1
|
Kundu P, Yasuhara K, Brandes MS, Zweig JA, Neff CJ, Holden S, Kessler K, Matsumoto S, Offner H, Waslo CS, Vandenbark A, Soumyanath A, Sherman LS, Raber J, Gray NE, Spain RI. Centella asiatica Promotes Antioxidant Gene Expression and Mitochondrial Oxidative Respiration in Experimental Autoimmune Encephalomyelitis. Pharmaceuticals (Basel) 2024; 17:1681. [PMID: 39770523 PMCID: PMC11676818 DOI: 10.3390/ph17121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Centella asiatica (L.) Urban (family Apiaceae) (C. asiatica) is a traditional botanical medicine used in aging and dementia. Water extracts of C. asiatica (CAW) have been used to treat neuropsychiatric symptoms in related animal models and are associated with increases in antioxidant response element (ARE) genes and improvements in mitochondrial respiratory function and neuronal health. Because multiple sclerosis (MS) shares its neurogenerative pathology of oxidative stress and mitochondrial dysfunction with aging and dementia, neuropsychiatric symptoms in MS may also benefit from C. asiatica. To determine whether CAW similarly benefits neuropsychiatric symptoms, ARE gene expression, and mitochondrial respiration in inflammatory models of MS, and to determine the effects of CAW on clinical disability and inflammation, we tested CAW using experimental autoimmune encephalomyelitis (EAE). Methods: C57BL/6J mice induced with EAE were treated with CAW or a placebo for 2 weeks. The outcomes were clinical disability, signs of anxiety (open field test), ARE gene expression, mitochondrial respiration, and inflammation and demyelination. Results: At the dosing schedule and concentrations tested, CAW-treated mice with EAE demonstrated increased ARE gene expression and mitochondrial respiratory activity compared to those of placebo-treated mice with EAE. CAW was also associated with reduced inflammatory infiltrates in the spinal cord, but the differences between the populations of activated versus quiescent microglia were equivocal. CAW did not improve behavioral performance, EAE motor disability, or demyelination. Conclusions: In the inflammatory EAE model of MS, CAW demonstrates similar neuroprotective effects to those it exhibits in aging and dementia mouse models. These benefits, along with the anti-inflammatory effects of CAW, support further investigation of its neuropsychiatric effects in people with MS.
Collapse
Affiliation(s)
- Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Kanon Yasuhara
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Beaverton, OR 97006, USA
| | - Mikah S. Brandes
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Jonathan A. Zweig
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Cody J. Neff
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Steven Matsumoto
- Department of Integrative Biosciences, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Halina Offner
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Neurology Division, Portland VA Medical Center, Portland, OR 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Carin S. Waslo
- Neurology Division, Portland VA Medical Center, Portland, OR 97239, USA
| | - Arthur Vandenbark
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Neurology Division, Portland VA Medical Center, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Larry S. Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Beaverton, OR 97006, USA
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Beaverton, OR 97006, USA
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| | - Rebecca I. Spain
- Department of Neurology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Neurology Division, Portland VA Medical Center, Portland, OR 97239, USA
| |
Collapse
|
2
|
Nguyen LTH, Nguyen NPK, Tran KN, Choi HJ, Moon IS, Shin HM, Yang IJ. Essential oil of Pterocarpus santalinus L. alleviates behavioral impairments in social defeat stress-exposed mice by regulating neurotransmission and neuroinflammation. Biomed Pharmacother 2024; 171:116164. [PMID: 38242042 DOI: 10.1016/j.biopha.