1
|
Umar AB, Uzairu A. New flavone-based arylamides as potential V600E-BRAF inhibitors: Molecular docking, DFT, and pharmacokinetic properties. J Taibah Univ Med Sci 2023; 18:1000-1010. [PMID: 36950455 PMCID: PMC10025095 DOI: 10.1016/j.jtumed.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/21/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Objectives The V600E-BRAF protein kinase is an attractive and essential therapeutic target in melanoma and other tumors. However, because of its resistance to the known inhibitors and side effects of some identified inhibitors, new potent inhibitors need to be identified. Methods In the present work, in silico strategies such as the molecular docking simulation, DFT (Density-Functional-Theory) computations, and pharmacokinetic evaluation were used to determine potential V600E-BRAF inhibitors from a set of 31 synthesized novel flavone-based arylamides. Results The docking result demonstrated that four compounds (10, 11, 28, and 31) had acceptable docking scores (MolDock score of -167.523 kcal mol-1, -158.168 kcal mol-1, -160.581 kcal mol-1,-162.302 kcal mol-1, and a Rerank score of -124.365, -129.365, -135.878 and -117.081, respectively) appeared as most active and potent V600E-BRAF inhibitors that topped vemurafenib (-158.139 and -118.607 kcal mol-1). The appearance of H-bonds and hydrophobic interactions with essential residues for V600E-BRAF proved the high stability of these complexes. The energy for the frontier molecular orbitals such as HOMO, LUMO, energy gap, and other reactivity parameters was computed using DFT. The frontier molecular-orbital surfaces and electrostatic potentials (EPs) were investigated to demonstrate the charge-density distributions that might be linked to anticancer activity. Similarly, the chosen compounds revealed superior pharmacological properties according to the drug-likeness rules (bioavailability) and pharmacokinetic properties. Conclusion The chosen compounds were recognized as potent V600E-BRAF inhibitors with superior pharmacokinetic properties and could be promising cancer drug candidates.
Collapse
Affiliation(s)
- Abdullahi B. Umar
- Department of Chemistry, Faculty of Physical Sciences, Ahmad Bello University, Zaria, Kaduna State, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Sciences, Ahmad Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
2
|
Rutigliano G, Bertolini A, Grittani N, Frascarelli S, Carnicelli V, Ippolito C, Moscato S, Mattii L, Kusmic C, Saba A, Origlia N, Zucchi R. Effect of Combined Levothyroxine (L-T 4) and 3-Iodothyronamine (T 1AM) Supplementation on Memory and Adult Hippocampal Neurogenesis in a Mouse Model of Hypothyroidism. Int J Mol Sci 2023; 24:13845. [PMID: 37762153 PMCID: PMC10530993 DOI: 10.3390/ijms241813845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mood alterations, anxiety, and cognitive impairments associated with adult-onset hypothyroidism often persist despite replacement treatment. In rodent models of hypothyroidism, replacement does not bring 3-iodothyronamine (T1AM) brain levels back to normal. T1AM is a thyroid hormone derivative with cognitive effects. Using a pharmacological hypothyroid mouse model, we investigated whether augmenting levothyroxine (L-T4) with T1AM improves behavioural correlates of depression, anxiety, and memory and has an effect on hippocampal neurogenesis. Hypothyroid mice showed impaired performance in the novel object recognition test as compared to euthyroid mice (discrimination index (DI): 0.02 ± 0.09 vs. 0.29 ± 0.06; t = 2.515, p = 0.02). L-T4 and L-T4+T1AM rescued memory (DI: 0.27 ± 0.08 and 0.34 ± 0.08, respectively), while T1AM had no effect (DI: -0.01 ± 0.10). Hypothyroidism reduced the number of neuroprogenitors in hippocampal neurogenic niches by 20%. L-T4 rescued the number of neuroprogenitors (mean diff = 106.9 ± 21.40, t = 4.99, pcorr = 0.003), while L-T4+T1AM produced a 30.61% rebound relative to euthyroid state (mean diff = 141.6 ± 31.91, t = 4.44, pcorr = 0.004). We performed qPCR analysis of 88 genes involved in neurotrophic signalling pathways and found an effect of treatment on the expression of Ngf, Kdr, Kit, L1cam, Ntf3, Mapk3, and Neurog2. Our data confirm that L-T4 is necessary and sufficient for recovering memory and hippocampal neurogenesis deficits associated with hypothyroidism, while we found no evidence to support the role of non-canonical TH signalling.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Institute of Clinical Science, Imperial College London, London SW7 2AZ, UK
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Andrea Bertolini
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Nicoletta Grittani
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Sabina Frascarelli
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Stefania Moscato
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.I.); (S.M.); (L.M.)
| | - Claudia Kusmic
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Alessandro Saba
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| | | | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (N.G.); (S.F.); (V.C.); (A.S.); (R.Z.)
