutamine will not only increase our understanding of the metabolic collaboration between brain cells, but may also aid to reveal much needed therapeutic targets of several neurological pathologies.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Proteomic and Bioinformatic Tools to Identify Potential Hub Proteins in the Audiogenic Seizure-Prone Hamster GASH/Sal. Diagnostics (Basel) 2023; 13:diagnostics13061048. [PMID: 36980356 PMCID: PMC10047193 DOI: 10.3390/diagnostics13061048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca) is a model of audiogenic seizures with the epileptogenic focus localized in the inferior colliculus (IC). The sound-induced seizures exhibit a short latency (7–9 s), which implies innate protein disturbances in the IC as a basis for seizure susceptibility and generation. Here, we aim to study the protein profile in the GASH/Sal IC in comparison to controls. Protein samples from the IC were processed for enzymatic digestion and then analyzed by mass spectrometry in Data-Independent Acquisition mode. After identifying the proteins using the UniProt database, we selected those with differential expression and performed ontological analyses, as well as gene-protein interaction studies using bioinformatics tools. We identified 5254 proteins; among them, 184 were differentially expressed proteins (DEPs), with 126 upregulated and 58 downregulated proteins, and 10 of the DEPs directly related to epilepsy. Moreover, 12 and 7 proteins were uniquely found in the GASH/Sal or the control. The results indicated a protein profile alteration in the epileptogenic nucleus that might underlie the inborn occurring audiogenic seizures in the GASH/Sal model. In summary, this study supports the use of bioinformatics methods in proteomics to delve into the relationship between molecular-level protein mechanisms and the pathobiology of rodent models of audiogenic seizures.
Collapse
|
11
|
Wang Y, Ma L, Jia S, Liu D, Gu H, Wei X, Ma W, Luo W, Bai Y, Wang W, Yuan Z. Serum exosomal coronin 1A and dynamin 2 as neural tube defect biomarkers. J Mol Med (Berl) 2022; 100:1307-1319. [PMID: 35915349 PMCID: PMC9402777 DOI: 10.1007/s00109-022-02236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Abstract No highly specific and sensitive biomarkers have been identified for early diagnosis of neural tube defects (NTDs). In this study, we used proteomics to identify novel proteins specific for NTDs. Our findings revealed three proteins showing differential expression during fetal development. In a rat model of NTDs, we used western blotting to quantify proteins in maternal serum exosomes on gestational days E18, E16, E14, and E12, in serum on E18 and E12, in neural tubes on E18 and E12, and in fetal neural exosomes on E18. The expression of coronin 1A and dynamin 2 was exosome-specific and associated with spina bifida aperta embryogenesis. Furthermore, coronin 1A and dynamin 2 were significantly downregulated in maternal serum exosomes (E12–E18), neural tubes, and fetal neural exosomes. Although downregulation was also observed in serum, the difference was not significant. Differentially expressed proteins were further analyzed in the serum exosomes of pregnant women during gestational weeks 12–40 using enzyme-linked immunosorbent assays. The findings revealed that coronin 1A and dynamin 2 showed potential diagnostic efficacy during gestational weeks 12–40, particularly during early gestation (12–18 weeks). Therefore, these two targets are used as candidate NTD screening and diagnostic biomarkers during early gestation. Key messages We used proteomics to identify novel proteins specific for NTDs. CORO1A and DNM2 showed exosome-specific expression and were associated with SBA. CORO1A and DNM2 were downregulated in maternal serum exosomes and FNEs. CORO1A and DNM2 showed good diagnostic efficacy for NTDs during early gestation. These two targets may have applications as NTD screening and diagnostic biomarkers.
Supplementary information The online version contains supplementary material available at 10.1007/s00109-022-02236-w.
Collapse
Affiliation(s)
- Yanfu Wang
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China.,Department of Pediatric Surgery, Neonatal Surgery, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Ling Ma
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China.,Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Jia
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Dan Liu
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Hui Gu
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Xiaowei Wei
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Wei Ma
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Wenting Luo
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Weilin Wang
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China
| | - Zhengwei Yuan
- Department of Pediatric Surgery, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, People's Republic of China.