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pterocarpus santalinus L. essential oil (PSEO) is traditionally employed for treating fever and mental aberrations. We aim to explore the antidepressant potential of intranasal PSEO in social defeat stress (SDS)-expose mice and identify its mechanisms and components. METHODS PSEO components were analyzed using gas chromatography-mass spectrometry (GC-MS). C57BL/6 mice underwent a 10-day SDS with intranasal PSEO (10, 20 mg/kg) for 21 days. Efficacy was evaluated through changes in behaviors and serum corticosterone (CORT), hippocampal neurotransmitter, and inflammatory cytokine levels. In vitro effects were examined using primary hippocampal neurons, PC12 and BV2 cells. RESULTS GC-MS identified 22 volatile compounds in PSEO, and (+)-ledene (16.7%), cedrol (13.5%), and isoaromadendrene epoxide (7.0%) as major components. PSEO (20 mg/kg) significantly reversed SDS-induced social withdrawal, increased open-area explorations in the open field test (OFT) and elevated plus maze (EPM) test, and reduced immobility time in the tail suspension test (TST) and forced swimming test (FST). PSEO downregulated serum CORT and hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, while increasing hippocampal gamma-aminobutyric acid (GABA), norepinephrine (NE), and serotonin (5-HT) levels. PSEO (0.1, 1, 10 µg/mL) reduced neurotoxicity and neuroinflammation in PC12 and BV2 cells, respectively. PSEO (10 µg/mL) enhanced glutamic acid decarboxylase 6 (GAD6)- and GABA B receptor 1 (GABABR1)-positive puncta in the hippocampal neurons and FM1-43 fluorescence intensity. CONCLUSION Intranasal PSEO exhibited antidepressant-like effects on SDS-exposed mice, potentially through modulating stress hormone, neurotransmission, and neuroinflammation. Further investigation into the pharmacokinetics, bioavailability, and mechanisms of (+)-ledene, cedrol, and isoaromadendrene epoxide is needed.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, and Medical Institute of Dongguk University, Gyeongju, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
3
|
Lee YJ, Chen SR, Ko PE, Yang MY, Yu MH, Wang CJ, Lee HJ. Quercetin-3-O-β-d-glucuronide in the Nuciferine Leaf Polyphenol Extract Promotes Neurogenesis Involving the Upregulation of the Tropomyosin Receptor Kinase (Trk) Receptor and AKT/Phosphoinositide 3-Kinase Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15582-15592. [PMID: 37819167 DOI: 10.1021/acs.jafc.3c03894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Neurogenesis is crucial during the human lifespan for the maintenance of synaptic plasticity and normal function. The impairment of hippocampal neurogenesis in adults may lead to neurodegenerative disease, such as Alzheimer's disease. Miquelianin (quercetin-3-O-β-d-glucuronide, Q3GA) is a constituent of the nuciferine leaf polyphenol extract (NLPE), and it has protective effects against neurodegeneration. In this study, we examined the effect of the NLPE on neurogenesis and the mechanisms underlying Q3GA on neurogenesis. We fed 24-week-old male C57BL/6 mice with 0.1 or 0.25% NLPE for 2 weeks. NLPE treatment increased small spindle-shaped stem cell numbers in the subgranular zone and the number of doublecortin (DCX)- and neuron-specific nuclear protein (NeuN)-expressing neurons. HT22, a hippocampal cell line, treated with Q3GA revealed significant neurite growth and upregulated TrkR and PI3K/Akt levels. The evidence from a model of retinoic acid-induced SH-SY5Y cell differentiation showed that Q3GA or NLPE increases neurite growth significantly. Taken together, the NLPE containing Q3GA to promote neurogenesis involving the upregulation of TrkR and the PI3K/Akt signaling pathway might be potentiated as an alternative strategy for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Department of Pathology, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Pathology, School of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Sin-Rong Chen
- Institute of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Ping-En Ko
- Department of Medical Laboratory and Biotechnology, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Meng-Hsuin Yu
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Nutrition, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N Road, South District, Taichung 40201, Taiwan
| |
Collapse
|
4
|
Munni YA, Dash R, Choi HJ, Mitra S, Hannan MA, Mazumder K, Timalsina B, Moon IS. Differential Effects of the Processed and Unprocessed Garlic ( Allium sativum L.) Ethanol Extracts on Neuritogenesis and Synaptogenesis in Rat Primary Hippocampal Neurons. Int J Mol Sci 2023; 24:13386. [PMID: 37686193 PMCID: PMC10487397 DOI: 10.3390/ijms241713386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 μg/mL and 60 μg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3β), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.