| |
Collapse
|
3
|
Polini B, Ricardi C, Bertolini A, Carnicelli V, Rutigliano G, Saponaro F, Zucchi R, Chiellini G. T1AM/TAAR1 System Reduces Inflammatory Response and β-Amyloid Toxicity in Human Microglial HMC3 Cell Line. Int J Mol Sci 2023; 24:11569. [PMID: 37511328 PMCID: PMC10380917 DOI: 10.3390/ijms241411569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Microglial dysfunction is one of the hallmarks and leading causes of common neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). All these pathologies are characterized by aberrant aggregation of disease-causing proteins in the brain, which can directly activate microglia, trigger microglia-mediated neuroinflammation, and increase oxidative stress. Inhibition of glial activation may represent a therapeutic target to alleviate neurodegeneration. Recently, 3-iodothyronamine (T1AM), an endogenous derivative of thyroid hormone (TH) able to interact directly with a specific GPCR known as trace amine-associated receptor 1 (TAAR1), gained interest for its ability to promote neuroprotection in several models. Nevertheless, T1AM's effects on microglial disfunction remain still elusive. In the present work we investigated whether T1AM could inhibit the inflammatory response of human HMC3 microglial cells to LPS/TNFα or β-amyloid peptide 25-35 (Aβ25-35) stimuli. The results of ELISA and qPCR assays revealed that T1AM was able to reduce microglia-mediated inflammatory response by inhibiting the release of proinflammatory factors, including IL-6, TNFα, NF-kB, MCP1, and MIP1, while promoting the release of anti-inflammatory mediators, such as IL-10. Notably, T1AM anti-inflammatory action in HMC3 cells turned out to be a TAAR1-mediated response, further increasing the relevance of the T1AM/TAAR1 system in the management of NDDs.
Collapse
Affiliation(s)
- Beatrice Polini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Caterina Ricardi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Andrea Bertolini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Vittoria Carnicelli
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Federica Saponaro
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| | - Grazia Chiellini
- Department of Pathology, University of Pisa, 56100 Pisa, Italy; (C.R.); (A.B.); (V.C.); (F.S.); (R.Z.)
| |
Collapse
|
4
|
Redox Properties of 3-Iodothyronamine (T1AM) and 3-Iodothyroacetic Acid (TA1). Int J Mol Sci 2022; 23:ijms23052718. [PMID: 35269859 PMCID: PMC8910694 DOI: 10.3390/ijms23052718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 01/07/2023] Open
Abstract
3-iodothyronamine (T1AM) and 3-iodothyroacetic acid (TA1) are thyroid-hormone-related compounds endowed with pharmacological activity through mechanisms that remain elusive. Some evidence suggests that they may have redox features. We assessed the chemical activity of T1AM and TA1 at pro-oxidant conditions. Further, in the cell model consisting of brown adipocytes (BAs) differentiated for 6 days in the absence (M cells) or in the presence of 20 nM T1AM (M + T1AM cells), characterized by pro-oxidant metabolism, or TA1 (M + TA1 cells), we investigated the expression/activity levels of pro- and anti-oxidant proteins, including UCP-1, sirtuin-1 (SIRT1), mitochondrial monoamine (MAO-A and MAO-B), semicarbazide-sensitive amine oxidase (SSAO), and reactive oxygen species (ROS)-dependent lipoperoxidation. T1AM and TA1 showed in-vitro antioxidant and superoxide scavenging properties, while only TA1 acted as a hydroxyl radical scavenger. M + T1AM cells showed higher lipoperoxidation levels and reduced SIRT1 expression and activity, similar MAO-A, but higher MAO-B activity in terms of M cells. Instead, the M + TA1 cells exhibited increased levels of SIRT1 protein and activity and significantly lower UCP-1, MAO-A, MAO-B, and SSAO in comparison with the M cells, and did not show signs of lipoperoxidation. Our results suggest that SIRT1 is the mediator of T1AM and TA1 pro-or anti-oxidant effects as a result of ROS intracellular levels, including the hydroxyl radical. Here, we provide evidence indicating that T1AM and TA1 administration impacts on the redox status of a biological system, a feature that indicates the novel mechanism of action of these two thyroid-hormone-related compounds.