| |
Collapse
|
12
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
13
|
Thompson JA, Miralles RM, Wengert ER, Wagley PK, Yu W, Wenker IC, Patel MK. Astrocyte reactivity in a mouse model of SCN8A epileptic encephalopathy. Epilepsia Open 2022; 7:280-292. [PMID: 34826216 PMCID: PMC9159254 DOI: 10.1002/epi4.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE SCN8A epileptic encephalopathy is caused predominantly by de novo gain-of-function mutations in the voltage-gated sodium channel Nav 1.6. The disorder is characterized by early onset of seizures and developmental delay. Most patients with SCN8A epileptic encephalopathy are refractory to current anti-seizure medications. Previous studies determining the mechanisms of this disease have focused on neuronal dysfunction as Nav 1.6 is expressed by neurons and plays a critical role in controlling neuronal excitability. However, glial dysfunction has been implicated in epilepsy and alterations in glial physiology could contribute to the pathology of SCN8A encephalopathy. In the current study, we examined alterations in astrocyte and microglia physiology in the development of seizures in a mouse model of SCN8A epileptic encephalopathy. METHODS Using immunohistochemistry, we assessed microglia and astrocyte reactivity before and after the onset of spontaneous seizures. Expression of glutamine synthetase and Nav 1.6, and Kir 4.1 channel currents were assessed in astrocytes in wild-type (WT) mice and mice carrying the N1768D SCN8A mutation (D/+). RESULTS Astrocytes in spontaneously seizing D/+ mice become reactive and increase expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. These same astrocytes exhibited reduced barium-sensitive Kir 4.1 currents compared to age-matched WT mice and decreased expression of glutamine synthetase. These alterations were only observed in spontaneously seizing mice and not before the onset of seizures. In contrast, microglial morphology remained unchanged before and after the onset of seizures. SIGNIFICANCE Astrocytes, but not microglia, become reactive only after the onset of spontaneous seizures in a mouse model of SCN8A encephalopathy. Reactive astrocytes have reduced Kir 4.1-mediated currents, which would impair their ability to buffer potassium. Reduced expression of glutamine synthetase would modulate the availability of neurotransmitters to excitatory and inhibitory neurons. These deficits in potassium and glutamate handling by astrocytes could exacerbate seizures in SCN8A epileptic encephalopathy. Targeting astrocytes may provide a new therapeutic approach to seizure suppression.
Collapse
Affiliation(s)
- Jeremy A. Thompson
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Raquel M. Miralles
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Eric R. Wengert
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Pravin K. Wagley
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Wenxi Yu
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Ian C. Wenker
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Manoj K. Patel
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
14
|
Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis 2022; 14:e1557. [PMID: 35546493 PMCID: PMC9539907 DOI: 10.1002/wsbm.1557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
Astrocytes are a major type of glial cells that have essential functions in development and homeostasis of the central nervous system (CNS). Immature astrocytes in the developing CNS support neuronal maturation and possess neural-stem-cell-like properties. Mature astrocytes partially lose these functions but gain new functions essential for adult CNS homeostasis. In pathological conditions, astrocytes become "reactive", which disrupts their mature homeostatic functions and reactivates some immature astrocyte-like properties, suggesting a partial reversal of astrocyte maturation. The loss of homeostatic astrocyte functions contributes to the pathogenesis of various neurological conditions, and therefore activating maturation-promoting mechanisms may be a promising therapeutic strategy to restore homeostasis. Manipulating the mechanisms underlying astrocyte maturation might also allow to facilitate CNS regeneration by enhancing developmental functions of adult astrocytes. However, such therapeutic strategies are still some distance away because of our limited understanding of astrocyte differentiation and maturation, due to biological and technical challenges, including the high degree of similarity of astrocytes with neural stem cells and the shortcomings of astrocyte markers. Current advances in systems biology have a huge potential to overcome these challenges. Recent transcriptomic analyses have already revealed new astrocyte markers and new regulators of astrocyte differentiation. However, the epigenomic changes that presumably occur during astrocyte differentiation remain an important, largely unexplored area for future research. Emerging technologies such as CRISPR/Cas9-based functional screens will further improve our understanding of the mechanisms underlying astrocyte differentiation. This may open up new clinical approaches to restore homeostasis in neurological disorders and/or promote CNS regeneration. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Stem Cells and Development Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
15
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
16
|
Wang CY, Gao YL, Liu JX, Kong XZ, Zheng CH. Single-Cell RNA Sequencing Data Clustering by Low-Rank Subspace Ensemble Framework. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1154-1164. [PMID: 33026977 DOI: 10.1109/tcbb.2020.3029187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid development of single-cell RNA sequencing (scRNA-seq)technology reveals the gene expression status and gene structure of individual cells, reflecting the heterogeneity and diversity of cells. The traditional methods of scRNA-seq data analysis treat data as the same subspace, and hide structural information in other subspaces. In this paper, we propose a low-rank subspace ensemble clustering framework (LRSEC)to analyze scRNA-seq data. Assuming that the scRNA-seq data exist in multiple subspaces, the low-rank model is used to find the lowest rank representation of the data in the subspace. It is worth noting that the penalty factor of the low-rank kernel function is uncertain, and different penalty factors correspond to different low-rank structures. Moreover, the single cluster model is difficult to find the cellular structure of all datasets. To strengthen the correlation between model solutions, we construct a new ensemble clustering framework LRSEC by using the low-rank model as the basic learner. The LRSEC framework captures the global structure of data through low-rank subspaces, which has better clustering performance than a single clustering model. We validate the performance of the LRSEC framework on seven small datasets and one large dataset and obtain satisfactory results.
