1
|
Sayehmiri F, Motamedi F, Batool Z, Naderi N, Shaerzadeh F, Zoghi A, Rezaei O, Khodagholi F, Pourbadie HG. Mitochondrial plasticity and synaptic plasticity crosstalk; in health and Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14897. [PMID: 39097920 PMCID: PMC11298206 DOI: 10.1111/cns.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Synaptic plasticity is believed to underlie the cellular and molecular basis of memory formation. Mitochondria are one of the main organelles involved in metabolism and energy maintenance as plastic organelles that change morphologically and functionally in response to cellular needs and regulate synaptic function and plasticity through multiple mechanisms, including ATP generation, calcium homeostasis, and biogenesis. An increased neuronal activity enhances synaptic efficiency, during which mitochondria's spatial distribution and morphology change significantly. These organelles build up in the pre-and postsynaptic zones to produce ATP, which is necessary for several synaptic processes like neurotransmitter release and recycling. Mitochondria also regulate calcium homeostasis by buffering intracellular calcium, which ensures proper synaptic activity. Furthermore, mitochondria in the presynaptic terminal have distinct morphological properties compared to dendritic or postsynaptic mitochondria. This specialization enables precise control of synaptic activity and plasticity. Mitochondrial dysfunction has been linked to synaptic failure in many neurodegenerative disorders, like Alzheimer's disease (AD). In AD, malfunctioning mitochondria cause delays in synaptic vesicle release and recycling, ionic gradient imbalances, and mostly synaptic failure. This review emphasizes mitochondrial plasticity's contribution to synaptic function. It also explores the profound effect of mitochondrial malfunction on neurodegenerative disorders, focusing on AD, and provides an overview of how they sustain cellular health under normal conditions and how their malfunction contributes to neurodegenerative diseases, highlighting their potential as a therapeutic target for such conditions.
Collapse
Affiliation(s)
- Fatemeh Sayehmiri
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Nima Naderi
- Department of Pharmacology and Toxicology, Faculty of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | | | - Anahita Zoghi
- Department of Neurology, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Omidvar Rezaei
- Skull Base Research CenterLoghman Hakim Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Khodagholi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|
2
|
Ganesh A, Choudhury W, Coutellier L. Early spatial recognition memory deficits in 5XFAD female mice are associated with disruption of prefrontal parvalbumin neurons. Brain Res 2024; 1841:149122. [PMID: 39009061 DOI: 10.1016/j.brainres.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Women have a two-fold increased risk of developing Alzheimer's disease (AD) than men, yet the underlying mechanisms of this sex-specific vulnerability remain unknown. Here, we aimed at determining in the 5XFAD mouse model whether deficits in prefrontal-dependent cognitive functions, which are impacted in the preclinical stages of AD, appear earlier in females, and whether these cognitive deficits are associated with alterations in the activity of prefrontal parvalbumin (PV)-neurons that regulate prefrontal circuits activity. We observed that 3.5-month-old 5XFAD females, but not males, display impairments in spatial short-term recognition memory, a function that relies on the integrity of the prefrontal cortex. Hippocampal-dependent cognitive functions were intact in both sexes. We then observed that 5XFAD females have more prefrontal PV neurons expressing the marker of chronic activity FosB; this was inversely correlated with prefrontal-dependent cognitive performances. Our findings show for the first time sex-specific, early deregulation of prefrontal PV neurons activity, which is associated with early appearance of prefrontal-dependent cognitive functions in 5XFAD females providing a potential novel mechanism to the increased risk to AD in females.
Collapse
Affiliation(s)
- Anish Ganesh
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Wajih Choudhury
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Webberley TS, Bevan RJ, Kerry-Smith J, Dally J, Michael DR, Thomas S, Rees M, Morgan JE, Marchesi JR, Good MA, Plummer SF, Wang D, Hughes TR. Assessment of Lab4P Probiotic Effects on Cognition in 3xTg-AD Alzheimer's Disease Model Mice and the SH-SY5Y Neuronal Cell Line. Int J Mol Sci 2023; 24:ijms24054683. [PMID: 36902113 PMCID: PMC10003662 DOI: 10.3390/ijms24054683] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Aging and metabolic syndrome are associated with neurodegenerative pathologies including Alzheimer's disease (AD) and there is growing interest in the prophylactic potential of probiotic bacteria in this area. In this study, we assessed the neuroprotective potential of the Lab4P probiotic consortium in both age and metabolically challenged 3xTg-AD mice and in human SH-SY5Y cell culture models of neurodegeneration. In mice, supplementation prevented disease-associated deteriorations in novel object recognition, hippocampal neurone spine density (particularly thin spines) and mRNA expression in hippocampal tissue implying an anti-inflammatory impact of the probiotic, more notably in the metabolically challenged setting. In differentiated human SH-SY5Y neurones challenged with β-Amyloid, probiotic metabolites elicited a neuroprotective capability. Taken together, the results highlight Lab4P as a potential neuroprotective agent and provide compelling support for additional studies in animal models of other neurodegenerative conditions and human studies.
Collapse
Affiliation(s)
- Thomas S. Webberley
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
- Correspondence:
| | - Ryan J. Bevan
- UK Dementia Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF10 4HQ, UK
| | - Joshua Kerry-Smith
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Jordanna Dally
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Daryn R. Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Sophie Thomas
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | - Meg Rees
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF10 4HQ, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Mark A. Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Sue F. Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Timothy R. Hughes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| |
Collapse
|
4
|
Mathew A, Balaji E V, Pai SRK, Kishore A, Pai V, Pemmireddy R, K S C. Current Drug Targets in Alzheimer's Associated Memory Impairment: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:255-275. [PMID: 35366787 DOI: 10.2174/1871527321666220401124719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among geriatrics. It is a progressive, degenerative neurologic disorder that causes memory and cognition loss. The accumulation of amyloid fibrils and neurofibrillary tangles in the brain of AD patients is a distinguishing feature of the disease. Therefore, most of the current therapeutic goals are targeting inhibition of beta-amyloid synthesis and aggregation as well as tau phosphorylation and aggregation. There is also a loss of the cholinergic neurons in the basal forebrain, and first-generation therapeutic agents were primarily focused on compensating for this loss of neurons. However, cholinesterase inhibitors can only alleviate cognitive symptoms of AD and cannot reduce the progression of the disease. Understanding the molecular and cellular changes associated with AD pathology has advanced significantly in recent decades. The etiology of AD is complex, with a substantial portion of sporadic AD emerging from unknown reasons and a lesser proportion of early-onset familial AD (FAD) caused by a mutation in several genes, such as the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes. Hence, efforts are being made to discover novel strategies for these targets for AD therapy. A new generation of AChE and BChE inhibitors is currently being explored and evaluated in human clinical trials for AD symptomatic treatment. Other approaches for slowing the progression of AD include serotonergic modulation, H3 receptor antagonism, phosphodiesterase, COX-2, and MAO-B inhibition. The present review provides an insight into the possible therapeutic strategies and their molecular mechanisms, enlightening the perception of classical and future treatment approaches.