Collapse
Affiliation(s)
- Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Raju Dash
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Md. Abdul Hannan
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Binod Timalsina
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| |
Collapse
|
5
|
Timalsina B, Haque MN, Dash R, Choi HJ, Ghimire N, Moon IS. Neuronal Differentiation and Outgrowth Effect of Thymol in Trachyspermum ammi Seed Extract via BDNF/TrkB Signaling Pathway in Prenatal Maternal Supplementation and Primary Hippocampal Culture. Int J Mol Sci 2023; 24:ijms24108565. [PMID: 37239909 DOI: 10.3390/ijms24108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Reviving the neuronal functions in neurodegenerative disorders requires the promotion of neurite outgrowth. Thymol, which is a principal component of Trachyspermum ammi seed extract (TASE), is reported to have neuroprotective effects. However, the effects of thymol and TASE on neuronal differentiation and outgrowth are yet to be studied. This study is the first report investigating the neuronal growth and maturation effects of TASE and thymol. Pregnant mice were orally supplemented with TASE (250 and 500 mg/kg), thymol (50 and 100 mg/kg), vehicle, and positive controls. The supplementation significantly upregulated the expression of brain-derived neurotrophic factor (BDNF) and early neuritogenesis markers in the pups' brains at post-natal day 1 (P1). Similarly, the BDNF level was significantly upregulated in the P12 pups' brains. Furthermore, TASE (75 and 100 µg/mL) and thymol (10 and 20 µM) enhanced the neuronal polarity, early neurite arborization, and maturation of hippocampal neurons in a dose-dependent manner in primary hippocampal cultures. The stimulatory activities of TASE and thymol on neurite extension involved TrkB signaling, as evidenced by attenuation via ANA-12 (5 µM), which is a specific TrkB inhibitor. Moreover, TASE and thymol rescued the nocodazole-induced blunted neurite extension in primary hippocampal cultures, suggesting their role as a potent microtubule stabilizing agent. These findings demonstrate the potent capacities of TASE and thymol in promoting neuronal development and reconstruction of neuronal circuitry, which are often compromised in neurodegenerative diseases and acute brain injuries.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
6
|
Munni YA, Dash R, Mitra S, Dash N, Shima M, Moon IS. Mechanistic study of Coriandrum sativum on neuritogenesis and synaptogenesis based on computationally guided in vitro analyses. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116165. [PMID: 36641106 DOI: 10.1016/j.jep.2023.116165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acceleration of neurite outgrowth and halting neurodegeneration are the most critical factors that are negatively regulated in various neurodegenerative diseases or injuries in the central nervous system (CNS). Functional foods or nutrients are considered alternative sources of bioactive components to alleviate various CNS injuries by promoting neuritogenesis and synaptogenesis, while their exact molecular mechanism remains unexplored. AIM OF THE STUDY Coriandrum sativum L. (CS) is one of the popular herbs in the Apiaceae family, of which CNS modulating action is a well-documented traditionally but detailed study on memory boosting function yet remains unexplored. Consequently, this study aims to analyze the neurogenic and synaptogenic modulation of CS aqueous ethanol (CSAE) extract in the primary hippocampal neurons. MATERIALS AND METHODS Primary hippocampal neurons were cultured and allowed to incubate with CSAE or vehicle. To observe the early neuronal differentiation, axonal and dendritic arborization, and synapse formation, neurons were immune-stained against indicated antibodies or stained directly with a lipophilic dye (1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethyl indocarbocyanine perchlorate, DiL). Meanwhile, western blot was used to validate the synaptogenesis effect of CSAE compared to vehicle. Additionally, molecular docking and system pharmacology approaches were applied to confirm the possible secondary metabolites and pathways by which CSAE promotes neuritogenesis. RESULTS Results show that CSAE can induce neuritogenesis and synaptogenesis at 30 μg/mL concentration. The treatment impacts early neuronal polarization, axonal and dendritic arborization, synaptogenesis, and synaptic plasticity via NMDARs expressions in primary neurons. In silico network pharmacology of CS metabolites show that the CSAE-mediated neurogenic effect is likely dependent on the NTRK2 (TrkB) mediated neurotrophin signaling pathway. Indeed, the observed neurogenic activity of CSAE is markedly reduced upon the co-treatment with a TrkB-specific inhibitor. Furthermore, molecular docking following binding energy calculation shows that one of the CS metabolites, scoparone, has a high affinity to bind in the BDNF mimetic binding site of TrkB, suggesting its role in TrkB activation. Scoparone was found to enhance neuritogenesis, but not to the same extent as CSAE. Moreover, the expression of TrkB signaling-related proteins (BCL2, CASP3, GSK3, and BDNF), which was found to be modulated by scoparone, was significantly affected by the co-treatment of TrkB inhibitor (ANA-12). These results further suggest that the modulation of neuritogenesis by scoparone is TrkB-dependent. CONCLUSIONS This study provides deeper insights into the molecular mechanism of CS in boosting neuronal growth and memory function, which might implicate the prevention of many neurological disorders.