Collapse
|
17
|
Kiziltan T, Baran A, Kankaynar M, Şenol O, Sulukan E, Yildirim S, Ceyhun SB. Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Arch Toxicol 2022; 96:1089-1099. [PMID: 35146542 PMCID: PMC8831007 DOI: 10.1007/s00204-022-03240-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
Since the middle of the twentieth century, the use of dyes has become more common in every food group as well as in the pharmaceutical, textile and cosmetic industries. Azo dyes, including carmoisine, are the most important of the dye classes with the widest color range. In this study, the effects of carmoisine exposure on the embryonic development of zebrafish at a wide dose scale, including recommended and overexposure doses (from 4 to 2000 ppm), were investigated in detail. For this purpose, many morphological and physiological parameters were examined in zebrafish exposed to carmoisine at determined doses for 96 h, and the mechanisms of action of the changes in these parameters were tried to be clarified with the metabolite levels determined. The no observed effect concentration (NOEC) and median lethal concentration (LC50) were recorded at 5 ppm and 1230.53 ppm dose at 96 hpf, respectively. As a result, it was determined that the applied carmoisine caused serious malformations, reduction in height and eye diameter, increase in the number of free oxygen radicals, in apoptotic cells and in lipid accumulation, decrease in locomotor activity depending on the dose and at the highest dose, decrease in blood flow rate. In the metabolome analysis performed to elucidate the metabolism underlying all these changes, 45 annotated metabolites were detected.
Collapse
Affiliation(s)
- Tuba Kiziltan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Technical Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey
| | - Serkan Yildirim
- Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Faculty of Fisheries, Atatürk University, Erzurum, Turkey.
- Department of Aquaculture, Faculty of Fisheries, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
18
|
Binder DK, Steinhäuser C. Astrocytes and Epilepsy. Neurochem Res 2021; 46:2687-2695. [PMID: 33661442 DOI: 10.1007/s11064-021-03236-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In particular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic targets that are astrocyte-specific.
Collapse
Affiliation(s)
- Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Green JL, Dos Santos WF, Fontana ACK. Role of glutamate excitotoxicity and glutamate transporter EAAT2 in epilepsy: Opportunities for novel therapeutics development. Biochem Pharmacol 2021; 193:114786. [PMID: 34571003 DOI: 10.1016/j.bcp.2021.114786] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.
Collapse
Affiliation(s)
- Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, United States
| | | | | |
Collapse
|
20
|
Farina MG, Sandhu MRS, Parent M, Sanganahalli BG, Derbin M, Dhaher R, Wang H, Zaveri HP, Zhou Y, Danbolt NC, Hyder F, Eid T. Small loci of astroglial glutamine synthetase deficiency in the postnatal brain cause epileptic seizures and impaired functional connectivity. Epilepsia 2021; 62:2858-2870. [PMID: 34536233 DOI: 10.1111/epi.17072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The astroglial enzyme glutamine synthetase (GS) is deficient in small loci in the brain in adult patients with different types of focal epilepsy; however, the role of this deficiency in the pathogenesis of epilepsy has been difficult to assess due to a lack of sufficiently sensitive and specific animal models. The aim of this study was to develop an in vivo approach for precise and specific deletions of the GS gene in the postnatal brain. METHODS We stereotaxically injected various adeno-associated virus (AAV)-Cre recombinase constructs into the hippocampal formation and neocortex in 22-70-week-old GSflox/flox mice to knock out the GS gene in a specific and focal manner. The mice were subjected to seizure threshold determination, continuous video-electroencephalographic recordings, advanced in vivo neuroimaging, and immunocytochemistry for GS. RESULTS The construct AAV8-glial fibrillary acidic protein-green fluorescent protein-Cre eliminated GS in >99% of astrocytes in the injection center with a gradual return to full GS expression toward the periphery. Such focal GS deletion reduced seizure threshold, caused spontaneous recurrent seizures, and diminished functional connectivity. SIGNIFICANCE These results suggest that small loci of GS deficiency in the postnatal brain are sufficient to cause epilepsy and impaired functional connectivity. Additionally, given the high specificity and precise spatial resolution of our GS knockdown approach, we anticipate that this model will be extremely useful for rigorous in vivo and ex vivo studies of astroglial GS function at the brain-region and single-cell levels.