Collapse
Affiliation(s)
- Anna Mathew
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vasudev Pai
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Ramadevi Pemmireddy
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandrashekar K S
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
5
|
Orciani C, Hall H, Pentz R, Foret MK, Do Carmo S, Cuello AC. Long-term nucleus basalis cholinergic depletion induces attentional deficits and impacts cortical neurons and BDNF levels without affecting the NGF synthesis. J Neurochem 2022; 163:149-167. [PMID: 35921478 DOI: 10.1111/jnc.15683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Basal forebrain cholinergic neurons (BFCNs) represent the main source of cholinergic innervation to the cortex and hippocampus and degenerate early in Alzheimer's disease (AD) progression. Phenotypic maintenance of BFCNs depends on levels of mature nerve growth factor (mNGF) and mature brain-derived neurotrophic factor (mBDNF), produced by target neurons and retrogradely transported to the cell body. Whether a reciprocal interaction where BFCN inputs impact neurotrophin availability and affect cortical neuronal markers is unknown. To address our hypothesis, we immunolesioned the nucleus basalis (nb), a basal forebrain cholinergic nuclei projecting mainly to the cortex, by bilateral stereotaxic injection of 192-IgG-Saporin (the cytotoxin Saporin binds p75ntr receptors expressed exclusively by BFCNs) in 2.5-month-old Wistar rats. At six months post-lesion, Saporin-injected rats (SAP) showed an impairment in a modified version of the 5-Choice Serial Reaction Time Task (5-choice task). Post-mortem analyses of the brain revealed a reduction of Choline Acetyltransferase-immunoreactive neurons compared to wild-type controls. A diminished number of cortical vesicular acetylcholine transporter-immunoreactive boutons was accompanied by a reduction in BDNF mRNA, mBDNF protein levels, markers of glutamatergic (vGluT1) and GABAergic (GAD65) neurons in the SAP-group compared to the controls. NGF mRNA, NGF precursor and mNGF protein levels were not affected. Additionally, cholinergic markers correlated with the attentional deficit and BDNF levels. Our findings demonstrate that while cholinergic nb loss impairs cognition and reduces cortical neuron markers, it produces differential effects on neurotrophin availability, affecting BDNF but not NGF levels.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Helene Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, Oxford University, US (Visiting Professor)
| |
Collapse
|
6
|
Auta J, Locci A, Guidotti A, Davis JM, Dong H. Sex-dependent sensitivity to positive allosteric modulation of GABA action in an APP knock-in mouse model of Alzheimer's disease: Potential epigenetic regulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100025. [DOI: 10.1016/j.crneur.2021.100025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
|
7
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Emotion Processing Dysfunction in Alzheimer's Disease: An Overview of Behavioral Findings, Systems Neural Correlates, and Underlying Neural Biology. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082834. [PMID: 35357236 PMCID: PMC9212074 DOI: 10.1177/15333175221082834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We described behavioral studies to highlight emotional processing deficits in Alzheimer's disease (AD). The findings suggest prominent deficit in recognizing negative emotions, pronounced effect of positive emotion on enhancing memory, and a critical role of cognitive deficits in manifesting emotional processing dysfunction in AD. We reviewed imaging studies to highlight morphometric and functional markers of hippocampal circuit dysfunction in emotional processing deficits. Despite amygdala reactivity to emotional stimuli, hippocampal dysfunction conduces to deficits in emotional memory. Finally, the reviewed studies implicating major neurotransmitter systems in anxiety and depression in AD supported altered cholinergic and noradrenergic signaling in AD emotional disorders. Overall, the studies showed altered emotions early in the course of illness and suggest the need of multimodal imaging for further investigations. Particularly, longitudinal studies with multiple behavioral paradigms translatable between preclinical and clinical models would provide data to elucidate the time course and underlying neurobiology of emotion processing dysfunction in AD.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Ying Y, Wang JZ. Illuminating Neural Circuits in Alzheimer's Disease. Neurosci Bull 2021; 37:1203-1217. [PMID: 34089505 PMCID: PMC8353043 DOI: 10.1007/s12264-021-00716-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.
Collapse
Affiliation(s)
- Yang Ying
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Sublingual AKBA Exerts Antidepressant Effects in the Aβ-Treated Mouse Model. Biomolecules 2021; 11:biom11050686. [PMID: 34063630 PMCID: PMC8170916 DOI: 10.3390/biom11050686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
The 3-O-acetyl-11-keto-β-boswellic acid (AKBA) is the most active compound of Boswellia serrata proposed for treating neurodegenerative disorders, including Alzheimer’s disease (AD), characterized in its early phase by alteration in mood. Accordingly, we have previously demonstrated that an intracerebroventricular injection of soluble amyloid beta 1-42 (Aβ) peptide evokes a depressive-like phenotype in rats. We tested the protective effects of AKBA in the mouse model of an Aβ-induced depressive-like phenotype. We evaluated the depressive-like behavior by using the tail suspension test (TST) and the splash test (ST). Behavioral analyses were accompanied by neurochemical quantifications, such as glutamate (GLU), kynurenine (KYN) and monoamines, and by biochemical measurements, such as glial fibrillary acid protein (GFAP), CD11b and nuclear factor kappa B (NF-kB), in mice prefrontal cortex (PFC) and hippocampus (HIPP). AKBA prevented the depressive-like behaviors induced by Aβ administration, since we recorded a reduction in latency to initiate self-care and total time spent to perform self-care in the ST and reduced time of immobility in the TST. Likewise, the increase in GLU and KYN levels in PFC and HIPP induced by the peptide injection were reverted by AKBA administration, as well as the displayed increase in levels of GFAP and NF-kB in both PFC and HIPP, but not in CD11b. Therefore, AKBA might represent a food supplement suitable as an adjuvant for therapy of depression in early-stage AD.