Collapse
Affiliation(s)
- Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Nayan Dash
- Department of Computer Science and Engineering, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Mutakabrun Shima
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University, Dhaka, 1212, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
7
|
Liang Z, Chen Y, Gu R, Guo Q, Nie X. Asiaticoside Prevents Oxidative Stress and Apoptosis in Endothelial Cells by Activating ROS-dependent p53/Bcl-2/Caspase-3 Signaling Pathway. Curr Mol Med 2023; 23:1116-1129. [PMID: 36284389 DOI: 10.2174/1566524023666221024120825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Asiaticoside (AC) is a triterpenoid saponin found in Centella asiatica (L.) urban extract that has a wide range of pharmacological properties. Our previous study demonstrated that AC could promote angiogenesis in diabetic wounds, but the specific mechanisms remain unknown. OBJECTIVE This study aimed to examine the effectiveness and mechanism of AC on human umbilical vein endothelial cells (HUVECs) exposed to tert-butyl hydroperoxide (t-BHP) toxicity. METHODS Senescence was confirmed using senescence-associated betagalactosidase (SA-β-gal) activity and expression of the cell cycle phase markers p16 and p21. The levels of SOD, NO, MDA, GSH-Px, and ROS were tested. Furthermore, several cell death-related genes and proteins (p53, Bax, Bcl-2 and Caspase-3) were assessed with RT-qPCR and Western blotting. RESULTS AC significantly reduced SA-β-gal activity, with both the suppression of cellcycle inhibitors p16 and p21. We also found that the induced oxidative stress and apoptosis caused by t-BHP treatment resulted in the decrease of antioxidant enzymes activities, the surge of ROS and MDA, the up-regulation of p53, Bax and caspase-3, and the decrease of SOD, NO, GSH-Px and Bcl-2. These biochemical changes were all reversed by treatment with varying doses of AC. CONCLUSION AC alleviates t-BHP-induced oxidative injury and apoptosis in HUVECs through the ROS-dependent p53/Bcl-2/Caspase-3 signaling pathway. It may be a potential antioxidant applied in metabolic disorders and pharmaceutical products.
Collapse
Affiliation(s)
- Zhenwen Liang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563003, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Yu Chen
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563003, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Qi Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xuqiang Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563003, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
8
|
Williams RJ, Mohanakumar KP, Beart PM. Neuro-nutraceuticals: Natural products nourish the brain but be aware of contrary effects. Neurochem Int 2021; 150:105159. [PMID: 34400236 DOI: 10.1016/j.neuint.2021.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this Special Issue on "Nutraceuticals: Molecular and Functional Insights into how Natural Products Nourish the Brain", the editors bring together contributions from experts in nutraceutical research to provide a contemporary overview of how select chemically identified molecules from natural products can beneficially affect brain function at the molecular level. Other contributions address the holistic benefit of herbal medicines and their multi-targeted actions, which improve brain function in diverse cellular and animal models of brain injury. Not only are new targets for nutraceuticals reported, but their benefits on neurobehavioural problems are elucidated in conditions as diverse as obesity and menopause. Inflammation in neuropathologies, including Alzheimer's disease (AD), remains a huge focus and diverse nutraceuticals demonstrate therapeutic applicability via glial-mediated actions. While contrary actions should be borne in mind in the search for novel neurotherapeutics, the great promise offered by herbal medicines and their newly identified active principles offers unique options for the management of diverse neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Kochupurackal P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University, Thalappady Campus, Rubber Board P.O., Kottayam, Kerala, 686 009, India
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3051, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|