Collapse
|
5
|
The 3-iodothyronamine (T1AM) and the 3-iodothyroacetic acid (TA1) indicate a novel connection with the histamine system for neuroprotection. Eur J Pharmacol 2021; 912:174606. [PMID: 34717926 DOI: 10.1016/j.ejphar.2021.174606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
The 3-iodothyronamine (T1AM) and 3-iodothryoacetic acid (TA1), are endogenous occurring compounds structurally related with thyroid hormones (THs, the pro-hormone T4 and the active hormone T3) initially proposed as possible mediators of the rapid effects of T3. However, after years from their identification, the physio-pathological meaning of T1AM and TA1 tissue levels remains an unsolved issue while pharmacological evidence indicates both compounds promote in rodents central and peripheral effects with mechanisms which remain mostly elusive. Pharmacodynamics of T1AM includes the recognition of G-coupled receptors, ion channels but also biotransformation into an active metabolite, i.e. the TA1. Furthermore, long term T1AM treatment associates with post-translational modifications of cell proteins. Such array of signaling may represent an added value, rather than a limit, equipping T1AM to play different functions depending on local expression of targets and enzymes involved in its biotransformation. Up to date, no information regarding TA1 mechanistic is available. We here review some of the main findings describing effects of T1AM (and TA1) which suggest these compounds interplay with the histaminergic system. These data reveal T1AM and TA1 are part of a network of signals involved in neuronal plasticity including neuroprotection and suggest T1AM and TA1 as lead compounds for a novel class of atypical psychoactive drugs.
Collapse
|
6
|
Landucci E, Mazzantini C, Buonvicino D, Pellegrini-Giampietro DE, Bergonzi MC. Neuroprotective Effects of Thymoquinone by the Modulation of ER Stress and Apoptotic Pathway in In Vitro Model of Excitotoxicity. Molecules 2021; 26:molecules26061592. [PMID: 33805696 PMCID: PMC7998420 DOI: 10.3390/molecules26061592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence indicates that the activation of ionotropic glutamate receptors plays an important role in neurological disorders’ models such as epilepsy, cerebral ischemia and trauma. The glutamate receptor agonist kainic acid (KA) induces seizures and excitotoxic cell death in the CA3 region of the hippocampus. Thymoquinone (TQ) is the most important component of the essential oil obtained from black cumin (Nigella sativa L.) seeds. It has many pharmacological actions including antioxidant, anti-inflammatory, and anti-apoptotic effects. TQ was used in an in vitro experimental model of primary cultures where excitotoxicity was induced. Briefly, rat organotypic hippocampal slices were exposed to 5 µM KA for 24 h. Cell death in the CA3 subregions of slices was quantified by measuring propidium iodide fluorescence. The cross-talk between TQ, ER stress and apoptotic pathways was investigated by Western blot. In untreated slices TQ (10 µM) induced a significant increase on the PSD95 levels and it decreased the excitotoxic injury induced by KA. Additionally, TQ was able to ameliorate the KA-induced increase in unfolded proteins GRP78 and GRP94 expression. Finally, TQ was able to partially rescue the reduction of the KA-induced apoptotic pathway activation. Our results suggest that TQ modulates the processes leading to post-kainate neuronal death in the CA3 hippocampal area.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
- Correspondence: (E.L.); (M.C.B.); Tel.: +39-055-2758378 (E.L.); +39-055-455-3678 (M.C.B.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +39-055-2758378 (E.L.); +39-055-455-3678 (M.C.B.)
| |
Collapse
|
7
|
Tozzi F, Rutigliano G, Borsò M, Falcicchia C, Zucchi R, Origlia N. T 1AM-TAAR1 signalling protects against OGD-induced synaptic dysfunction in the entorhinal cortex. Neurobiol Dis 2021; 151:105271. [PMID: 33482355 DOI: 10.1016/j.nbd.2021.105271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/04/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in thyroid hormones (TH) availability and/or metabolism have been hypothesized to contribute to Alzheimer's disease (AD) and to be a risk factor for stroke. Recently, 3-iodothyronamine (T1AM), an endogenous amine putatively derived from TH metabolism, gained interest for its ability to promote learning and memory in the mouse. Moreover, T1AM has been demonstrated to rescue the β-Amyloid dependent LTP impairment in the entorhinal cortex (EC), a brain area crucially involved in learning and memory and early affected during AD. In the present work, we have investigated the effect of T1AM on ischemia-induced EC synaptic dysfunction. In EC brain slices exposed to oxygen-glucose deprivation (OGD), we demonstrated that the acute perfusion of T1AM (5 μM) was capable of preventing ischemia-induced synaptic depression and that this protective effect was mediated by the trace amine-associated receptor 1 (TAAR1). Moreover, we demonstrated that activation of the BDNF-TrkB signalling is required for T1AM action during ischemia. The protective effect of T1AM was more evident when using EC slices from transgenic mutant human APP (mhAPP mice) that are more vulnerable to the effect of OGD. Our results confirm that the TH derivative T1AM can rescue synaptic function after transient ischemia, an effect that was also observed in a Aβ-enriched environment.