Collapse
|
10
|
Habif M, Do Carmo S, Báez MV, Colettis NC, Cercato MC, Salas DA, Acutain MF, Sister CL, Berkowicz VL, Canal MP, González Garello T, Cuello AC, Jerusalinsky DA. Early Long-Term Memory Impairment and Changes in the Expression of Synaptic Plasticity-Associated Genes, in the McGill-R-Thy1-APP Rat Model of Alzheimer's-Like Brain Amyloidosis. Front Aging Neurosci 2021; 12:585873. [PMID: 33551786 PMCID: PMC7862771 DOI: 10.3389/fnagi.2020.585873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Accruing evidence supports the hypothesis that memory deficits in early Alzheimer Disease (AD) might be due to synaptic failure caused by accumulation of intracellular amyloid beta (Aβ) oligomers, then secreted to the extracellular media. Transgenic mouse AD models provide valuable information on AD pathology. However, the failure to translate these findings to humans calls for models that better recapitulate the human pathology. McGill-R-Thy1-APP transgenic (Tg) rat expresses the human amyloid precursor protein (APP751) with the Swedish and Indiana mutations (of familial AD), leading to an AD-like slow-progressing brain amyloid pathology. Therefore, it offers a unique opportunity to investigate learning and memory abilities at early stages of AD, when Aβ accumulation is restricted to the intracellular compartment, prior to plaque deposition. Our goal was to further investigate early deficits in memory, particularly long-term memory in McGill-R-Thy1-APP heterozygous (Tg+/–) rats. Short-term- and long-term habituation to an open field were preserved in 3-, 4-, and 6-month-old (Tg+/–). However, long-term memory of inhibitory avoidance to a foot-shock, novel object-recognition and social approaching behavior were seriously impaired in 4-month-old (Tg+/–) male rats, suggesting that they are unable to either consolidate and/or evoke such associative and discriminative memories with aversive, emotional and spatial components. The long-term memory deficits were accompanied by increased transcript levels of genes relevant to synaptic plasticity, learning and memory processing in the hippocampus, such as Grin2b, Dlg4, Camk2b, and Syn1. Our findings indicate that in addition to the previously well-documented deficits in learning and memory, McGill-R-Thy1-APP rats display particular long-term-memory deficits and deep social behavior alterations at pre-plaque early stages of the pathology. This highlights the importance of Aβ oligomers and emphasizes the validity of the model to study AD-like early processes, with potentially predictive value.
Collapse
Affiliation(s)
- Martín Habif
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - María Verónica Báez
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Natalia Claudia Colettis
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Magalí Cecilia Cercato
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Daniela Alejandra Salas
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - María Florencia Acutain
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Caterina Laura Sister
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Valeria Laura Berkowicz
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - María Pilar Canal
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - Tomás González Garello
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Diana Alicia Jerusalinsky
- Laboratory of Neuroplasticity and Neurotoxins (LaN&N), Facultad de Medicina, Instituto de Biología Celular y Neurociencia (IBCN) "Prof. Eduardo De Robertis" (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Kiss E, Groeneweg F, Gorgas K, Schlicksupp A, Kins S, Kirsch J, Kuhse J. Amyloid-β Fosters p35/CDK5 Signaling Contributing to Changes of Inhibitory Synapses in Early Stages of Cerebral Amyloidosis. J Alzheimers Dis 2020; 74:1167-1187. [DOI: 10.3233/jad-190976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- Department of Cellular and Molecular Biology, “Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Puspitasari A, Yamazaki H, Kawamura H, Nakano T, Takahashi A, Shirao T, Held KD. X-irradiation of developing hippocampal neurons causes changes in neuron population phenotypes, dendritic morphology and synaptic protein expression in surviving neurons at maturity. Neurosci Res 2019; 160:11-24. [PMID: 31711782 DOI: 10.1016/j.neures.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
The effects of X-irradiation on developing neurons and their functions are unclear. We used primary cultures of mouse hippocampal neurons to investigate the effects of X-irradiation on cell death in developing neurons by analyzing caspase-3, MAP2 and DAPI-labeled cells, and the phenotypes and function of surviving neurons, by examining GAD67-positive cells as a GABAergic marker, and the synaptic markers synapsin 1, drebrin and PSD-95 through its maturation. One-day in vitro (DIV 1) cells were exposed to 0.5 Gy or 1 Gy of X-rays. A significant increase in the percentage of activated caspase-3, a decrease in the number of MAP2/DAPI-positive cells and change in the percentage of GAD67 positive neurons, compared with sham controls, were found 6 days after 1 Gy and 13 days after 0.5 Gy of X-rays. The expression of PSD-95 and drebrin, as well as drebrin clusters, in the remaining neurons was decreased at DIV 21, in both 0.5 Gy and on 1 Gy-irradiation there was a reduced number of dendritic intersection as well. Together, our findings show that 0.5 Gy and 1 Gy of X-irradiation at DIV 1 not only causes neuronal cell death but elicits an increase in the percentage of inhibitory neurons, changes in the dendrites and decrease in expression of important synaptic proteins in the surviving neurons at maturity 3 weeks after exposure.