Collapse
Affiliation(s)
- Maxwell G Farina
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Maxime Parent
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Derbin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Helen Wang
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yun Zhou
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels C Danbolt
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Lattke M, Goldstone R, Ellis JK, Boeing S, Jurado-Arjona J, Marichal N, MacRae JI, Berninger B, Guillemot F. Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in culture. Nat Commun 2021; 12:4335. [PMID: 34267208 PMCID: PMC8282848 DOI: 10.1038/s41467-021-24624-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes have essential functions in brain homeostasis that are established late in differentiation, but the mechanisms underlying the functional maturation of astrocytes are not well understood. Here we identify extensive transcriptional changes that occur during murine astrocyte maturation in vivo that are accompanied by chromatin remodelling at enhancer elements. Investigating astrocyte maturation in a cell culture model revealed that in vitro-differentiated astrocytes lack expression of many mature astrocyte-specific genes, including genes for the transcription factors Rorb, Dbx2, Lhx2 and Fezf2. Forced expression of these factors in vitro induces distinct sets of mature astrocyte-specific transcripts. Culturing astrocytes in a three-dimensional matrix containing FGF2 induces expression of Rorb, Dbx2 and Lhx2 and improves astrocyte maturity based on transcriptional and chromatin profiles. Therefore, extrinsic signals orchestrate the expression of multiple intrinsic regulators, which in turn induce in a modular manner the transcriptional and chromatin changes underlying astrocyte maturation.
Collapse
Affiliation(s)
- Michael Lattke
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - James K Ellis
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Stefan Boeing
- Software Development & Machine Learning Team, The Francis Crick Institute, London, UK
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, UK
| | - Jerónimo Jurado-Arjona
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
| | - Nicolás Marichal
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
| | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Benedikt Berninger
- Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- The Francis Crick Institute, London, UK
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
22
|
Tse K, Beamer E, Simpson D, Beynon RJ, Sills GJ, Thippeswamy T. The Impacts of Surgery and Intracerebral Electrodes in C57BL/6J Mouse Kainate Model of Epileptogenesis: Seizure Threshold, Proteomics, and Cytokine Profiles. Front Neurol 2021; 12:625017. [PMID: 34322075 PMCID: PMC8312573 DOI: 10.3389/fneur.2021.625017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Intracranial electroencephalography (EEG) is commonly used to study epileptogenesis and epilepsy in experimental models. Chronic gliosis and neurodegeneration at the injury site are known to be associated with surgically implanted electrodes in both humans and experimental models. Currently, however, there are no reports on the impact of intracerebral electrodes on proteins in the hippocampus and proinflammatory cytokines in the cerebral cortex and plasma in experimental models. We used an unbiased, label-free proteomics approach to identify the altered proteins in the hippocampus, and multiplex assay for cytokines in the cerebral cortex and plasma of C57BL/6J mice following bilateral surgical implantation of electrodes into the cerebral hemispheres. Seven days following surgery, a repeated low dose kainate (KA) regimen was followed to induce status epilepticus (SE). Surgical implantation of electrodes reduced the amount of KA necessary to induce SE by 50%, compared with mice without surgery. Tissues were harvested 7 days post-SE (i.e., 14 days post-surgery) and compared with vehicle-treated mice. Proteomic profiling showed more proteins (103, 6.8% of all proteins identified) with significantly changed expression (p < 0.01) driven by surgery than by KA treatment itself without surgery (27, 1.8% of all proteins identified). Further, electrode implantation approximately doubled the number of KA-induced changes in protein expression (55, 3.6% of all identified proteins). Further analysis revealed that intracerebral electrodes and KA altered the expression of proteins associated with epileptogenesis such as inflammation (C1q system), neurodegeneration (cystatin-C, galectin-1, cathepsin B, heat-shock protein 25), blood–brain barrier dysfunction (fibrinogen-α, serum albumin, α2 macroglobulin), and gliosis (vimentin, GFAP, filamin-A). The multiplex assay revealed a significant increase in key cytokines such as TNFα, IL-1β, IL-4, IL-5, IL-6, IL-10, IL12p70, IFN-γ, and KC/GRO in the cerebral cortex and some in the plasma in the surgery group. Overall, these findings demonstrate that surgical implantation of depth electrodes alters some of the molecules that may have a role in epileptogenesis in experimental models.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Edward Beamer
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Wiatr K, Marczak Ł, Pérot JB, Brouillet E, Flament J, Figiel M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front Mol Neurosci 2021; 14:658339. [PMID: 34220448 PMCID: PMC8248683 DOI: 10.3389/fnmol.2021.658339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is caused by CAG expansion mutation resulting in a long polyQ domain in mutant ataxin-3. The mutant protein is a special type of protease, deubiquitinase, which may indicate its prominent impact on the regulation of cellular proteins levels and activity. Yet, the global model picture of SCA3 disease progression on the protein level, molecular pathways in the brain, and neurons, is largely unknown. Here, we investigated the molecular SCA3 mechanism using an interdisciplinary research paradigm combining behavioral and molecular aspects of SCA3 in the knock-in ki91 model. We used the behavior, brain magnetic resonance imaging (MRI) and brain tissue examination to correlate the disease stages with brain proteomics, precise axonal proteomics, neuronal energy recordings, and labeling of vesicles. We have demonstrated that altered metabolic and mitochondrial proteins in the brain and the lack of weight gain in Ki91 SCA3/MJD mice is reflected by the failure of energy metabolism recorded in neonatal SCA3 cerebellar neurons. We have determined that further, during disease progression, proteins responsible for metabolism, cytoskeletal architecture, vesicular, and axonal transport are disturbed, revealing axons as one of the essential cell compartments in SCA3 pathogenesis. Therefore we focus on SCA3 pathogenesis in axonal and somatodendritic compartments revealing highly increased axonal localization of protein synthesis machinery, including ribosomes, translation factors, and RNA binding proteins, while the level of proteins responsible for cellular transport and mitochondria was decreased. We demonstrate the accumulation of axonal vesicles in neonatal SCA3 cerebellar neurons and increased phosphorylation of SMI-312 positive adult cerebellar axons, which indicate axonal dysfunction in SCA3. In summary, the SCA3 disease mechanism is based on the broad influence of mutant ataxin-3 on the neuronal proteome. Processes central in our SCA3 model include disturbed localization of proteins between axonal and somatodendritic compartment, early neuronal energy deficit, altered neuronal cytoskeletal structure, an overabundance of various components of protein synthesis machinery in axons.