Collapse
Affiliation(s)
- Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | | | - Marco Borsò
- Department of Pathology, University of Pisa, 56100 Pisa, Italy
| | - Chiara Falcicchia
- Institute of Neuroscience of the Italian National Research Council (CNR), Pisa, Italy
| | - Riccardo Zucchi
- Department of Pathology, University of Pisa, 56100 Pisa, Italy
| | - Nicola Origlia
- Institute of Neuroscience of the Italian National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
8
|
Gencarelli M, Laurino A, Landucci E, Buonvicino D, Mazzantini C, Chiellini G, Raimondi L. 3-Iodothyronamine Affects Thermogenic Substrates' Mobilization in Brown Adipocytes. BIOLOGY 2020; 9:biology9050095. [PMID: 32375297 PMCID: PMC7285105 DOI: 10.3390/biology9050095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
We investigated the effect of 3-iodothyronamine (T1AM) on thermogenic substrates in brown adipocytes (BAs). BAs isolated from the stromal fraction of rat brown adipose tissue were exposed to an adipogenic medium containing insulin in the absence (M) or in the presence of 20 nM T1AM (M+T1AM) for 6 days. At the end of the treatment, the expression of p-PKA/PKA, p-AKT/AKT, p-AMPK/AMPK, p-CREB/CREB, p-P38/P38, type 1 and 3 beta adrenergic receptors (β1–β3AR), GLUT4, type 2 deiodinase (DIO2), and uncoupling protein 1 (UCP-1) were evaluated. The effects of cell conditioning with T1AM on fatty acid mobilization (basal and adrenergic-mediated), glucose uptake (basal and insulin-mediated), and ATP cell content were also analyzed in both cell populations. When compared to cells not exposed, M+T1AM cells showed increased p-PKA/PKA, p-AKT/AKT, p-CREB/CREB, p-P38/P38, and p-AMPK/AMPK, downregulation of DIO2 and β1AR, and upregulation of glycosylated β3AR, GLUT4, and adiponectin. At basal conditions, glycerol release was higher for M+T1AM cells than M cells, without any significant differences in basal glucose uptake. Notably, in M+T1AM cells, adrenergic agonists failed to activate PKA and lipolysis and to increase ATP level, but the glucose uptake in response to insulin exposure was more pronounced than in M cells. In conclusion, our results suggest that BAs conditioning with T1AM promote a catabolic condition promising to fight obesity and insulin resistance.
Collapse
Affiliation(s)
- Manuela Gencarelli
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
| | - Annunziatina Laurino
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
| | - Elisa Landucci
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | | | - Laura Raimondi
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
- Correspondence: ; Tel.: +390-554-278-375
| |
Collapse
|
9
|
Gerace E, Scartabelli T, Pellegrini-Giampietro DE, Landucci E. Tolerance Induced by (S)-3,5-Dihydroxyphenylglycine Postconditioning is Mediated by the PI3K/Akt/GSK3β Signalling Pathway in an In Vitro Model of Cerebral Ischemia. Neuroscience 2020; 433:221-229. [DOI: 10.1016/j.neuroscience.2019.12.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
|
10
|
Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur J Med Chem 2020; 187:111965. [DOI: 10.1016/j.ejmech.2019.111965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
11
|
Enhanced Neuroprotective Effects of Panax ginseng G115 ® and Ginkgo biloba GK501 ® Combinations In Vitro Models of Excitotoxicity. Int J Mol Sci 2019; 20:ijms20235872. [PMID: 31771121 PMCID: PMC6929202 DOI: 10.3390/ijms20235872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
Neurological-related disorders are seen as an increasingly important aspect of welfare. While conventional medicine is still the mainstay for the treatment of these diseases, it is becoming apparent that patients are also seeking more natural and preventative interventions. Panax ginseng G115® and Ginkgo biloba GK501® extracts alone or in combination were used in two in vitro experimental models of primary cultures exposed to excitotoxicity: rat organotypic hippocampal slices exposed to either 5 µM kainic acid or 10 µM N-Methyl-d-aspartate for 24 hours, and mixed cortical cells exposed to 300 µM NMDA for 10 min. Cell death in the Cornu Ammonis areas CA3 or CA1 subregions of slices was quantified by measuring propidium iodide fluorescence, whereas in cortical cells, it was assessed by measuring the amount of lactate dehydrogenase. In slices, treatment with extracts alone or in combination significantly attenuated CA3 and CA1 damage induced by exposure to kainic acid or NMDA, respectively. A similar neuroprotective effect was observed in cortical cells exposed to NMDA. Analysis of cell signaling pathways found that the two extracts induced an increase of the phosphorylation and they reversed the decrease of phosphorylation of ERK1/2 and Akt induced by kainic acid and NMDA in organotypic hippocampal slices. These results suggest that P. ginseng G115® and G. biloba GK501® extracts may mediate their effects by activating phosphorylation of ERK1/2 and Akt signaling pathways, protecting against excitotoxicity-induced damage in in vitro models.
Collapse
|