Collapse
Affiliation(s)
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi, Graduate School of Medicine, Gunma, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kathryn D Held
- Gunma University Initiative for Advanced Research, Maebashi, Japan; Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Vico Varela E, Etter G, Williams S. Excitatory-inhibitory imbalance in Alzheimer's disease and therapeutic significance. Neurobiol Dis 2019; 127:605-615. [DOI: 10.1016/j.nbd.2019.04.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022] Open
|
14
|
Activity-Dependent Reconnection of Adult-Born Dentate Granule Cells in a Mouse Model of Frontotemporal Dementia. J Neurosci 2019; 39:5794-5815. [PMID: 31133559 DOI: 10.1523/jneurosci.2724-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023] Open
Abstract
Frontotemporal dementia (FTD) is characterized by neuronal loss in the frontal and temporal lobes of the brain. Here, we provide the first evidence of striking morphological alterations in dentate granule cells (DGCs) of FTD patients and in a mouse model of the disease, TauVLW mice. Taking advantage of the fact that the hippocampal dentate gyrus (DG) gives rise to newborn DGCs throughout the lifetime in rodents, we used RGB retroviruses to study the temporary course of these alterations in newborn DGCs of female TauVLW mice. In addition, retroviruses that encode either PSD95:GFP or Syn:GFP revealed striking alterations in the afferent and efferent connectivity of newborn TauVLW DGCs, and monosynaptic retrograde rabies virus tracing showed that these cells are disconnected from distal brain regions and local sources of excitatory innervation. However, the same cells exhibited a predominance of local inhibitory innervation. Accordingly, the expression of presynaptic and postsynaptic markers of inhibitory synapses was markedly increased in the DG of TauVLW mice and FTD patients. Moreover, an increased number of neuropeptide Y-positive interneurons in the DG correlated with a reduced number of activated egr-1+ DGCs in TauVLW mice. Finally, we tested the therapeutic potential of environmental enrichment and chemoactivation to reverse these alterations in mice. Both strategies reversed the morphological alterations of newborn DGCs and partially restored their connectivity in a mouse model of the disease. Moreover, our data point to remarkable morphological similarities between the DGCs of TauVLW mice and FTD patients.SIGNIFICANCE STATEMENT We show, for the first time to our knowledge, that the population of dentate granule cells is disconnected from other regions of the brain in the neurodegenerative disease frontotemporal dementia (FTD). These alterations were observed in FTD patients and in a mouse model of this disease. Moreover, we tested the therapeutic potential of two strategies, environmental enrichment and chemoactivation, to stimulate the activity of these neurons in mice. We found that some of the alterations were reversed by these therapeutic interventions.
Collapse
|
15
|
Baazaoui N, Iqbal K. A Novel Therapeutic Approach to Treat Alzheimer's Disease by Neurotrophic Support During the Period of Synaptic Compensation. J Alzheimers Dis 2019; 62:1211-1218. [PMID: 29562539 PMCID: PMC5870029 DOI: 10.3233/jad-170839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer’s disease (AD), at present, is considered an incurable disease and a major dilemma with no drug to stop or slow down its progression. Drugs that are currently available in the market are able to only transiently improve the clinical symptoms. The repeated failures in developing an effective drug has led to the suggestion that the medical intervention was probably too late to be effective since the pathology starts many years before the appearance of the clinical symptoms. Probably, at the time of the appearance of clinical symptoms the brain has undergone major neuronal and synaptic loss. Because of the uncertainty on when to use a prevention therapy, especially targeting amyloid-β (Aβ) and tau pathologies, interventions that rely on the regenerative capacity of the brain such as the modulation of the inherent neurogenesis and neuronal plasticity represent a promising therapeutic strategy. Such an approach can act both at early as well as late stages of the disease and remove the barrier of the time of intervention. In this article, we review studies mainly from our laboratory that show the merit of early intervention during the synaptic and neuronal compensation period where the brain still has the capacity to self-repair by offering neurotrophic support in reversing cognitive impairment, neuronal and synaptic deficits, Aβ, and tau pathologies and decreasing mortality in a transgenic mouse model of AD.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
16
|
Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One 2019; 14:e0209228. [PMID: 30645585 PMCID: PMC6333398 DOI: 10.1371/journal.pone.0209228] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer’s Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.
Collapse
|
17
|
Merlo S, Spampinato SF, Sortino MA. Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for Alzheimer's Disease? CNS Neurosci Ther 2018; 25:5-13. [PMID: 30101571 DOI: 10.1111/cns.13050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive neurodegeneration and inflammation in selective brain areas, linked to severely disabling cognitive deficits. Before full manifestation, different stages appear with progressively increased brain pathology and cognitive impairment. This significantly extends the time lag between initial molecular triggers and appearance of detectable symptoms. Notably, a number of studies in the last decade have revealed that in the early stage of mild cognitive impairment, events that appear in contrast with neuronal distress may occur. These have been reproduced in vitro and in animal models and include increase in synaptic elements, increase in synaptic and metabolic activity, enhancement of neurotrophic milieu and changes in glial cell reactivity and inflammation. They have been interpreted as compensatory responses that could either delay disease progression or, in the long run, result detrimental. For this reason, these mechanisms define a new and previously undervalued window of opportunity for intervention. Their importance resides especially in their early appearance. Directing efforts to better characterize this stage, in order to identify new pharmacological targets, is an exciting new avenue to future advances in AD research.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Transgenic autoinhibition of p21-activated kinase exacerbates synaptic impairments and fronto-dependent behavioral deficits in an animal model of Alzheimer's disease. Aging (Albany NY) 2018; 9:1386-1403. [PMID: 28522792 PMCID: PMC5472739 DOI: 10.18632/aging.101239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 11/28/2022]
Abstract
Defects in p21-activated kinase (PAK) lead to dendritic spine abnormalities and are sufficient to cause cognition impairment. The decrease in PAK in the brain of Alzheimer's disease (AD) patients is suspected to underlie synaptic and dendritic disturbances associated with its clinical expression, particularly with symptoms related to frontal cortex dysfunction. To investigate the role of PAK combined with Aβ and tau pathologies (3xTg-AD mice) in the frontal cortex, we generated a transgenic model of AD with a deficit in PAK activity (3xTg-AD-dnPAK mice). PAK inactivation had no effect on Aβ40 and Aβ42 levels, but increased the phosphorylation ratio of tau in detergent-insoluble protein fractions in the frontal cortex of 18-month-old heterozygous 3xTg-AD mice. Morphometric analyses of layer II/III pyramidal neurons in the frontal cortex showed that 3xTg-AD-dnPAK neurons exhibited significant dendritic attrition, lower spine density and longer spines compared to NonTg and 3xTg-AD mice. Finally, behavioral assessments revealed that 3xTg-AD-dnPAK mice exhibited pronounced anxious traits and disturbances in social behaviors, reminiscent of fronto-dependent symptoms observed in AD. Our results substantiate a critical role for PAK in the genesis of neuronal abnormalities in the frontal cortex underlying the emergence of psychiatric-like symptoms in AD.