Collapse
Affiliation(s)
- Kalina Wiatr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jean-Baptiste Pérot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de Biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
24
|
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia 2021; 62:1485-1493. [PMID: 33971019 DOI: 10.1111/epi.16918] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) can increase the risk of epilepsy by up to 10-fold compared to healthy age-matched controls. However, the pathological mechanisms that underlie this increased risk are poorly understood. Because disruption in brain glutamate homeostasis has been implicated in both AD and epilepsy, this might play a mechanistic role in the pathogenesis of epilepsy in AD. Prior to the formation of amyloid beta (Aβ) plaques, the brain can undergo pathological changes as a result of increased production of amyloid precursor protein (APP) and Aβ oligomers. Impairments in the glutamate uptake ability of astrocytes due to astrogliosis are hypothesized to be an early event occurring before Aβ plaque formation. Astrogliosis may increase the susceptibility to epileptogenesis of the brain via accumulation of extracellular glutamate and resulting excitotoxicity. Here we hypothesize that Aβ oligomers and proinflammatory cytokines can cause astrogliosis and accumulation of extracellular glutamate, which then contribute to the pathogenesis of epilepsy in AD. In this review article, we consider the evidence supporting a potential role of dysfunction of the glutamate-glutamine cycle and the astrocyte in the pathogenesis of epilepsy in AD.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
25
|
Sandhu MRS, Gruenbaum BF, Gruenbaum SE, Dhaher R, Deshpande K, Funaro MC, Lee TSW, Zaveri HP, Eid T. Astroglial Glutamine Synthetase and the Pathogenesis of Mesial Temporal Lobe Epilepsy. Front Neurol 2021; 12:665334. [PMID: 33927688 PMCID: PMC8078591 DOI: 10.3389/fneur.2021.665334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
The enzyme glutamine synthetase (GS), also referred to as glutamate ammonia ligase, is abundant in astrocytes and catalyzes the conversion of ammonia and glutamate to glutamine. Deficiency or dysfunction of astrocytic GS in discrete brain regions have been associated with several types of epilepsy, including medically-intractable mesial temporal lobe epilepsy (MTLE), neocortical epilepsies, and glioblastoma-associated epilepsy. Moreover, experimental inhibition or deletion of GS in the entorhinal-hippocampal territory of laboratory animals causes an MTLE-like syndrome characterized by spontaneous, recurrent hippocampal-onset seizures, loss of hippocampal neurons, and in some cases comorbid depressive-like features. The goal of this review is to summarize and discuss the possible roles of astroglial GS in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
| | - Benjamin F Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Roni Dhaher
- Department of Neurosurgery, New Haven, CT, United States
| | | | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT, United States
| | | | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Tore Eid
- Department of Laboratory Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Dhaher R, Gruenbaum SE, Sandhu MRS, Ottestad-Hansen S, Tu N, Wang Y, Lee TSW, Deshpande K, Spencer DD, Danbolt NC, Zaveri HP, Eid T. Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology 2021; 96:e2261-e2271. [PMID: 33722994 PMCID: PMC8166437 DOI: 10.1212/wnl.0000000000011846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To test the hypothesis that glutamate and GABA are linked to the formation of epilepsy networks and the triggering of spontaneous seizures, we examined seizure initiation/propagation characteristics and neurotransmitter levels during epileptogenesis in a translationally relevant rodent model of mesial temporal lobe epilepsy. METHODS The glutamine synthetase (GS) inhibitor methionine sulfoximine was infused into one of the hippocampi in laboratory rats to create a seizure focus. Long-term video-intracranial EEG recordings and brain microdialysis combined with mass spectrometry were used to examine seizure initiation, seizure propagation, and extracellular brain levels of glutamate and GABA. RESULTS All seizures (n = 78 seizures, n = 3 rats) appeared first in the GS-inhibited hippocampus of all animals, followed by propagation to the contralateral hippocampus. Propagation time decreased significantly from 11.65 seconds early in epileptogenesis (weeks 1-2) to 6.82 seconds late in epileptogenesis (weeks 3-4, paired t test, p = 0.025). Baseline extracellular glutamate levels were 11.6-fold higher in the hippocampus of seizure propagation (7.3 µM) vs the hippocampus of seizure onset (0.63 µM, analysis of variance/Fisher least significant difference, p = 0.01), even though the concentrations of the major glutamate transporter proteins excitatory amino acid transporter subtypes 1 and 2 and xCT were unchanged between the brain regions. Finally, extracellular GABA in the seizure focus decreased significantly from baseline several hours before a spontaneous seizure (paired t test/false discovery rate). CONCLUSION The changes in glutamate and GABA suggest novel and potentially important roles of the amino acids in epilepsy network formation and in the initiation and propagation of spontaneous seizures.