Collapse
|
19
|
Jung HY, Yoo DY, Park JH, Kim JW, Chung JY, Kim DW, Won MH, Yoon YS, Hwang IK. Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus. Mol Med Rep 2018. [PMID: 29532891 PMCID: PMC5928628 DOI: 10.3892/mmr.2018.8705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
The contribution of transgenic and nontransgenic animal models in Alzheimer's disease drug research and development. Behav Pharmacol 2018; 28:95-111. [PMID: 28177983 DOI: 10.1097/fbp.0000000000000296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last few years, several papers have become available in the literature on both the main hallmarks of Alzheimer's disease (AD) and the several intracellular pathways whose alteration is responsible for its onset and progression. The use of transgenic and nontransgenic animal models has played a key role in achieving such a remarkable amount of preclinical data, allowing researchers to dissect the cellular changes occurring in the AD brain. In addition, the huge amount of preclinical evidence arising from these animal models was necessary for the further clinical development of pharmacological agents capable of interfering with most of the impaired neural pathways in AD patients. In this respect, a significant role is played by the dysfunction of excitatory and inhibitory neurotransmission responsible for the cognitive and behavioral symptoms described in AD patients. The aim of this review is to summarize the main animal models that contributed toward unraveling the pathological changes in neurotransmitter synthesis, release, and receptor binding in AD preclinical studies. The review also provides an updated description of the current pharmacological agents - still under clinical development - acting on the neurotransmitter systems.
Collapse
|
21
|
Amorim JA, Canas PM, Tomé AR, Rolo AP, Agostinho P, Palmeira CM, Cunha RA. Mitochondria in Excitatory and Inhibitory Synapses have Similar Susceptibility to Amyloid-β Peptides Modeling Alzheimer’s Disease. J Alzheimers Dis 2017; 60:525-536. [DOI: 10.3233/jad-170356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- João A. Amorim
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Paula M. Canas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Angelo R. Tomé
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Anabela P. Rolo
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Paula Agostinho
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
22
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
23
|
Effects of Aged Garlic Extract on Cholinergic, Glutamatergic and GABAergic Systems with Regard to Cognitive Impairment in Aβ-Induced Rats. Nutrients 2017; 9:nu9070686. [PMID: 28671572 PMCID: PMC5537801 DOI: 10.3390/nu9070686] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 01/24/2023] Open
Abstract
Alzheimer’s disease (AD) has been linked to the degeneration of central cholinergic and glutamatergic transmission, which correlates with progressive memory loss and the accumulation of amyloid-β (Aβ). It has been claimed that aged garlic extract (AGE) has a beneficial effect in preventing neurodegeneration in AD. Therefore, the objective of this study was to investigate the effects of AGE on Aβ-induced cognitive dysfunction with a biochemical basis in the cholinergic, glutamatergic, and GABAergic systems in rats. Adult male Wistar rats were orally administered three doses of AGE (125, 250, and 500 mg/kg) daily for 65 days. At day 56, they were injected with 1 μL of aggregated Aβ (1–42) into each lateral ventricle, bilaterally. After six days of Aβ injection, the rats’ working and reference memory was tested using a radial arm maze. The rats were then euthanized to investigate any changes to the cholinergic neurons, vesicular glutamate transporter 1 and 2 proteins (VGLUT1 and VGLUT2), and glutamate decarboxylase (GAD) in the hippocampus. The results showed that AGE significantly improved the working memory and tended to improve the reference memory in cognitively-impaired rats. In addition, AGE significantly ameliorated the loss of cholinergic neurons and increased the VGLUT1 and GAD levels in the hippocampus of rat brains with Aβ-induced toxicity. In contrast, the VGLUT2 protein levels did not change in any of the treated groups. We concluded that AGE was able to attenuate the impairment of working memory via the modification of cholinergic neurons, VGLUT1, and GAD in the hippocampus of Aβ-induced rats.
Collapse
|
24
|
Uchida Y, Gomi F. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer's disease brain. Geriatr Gerontol Int 2017; 16 Suppl 1:43-50. [PMID: 27018282 DOI: 10.1111/ggi.12737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Abstract
β-Amyloid (Aβ) oligomers may play an important role in the early pathogenesis of Alzheimer's disease: cognitive impairment caused by synaptic dysfunction. Dystrophic neurites surrounding Aβ plaques, another pathological feature of Alzheimer's disease, are plaque-associated neuritic alterations preceding the appearance of synaptic loss. In the present review, we focus on the mechanism of dystrophic neurite formation by Aß oligomers, and discuss the neurotoxic role of Aβ-induced calsyntenin-3 in mediating dystrophic neurite formation.
Collapse
Affiliation(s)
- Yoko Uchida
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Fujiya Gomi
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
25
|
Glutamate-glutamine and GABA in brain of normal aged and patients with cognitive impairment. Eur Radiol 2016; 27:2698-2705. [DOI: 10.1007/s00330-016-4669-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/28/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
|
26
|
Choi SH, Kim YH, Quinti L, Tanzi RE, Kim DY. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish". Mol Neurodegener 2016; 11:75. [PMID: 27938410 PMCID: PMC5148918 DOI: 10.1186/s13024-016-0139-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) transgenic mice have been used as a standard AD model for basic mechanistic studies and drug discovery. These mouse models showed symbolic AD pathologies including β-amyloid (Aβ) plaques, gliosis and memory deficits but failed to fully recapitulate AD pathogenic cascades including robust phospho tau (p-tau) accumulation, clear neurofibrillary tangles (NFTs) and neurodegeneration, solely driven by familial AD (FAD) mutation(s). Recent advances in human stem cell and three-dimensional (3D) culture technologies made it possible to generate novel 3D neural cell culture models that recapitulate AD pathologies including robust Aβ deposition and Aβ-driven NFT-like tau pathology. These new 3D human cell culture models of AD hold a promise for a novel platform that can be used for mechanism studies in human brain-like environment and high-throughput drug screening (HTS). In this review, we will summarize the current progress in recapitulating AD pathogenic cascades in human neural cell culture models using AD patient-derived induced pluripotent stem cells (iPSCs) or genetically modified human stem cell lines. We will also explain how new 3D culture technologies were applied to accelerate Aβ and p-tau pathologies in human neural cell cultures, as compared the standard two-dimensional (2D) culture conditions. Finally, we will discuss a potential impact of the human 3D human neural cell culture models on the AD drug-development process. These revolutionary 3D culture models of AD will contribute to accelerate the discovery of novel AD drugs.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk, 363-883, Republic of Korea
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA.
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 02129, Charlestown, MA, USA.
| |
Collapse
|
27
|
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic Neurotransmission in Alzheimer's Disease. Front Aging Neurosci 2016; 8:31. [PMID: 26941642 PMCID: PMC4763334 DOI: 10.3389/fnagi.2016.00031] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is characterized pathologically by the deposition of β-amyloid peptides (Aβ) and the accumulation of neurofibrillary tangles (NFTs) composed of hyper-phosphorylated tau. Regardless of the pathological hallmarks, synaptic dysfunction is widely accepted as a causal event in AD. Of the two major types of synapses in the central nervous system (CNS): glutamatergic and GABAergic, which provide excitatory and inhibitory outputs respectively, abundant data implicate an impaired glutamatergic system during disease progression. However, emerging evidence supports the notion that disrupted default neuronal network underlies impaired memory, and that alterations of GABAergic circuits, either plays a primary role or as a compensatory response to excitotoxicity, may also contribute to AD by disrupting the overall network function. The goal of this review is to provide an overview of the involvement of Aβ, tau and apolipoprotein E4 (apoE4), the major genetic risk factor in late-onset AD (LOAD), in GABAergic neurotransmission and the potential of modulating the GABAergic function as AD therapy.
Collapse
Affiliation(s)
- Yanfang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Zhicai Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University Xiamen, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; Neurodegenerative Disease Research Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; Department of Neuroscience, Mayo ClinicJacksonville, FL, USA
| | - Hui Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen UniversityXiamen, China; The Interdepartmental Program of Translational Biology and Molecular Medicine, Huffington Center on Aging, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
28
|
Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease. Neurobiol Aging 2014; 35:1961-72. [PMID: 24786631 PMCID: PMC4067010 DOI: 10.1016/j.neurobiolaging.2014.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 02/08/2023]
Abstract
Mild cognitive impairment (MCI) represents a cognitive state intermediate between normal aging and early Alzheimer's disease (AD). To investigate if the molecular signature of MCI parallels the clinical picture, we use microarrays to extensively profile gene expression in 4 cortical brain regions (entorhinal cortex, hippocampus, superior frontal gyrus, post-central gyrus) using the postmortem tissue from cognitively normal aged controls, MCI, and AD cases. Our data reveal that gene expression patterns in MCI are not an extension of aging, and for the most part, are not intermediate between aged controls and AD. Functional enrichment analysis of significant genes revealed prominent upregulation in MCI brains of genes associated with anabolic and biosynthetic pathways (notably transcription, protein biosynthesis, protein trafficking, and turnover) as well as mitochondrial energy generation. In addition, many synaptic genes showed altered expression in MCI, predominantly upregulation, including genes for central components of the vesicle fusion machinery at the synapse, synaptic vesicle trafficking, neurotransmitter receptors, and synaptic structure and stabilization. These data suggest that there is a rebalancing of synaptic transmission in the MCI brain. To investigate if synaptic gene expression levels in MCI were related to cognitive function, Pearson correlation coefficient between the Mini Mental State Examination (MMSE) and region-specific messenger RNA expression were computed for MCI cases. A number of synaptic genes showed strong significant correlations (r > 0.8, p < 0.01) most notably in the entorhinal cortex, with fewer in the hippocampus, and very few in neocortical regions. The synaptic genes with highly significant correlations were predominantly related to synaptic transmission and plasticity, and myelin composition. Unexpectedly, we found that gene expression changes that facilitate synaptic excitability and plasticity were overwhelmingly associated with poorer MMSE, and conversely that gene expression changes that inhibit plasticity were positively associated with MMSE. These data suggest that there are excessive excitability and apparent plasticity in limbic brain regions in MCI, that is associated with impaired synaptic and cognitive function. Such changes would be predicted to contribute to increased excitability, in turn leading to greater metabolic demand and ultimately progressive degeneration and AD, if not controlled.
Collapse
Affiliation(s)
- Nicole C Berchtold
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA.
| | | | | | - Ronald C Kim
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - David H Cribbs
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA; Departments of Neurology and Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Carl W Cotman
- Institute for Mental Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA; Departments of Neurology and Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
29
|
Jerónimo-Santos A, Vaz SH, Parreira S, Rapaz-Lérias S, Caetano AP, Buée-Scherrer V, Castrén E, Valente CA, Blum D, Sebastião AM, Diógenes MJ. Dysregulation of TrkB Receptors and BDNF Function by Amyloid-β Peptide is Mediated by Calpain. Cereb Cortex 2014; 25:3107-21. [PMID: 24860020 DOI: 10.1093/cercor/bhu105] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-β (Aβ) peptide. We recently showed that Aβ leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aβ selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aβ induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aβ impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aβ-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.