Collapse
Affiliation(s)
- Roni Dhaher
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Shaun E Gruenbaum
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Mani Ratnesh S Sandhu
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Sigrid Ottestad-Hansen
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Nathan Tu
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Yue Wang
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Tih-Shih W Lee
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Ketaki Deshpande
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Dennis D Spencer
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Niels Christian Danbolt
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Hitten P Zaveri
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway
| | - Tore Eid
- From the Departments of Laboratory Medicine (R.D., M.R.S.S., N.T., Y.W., K.D., T.E.), Anesthesiology (S.E.G.), Neurosurgery (D.D.S.), Psychiatry (T.-S.W.L.), and Neurology (H.P.Z.), Yale School of Medicine, New Haven, CT; and Department of Molecular Medicine (S.O.-H., N.C.D.), Division of Anatomy, Institute for Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
27
|
Pires G, Leitner D, Drummond E, Kanshin E, Nayak S, Askenazi M, Faustin A, Friedman D, Debure L, Ueberheide B, Wisniewski T, Devinsky O. Proteomic differences in the hippocampus and cortex of epilepsy brain tissue. Brain Commun 2021; 3:fcab021. [PMID: 34159317 DOI: 10.1093/braincomms/fcab021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disorder affecting over 70 million people worldwide, with a high rate of pharmaco-resistance, diverse comorbidities including progressive cognitive and behavioural disorders, and increased mortality from direct (e.g. sudden unexpected death in epilepsy, accidents, drowning) or indirect effects of seizures and therapies. Extensive research with animal models and human studies provides limited insights into the mechanisms underlying seizures and epileptogenesis, and these have not translated into significant reductions in pharmaco-resistance, morbidities or mortality. To help define changes in molecular signalling networks associated with seizures in epilepsy with a broad range of aetiologies, we examined the proteome of brain samples from epilepsy and control cases. Label-free quantitative mass spectrometry was performed on the hippocampal cornu ammonis 1-3 region (CA1-3), frontal cortex and dentate gyrus microdissected from epilepsy and control cases (n = 14/group). Epilepsy cases had significant differences in the expression of 777 proteins in the hippocampal CA1 - 3 region, 296 proteins in the frontal cortex and 49 proteins in the dentate gyrus in comparison to control cases. Network analysis showed that proteins involved in protein synthesis, mitochondrial function, G-protein signalling and synaptic plasticity were particularly altered in epilepsy. While protein differences were most pronounced in the hippocampus, similar changes were observed in other brain regions indicating broad proteomic abnormalities in epilepsy. Among the most significantly altered proteins, G-protein subunit beta 1 (GNB1) was one of the most significantly decreased proteins in epilepsy in all regions studied, highlighting the importance of G-protein subunit signalling and G-protein-coupled receptors in epilepsy. Our results provide insights into common molecular mechanisms underlying epilepsy across various aetiologies, which may allow for novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Geoffrey Pires
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA.,Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Alzheimer's and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France
| | - Dominique Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Faculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Manor Askenazi
- Biomedical Hosting LLC, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Arline Faustin
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Ludovic Debure
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Beatrix Ueberheide
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA.,Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.,Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
28
|
Rodriguez-Acevedo AJ, Gordon LG, Waddell N, Hollway G, Vadlamudi L. Developing a gene panel for pharmacoresistant epilepsy: a review of epilepsy pharmacogenetics. Pharmacogenomics 2021; 22:225-234. [PMID: 33666520 DOI: 10.2217/pgs-2020-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evaluating genes involved in the pharmacodynamics and pharmacokinetics of epilepsy drugs is critical to better understand pharmacoresistant epilepsy. We reviewed the pharmacogenetics literature on six antiseizure medicines (carbamazepine, perampanel, lamotrigine, levetiracetam, sodium valproate and zonisamide) and compared the genes found with those present on epilepsy gene panels using a functional annotation pathway analysis. Little overlap was found between the two gene lists; pharmacogenetic genes are mainly involved in detoxification processes, while epilepsy panel genes are involved in cell signaling and gene expression. Our work provides support for a specific pharmacoresistant epilepsy gene panel to assist antiseizure medicine selection, enabling personalized approaches to treatment. Future efforts will seek to include this panel in genomic analyses of pharmacoresistant patients, to determine clinical utility and patient treatment responses.
Collapse
Affiliation(s)
- Astrid J Rodriguez-Acevedo
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Louisa G Gordon
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.,School of Nursing, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.,School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Nicola Waddell
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.,GenomiQa Pty Ltd, Brisbane, QLD, Australia
| | - Georgina Hollway
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.,GenomiQa Pty Ltd, Brisbane, QLD, Australia
| | - Lata Vadlamudi
- The University of Queensland, UQ Centre for Clinical Research, Herston, Brisbane, QLD, 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
29
|
Egerton A, Dunn JT, Singh N, Yu Z, O'Doherty J, Koychev I, Webb J, Claridge S, Turkheimer FE, Marsden PK, Hammers A, Gee A. Evaluation of [ 13N]ammonia positron emission tomography as a potential method for quantifying glutamine synthetase activity in the human brain. EJNMMI Res 2020; 10:146. [PMID: 33270177 PMCID: PMC7714883 DOI: 10.1186/s13550-020-00731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/21/2020] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The conversion of synaptic glutamate to glutamine in astrocytes by glutamine synthetase (GS) is critical to maintaining healthy brain activity and may be disrupted in several brain disorders. As the GS catalysed conversion of glutamate to glutamine requires ammonia, we evaluated whether [13N]ammonia positron emission tomography (PET) could reliability quantify GS activity in humans. METHODS In this test-retest study, eight healthy volunteers each received two dynamic [13N]ammonia PET scans on the morning and afternoon of the same day. Each [13N]ammonia scan was preceded by a [15O]water PET scan to account for effects of cerebral blood flow (CBF). RESULTS Concentrations of radioactive metabolites in arterial blood were available for both sessions in five of the eight subjects. Our results demonstrated that kinetic modelling was unable to reliably distinguish estimates of the kinetic rate constant k3 (related to GS activity) from K1 (related to [13N]ammonia brain uptake), and indicated a non-negligible back-flux of [13N] to blood (k2). Model selection favoured a reversible one-tissue compartmental model, and [13N]ammonia K1 correlated reliably (r2 = 0.72-0.92) with [15O]water CBF. CONCLUSION The [13N]ammonia PET method was unable to reliably estimate GS activity in the human brain but may provide an alternative index of CBF.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Joel T Dunn
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| | - Nisha Singh
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 7AF, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Zilin Yu
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Jim O'Doherty
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
- Clinical Imaging Research Centre, National University of Singapore, Singapore, 117599, Singapore
| | - Ivan Koychev
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
| | - Jessica Webb
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Simon Claridge
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 7AF, UK
| | - Paul K Marsden
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| | - Antony Gee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- King's College London & Guy's and St. Thomas' PET Centre, London, SE1 7EH, UK
| |
Collapse
|
30
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
31
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
32
|
Wang Y, Qian M, Qu Y, Yang N, Mu B, Liu K, Yang J, Zhou Y, Ni C, Zhong J, Guo X. Genome-Wide Screen of the Hippocampus in Aged Rats Identifies Mitochondria, Metabolism and Aging Processes Implicated in Sevoflurane Anesthesia. Front Aging Neurosci 2020; 12:122. [PMID: 32457595 PMCID: PMC7221025 DOI: 10.3389/fnagi.2020.00122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 01/11/2023] Open
Abstract
Previous studies have shown multiple mechanisms and pathophysiological changes after anesthesia, and genome-wide studies have been implemented in the studies of brain aging and neurodegenerative diseases. However, the genome-wide gene expression patterns and modulation networks after general anesthesia remains to be elucidated. Therefore, whole transcriptome microarray analysis was used to explore the coding gene expression patterns in the hippocampus of aged rats after sevoflurane anesthesia. Six hundred and thirty one upregulated and 183 downregulated genes were screened out, then 44 enriched terms of biological process, 16 of molecular function and 18 of the cellular components were identified by Gene Ontology (GO) and KEGG analysis. Among them, oxidative stress, metabolism, aging, and neurodegeneration were the most enriched biological processes and changed functions. Thus, involved genes of these processes were selected for qPCR verification and a good consistency was confirmed. The potential signaling pathways were further constructed including mitochondrion and oxidative stress-related Hifs-Prkcd-Akt-Nfe2l2-Sod1 signaling, multiple metabolism signaling (Scd2, Scap-Hmgcs2, Aldh18a1-Glul and Igf1r), as well as aging and neurodegeneration related signaling (Spidr-Ercc4-Cdkn1a-Pmaip1 and Map1lc3b). These results provide potential therapeutic gene targets for brain function modulation and memory formation process after inhaled anesthesia in the elderly, which could be valuable for preventing postoperative brain disorders and diseases, such as perioperative neurocognitive disorders (PND), from the genetic level in the future.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Qian
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Bing Mu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
33
|