Collapse
Affiliation(s)
- André Jerónimo-Santos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sandra Henriques Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sara Parreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sofia Rapaz-Lérias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - António P Caetano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Valérie Buée-Scherrer
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Claudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - David Blum
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
30
|
Canas PM, Simões AP, Rodrigues RJ, Cunha RA. Predominant loss of glutamatergic terminal markers in a β-amyloid peptide model of Alzheimer's disease. Neuropharmacology 2014; 76 Pt A:51-6. [DOI: 10.1016/j.neuropharm.2013.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 12/18/2022]
|
31
|
Mitew S, Kirkcaldie MTK, Dickson TC, Vickers JC. Altered synapses and gliotransmission in Alzheimer's disease and AD model mice. Neurobiol Aging 2013; 34:2341-51. [PMID: 23643146 DOI: 10.1016/j.neurobiolaging.2013.04.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
Amyloid-β (Aβ) plaque accumulation in Alzheimer's disease (AD) is associated with glutamatergic synapse loss, but less is known about its effect on inhibitory synapses. Here, we demonstrate that vesicular γ-aminobutyric acid (GABA) transporter (VGAT) presynaptic bouton density is unaffected in human preclinical and end-stage AD and in APP/PS1 transgenic (TG) mice. Conversely, excitatory vesicular glutamate transporter 1 (VGlut1) boutons are significantly reduced in end-stage AD cases and less reduced in preclinical AD cases and TGs. Aged TGs also show reduced protein levels of VGlut1 and synaptophysin but not VGAT or glutamate decarboxylase (GAD). These findings indicate that GABAergic synapses are preserved in human AD and mouse TGs. Synaptosomes isolated from plaque-rich TG cortex had significantly higher GAD activity than those from plaque-free cerebellum or the cortex of wild-type littermates. Using tissue fractionation, this increased activity was localized to glial synaptosomes, suggesting that Aβ plaques stimulate increased astrocyte GABA synthesis.
Collapse
Affiliation(s)
- Stanislaw Mitew
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | | |
Collapse
|
32
|
Cassano T, Serviddio G, Gaetani S, Romano A, Dipasquale P, Cianci S, Bellanti F, Laconca L, Romano AD, Padalino I, LaFerla FM, Nicoletti F, Cuomo V, Vendemiale G. Glutamatergic alterations and mitochondrial impairment in a murine model of Alzheimer disease. Neurobiol Aging 2012; 33:1121.e1-12. [PMID: 22035587 DOI: 10.1016/j.neurobiolaging.2011.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/16/2011] [Accepted: 09/15/2011] [Indexed: 02/08/2023]
Abstract
Deficits in glutamate neurotransmission and mitochondrial functions were detected in the frontal cortex (FC) and hippopcampus (HIPP) of aged 3×Tg-Alzheimer's disease (AD) mice, compared with their wild type littermates (non-Tg). In particular, basal levels of glutamate and vesicular glutamate transporter 1 (VGLUT1) expression were reduced in both areas. Cortical glutamate release responded to K(+) stimulation, whereas no peak release was observed in the HIPP of mutant mice. Synaptosomal-associated protein 25 (SNAP-25), glutamate/aspartate transporter (GLAST), glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1) were reduced in HIPP homogenates, where the adenosine triphosphate (ATP) content was lower. In contrast, glutamate transporter 1 and glial fibrillary acidic protein (GFAP) were found to be higher in the frontal cortex. The respiration rates of complex-I, II, IV, and the membrane potential were reduced in cortical mitochondria, where unaltered proton leak, F(0)F(1)-ATPase activity and ATP content, with increased hydrogen peroxide production (H(2)O(2)), were also observed. In contrast, complex-I respiration rate was significantly increased in hippocampal mitochondria, together with increased proton leak and H(2)O(2) production. Moreover, loss of complex-IV and F(0)F(1)-ATPase activities were observed. These data suggest that impairments of mitochondrial bioenergetics might sustain the failure in the energy-requiring glutamatergic transmission.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathol 2012; 123:53-70. [PMID: 22020633 PMCID: PMC3249205 DOI: 10.1007/s00401-011-0896-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 12/25/2022]
Abstract
Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer's disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1(M146L)/APP(751SL) mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin-cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages.
Collapse
|
34
|
Broadstock M, Lewinsky R, Jones EL, Mitchelmore C, Howlett DR, Francis PT. Synaptic protein expression is regulated by a pro-oxidant diet in APPxPS1 mice. J Neural Transm (Vienna) 2011; 119:493-6. [PMID: 22057511 DOI: 10.1007/s00702-011-0727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 10/13/2011] [Indexed: 11/26/2022]
Abstract
Dietary factors may play a role in Alzheimer's disease (AD) pathogenesis. In an effort to recapitulate some of the synaptic protein changes observed in the disease, AD transgenic and wild-type mice were fed either a normal or pro-oxidant diet for 3 months from three months of age. Pro-oxidant diet treatment resulted in altered expression of vesicular glutamate transporter-1 and glutamine synthetase, suggesting changes in glutamatergic synaptic function, and increased expression of urokinase plasminogen activator receptor, possibly reflecting oxidative stress.
Collapse
Affiliation(s)
- Martin Broadstock
- King's College London, Wolfson Centre for Age-Related Diseases, London, SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
35
|
Prat A, Behrendt M, Marcinkiewicz E, Boridy S, Sairam RM, Seidah NG, Maysinger D. A novel mouse model of Alzheimer's disease with chronic estrogen deficiency leads to glial cell activation and hypertrophy. J Aging Res 2011; 2011:251517. [PMID: 21969914 PMCID: PMC3182380 DOI: 10.4061/2011/251517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/28/2023] Open
Abstract
The role of estrogens in Alzheimer's disease (AD) involving β-amyloid (Aβ) generation and plaque formation was mostly tested in ovariectomized mice with or without APP mutations. The aim of the present study was to explore the abnormalities of neural cells in a novel mouse model of AD with chronic estrogen deficiency. These chimeric mice exhibit a total FSH-R knockout (FORKO) and carry two transgenes, one expressing the β-amyloid precursor protein (APPsw, Swedish mutation) and the other expressing presenilin-1 lacking exon 9 (PS1Δ9). The most prominent changes in the cerebral cortex and hippocampus of these hypoestrogenic mice were marked hypertrophy of both cortical neurons and astrocytes and an increased number of activated microglia. There were no significant differences in the number of Aβ plaques although they appeared less compacted and larger than those in APPsw/PS1Δ9 control mice. Similar glia abnormalities were obtained in wild-type primary cortical neural cultures treated with letrozole, an aromatase inhibitor. The concordance of results from APPsw/PS1Δ9 mice with or without FSH-R deletion and those with letrozole treatment in vitro (with and without Aβ treatment) of primary cortical/hippocampal cultures suggests the usefulness of these models to explore molecular mechanisms involved in microglia and astrocyte activation in hypoestrogenic states in the central nervous system.