Chan F, Lax NZ, Voss CM, Aldana BI, Whyte S, Jenkins A, Nicholson C, Nichols S, Tilley E, Powell Z, Waagepetersen HS, Davies CH, Turnbull DM, Cunningham MO. The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain 2019; 142:391-411. [PMID: 30689758 DOI: 10.1093/brain/awy320] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Approximately one-quarter of patients with mitochondrial disease experience epilepsy. Their epilepsy is often severe and resistant towards conventional antiepileptic drugs. Despite the severity of this epilepsy, there are currently no animal models available to provide a mechanistic understanding of mitochondrial epilepsy. We conducted neuropathological studies on patients with mitochondrial epilepsy and found the involvement of the astrocytic compartment. As a proof of concept, we developed a novel brain slice model of mitochondrial epilepsy by the application of an astrocytic-specific aconitase inhibitor, fluorocitrate, concomitant with mitochondrial respiratory inhibitors, rotenone and potassium cyanide. The model was robust and exhibited both face and predictive validity. We then used the model to assess the role that astrocytes play in seizure generation and demonstrated the involvement of the GABA-glutamate-glutamine cycle. Notably, glutamine appears to be an important intermediary molecule between the neuronal and astrocytic compartment in the regulation of GABAergic inhibitory tone. Finally, we found that a deficiency in glutamine synthetase is an important pathogenic process for seizure generation in both the brain slice model and the human neuropathological study. Our study describes the first model for mitochondrial epilepsy and provides a mechanistic insight into how astrocytes drive seizure generation in mitochondrial epilepsy.
Collapse
Affiliation(s)
- Felix Chan
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK.,Wellcome Centre for Mitochondrial Research, Newcastle University, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Newcastle University, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Caroline Marie Voss
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Shuna Whyte
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Alistair Jenkins
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Claire Nicholson
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Sophie Nichols
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Elizabeth Tilley
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Zoe Powell
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ceri H Davies
- Neural Pathways DPU, GSK, 11 Biopolis Way, Singapore
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Institute of Neuroscience, The Medical School, Framlington Place, Newcastle upon Tyne, UK
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, UK.,Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
34
|
Li BG, Wu WJ, Zheng HC, Yang HF, Zuo YX, Cui XP. Long noncoding RNA GAS5 silencing inhibits the expression of KCNQ3 by sponging miR-135a-5p to prevent the progression of epilepsy. Kaohsiung J Med Sci 2019; 35:527-534. [PMID: 31373759 DOI: 10.1002/kjm2.12102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders in humans. Recently, long noncoding RNAs (lncRNAs) have been reported to be important players in neurological diseases. Herein, this study aimed to examine the effect of lncRNA GAS5 on the occurrence of epilepsy in rat and cell models of epileptic seizure. The expression of lncRNA GAS5 was measured in the established rat and cell models. The binding sites between lncRNA GAS5 and miR-135a-5p, as well as those between miR-135a-5p and 3' untranslated region of KCNQ3 were predicted by miRDB and Targetscan, separately, followed by verification using dual-luciferase reporter gene assay. The expression of miR-135a-5p was measured in response to the overexpression of lncRNA GAS5. The mRNA and protein levels of KCNQ3 were examined in response to overexpression of miR-135a-5p. Next, the latency of epilepsy and frequency of epileptic seizures were assessed in rats injected with Lv-shGAS5 and Lv-miR-135a-5p in epileptic seizure model. In the rat and cell models, lncRNA GAS5 was highly expressed when epileptic seizure was induced. The expression of miR-135a-5p was decreased by overexpression of lncRNA GAS5. Meanwhile, the mRNA and protein levels of KCNQ3 were decreased in response to knockdown of miR-135a-5p. After the treatment of Lv-shGAS5 and Lv-miR-135a-5p, the average latent period of epilepsy was prolonged and the frequency of seizures was decreased. The key findings of the present study provide evidence emphasizing that lncRNA GAS5 functions as a competitive endogenous RNA of miR-135a-5p to increase expression of KCNQ3, and lncRNA GAS5 silencing inhibited the occurrence and progression of epilepsy.
Collapse
Affiliation(s)
- Bao-Guang Li
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Wen-Juan Wu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Hua-Cheng Zheng
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Hua-Fang Yang
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Yue-Xian Zuo
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiao-Pu Cui
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
35
|
Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 2019; 12:120. [PMID: 31178690 PMCID: PMC6536897 DOI: 10.3389/fnmol.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.
Collapse
Affiliation(s)
- Deborah Huyghe
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew R Denninger
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Frank
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ning Gao
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Nicholas Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Ferguson
- Structure & Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | | | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|