Collapse
Affiliation(s)
- Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Maik Behrendt
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Edwige Marcinkiewicz
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Sebastien Boridy
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Ram M. Sairam
- Molecular Endocrinology Laboratory, Clinical Research Institute of Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Division of Experimental Medicine, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, H2W 1R7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
36
|
Kelley CM, Perez SE, Overk C, Wynick D, Mufson EJ. Effect of neocortical and hippocampal amyloid deposition upon galaninergic and cholinergic neurites in AβPPswe/PS1ΔE9 mice. J Alzheimers Dis 2011; 25:491-504. [PMID: 21471639 PMCID: PMC3307130 DOI: 10.3233/jad-2011-102097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amyloid-β (Aβ) plaques occur in close apposition to thickened or swollen cholinergic and galaninergic neurites within the neocortex and hippocampus in Alzheimer's disease (AD). Despite this observation, the effect of Aβ deposition upon cholinergic and galaninergic dystrophic neurite formation remains unclear. Therefore, the purpose of this study was to evaluate the interaction between Aβ deposition within the neocortex and hippocampus upon cholinergic and galaninergic dystrophic neurite formation. Neocortical and hippocampal tissue harvested from 3- and 12-month-old amyloid-β protein precursor (AβPP)swe/PS1ΔE9 transgenic (Tg) mice were dual-immunolabeled with antibodies against either choline acetyltransferace and Aβ (10D5) or galanin (Gal) and Aβ. Stereology was used to quantify amyloid plaques and cholinergic or galaninergic dystrophic neurites. Plaque number was assessed using the optical fractionator; plaque area was calculated with the Cavalieri estimator, and dystrophic neurite numbers and thickness were manually measured. Neither amyloid nor dystrophic neuritic profiles were seen in the brains of 3-month-old Tg mice. In contrast, quantitative analysis revealed significantly more plaques in neocortex than hippocampus, with no difference in regional plaque size in 12-month-old Tg mice. Significantly more cholinergic than galaninergic dystrophic neurites-per-plaque occurred in the neocortex and hippocampus. Additionally, cholinergic dystrophic neurites were thicker than galaninergic dystrophic neurites in both regions. These data suggest that amyloid plaque deposition has a greater impact upon cholinergic than galaninergic dystrophic neurite formation in the neocortex and hippocampus in AβPPswe/PS1ΔE9 Tg mice. These data are also compatible with the hypothesis that galanin is neuroprotective and reduces dystrophic neurite formation in the face of amyloid toxicity.
Collapse
Affiliation(s)
- Christy M. Kelley
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Sylvia E. Perez
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - Cassia Overk
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| | - David Wynick
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Suite 300, Chicago, IL 60612
| |
Collapse
|
37
|
Perez SE, He B, Muhammad N, Oh KJ, Fahnestock M, Ikonomovic MD, Mufson EJ. Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice. Neurobiol Dis 2010; 41:338-52. [PMID: 20937383 DOI: 10.1016/j.nbd.2010.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/07/2010] [Accepted: 10/02/2010] [Indexed: 12/29/2022] Open
Abstract
The cholinotrophic system, which is dependent upon nerve growth factor and its receptors for survival, is selectively vulnerable in Alzheimer's disease (AD). But, virtually nothing is known about how this deficit develops in relation to the hallmark lesions of this disease, amyloid plaques and tau containing neurofibrillary tangles. The vast majority of transgenic models of AD used to evaluate the effect of beta amyloid (Aβ) deposition upon the cholinotrophic system over-express the amyloid precursor protein (APP). However, nothing is known about how this system is affected in triple transgenic (3xTg)-AD mice, an AD animal model displaying Aβ plaque- and tangle-like pathology in the cortex and hippocampus, which receive extensive cholinergic innervation. We performed a detailed morphological and biochemical characterization of the cholinotrophic system in young (2-4 months), middle-aged (13-15 months) and old (18-20 months) 3xTg-AD mice. Cholinergic neuritic swellings increased in number and size with age, and were more conspicuous in the hippocampal-subicular complex in aged female than in 3xTg-AD male mice. Stereological analysis revealed a reduction in choline acetyltransferase (ChAT) positive cells in the medial septum/vertical limb of the diagonal band of Broca in aged 3xTg-AD mice. ChAT enzyme activity levels decreased significantly in the hippocampus of middle-aged 3xTg-AD mice compared to age-matched non-transgenic (or wild type) mice. ProNGF protein levels increased in the cortex of aged 3xTg-AD mice, whereas TrkA protein levels were reduced in a gender-dependent manner in aged mutant mice. In contrast, p75(NTR) protein cortical levels were stable but increased in the hippocampus of aged 3xTg-AD mice. These data demonstrate that cholinotrophic alterations in 3xTg-AD mice are age- and gender-dependent and more pronounced in the hippocampus, a structure more severely affected by Aβ plaque pathology.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, suite 300, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Altered distribution of mGlu2 receptors in β-amyloid-affected brain regions of Alzheimer cases and aged PS2APP mice. Brain Res 2010; 1363:180-90. [PMID: 20875805 DOI: 10.1016/j.brainres.2010.09.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/16/2010] [Accepted: 09/19/2010] [Indexed: 01/28/2023]
Abstract
Altered glutamatergic synaptic transmission is among the key events defining the course of Alzheimer's disease (AD). mGlu2 receptors, a subtype of group II metabotropic glutamate receptors, regulate (as autoreceptors) fast synaptic transmission in the CNS via the controlled release of the excitatory amino acid glutamate. Since their pharmacological manipulation in rodents has been reported to affect cognition, they are potential drug targets for AD therapy. We examined the fate of these receptors in cases of AD as well as in aging PS2APP mice--a proposed model of the disease. In vitro binding of [(3)H]LY354740, a selective group II agonist (with selective affinity for mGlu2 receptors, under the assay conditions used) and quantitative radioautography revealed a partial, but highly significant, loss of receptors in amyloid-affected discrete brain regions of AD cases and PS2APP mice. Among the mouse brain regions affected were, above all, the subiculum but also frontolateral cortex, dentate gyrus, lacunosum moleculare and caudate putamen. In AD, significant receptor losses were registered in entorhinal cortex and lacunosum moleculare (40% and 35%, respectively). These findings have implications for the development of selective ligands for symptomatic therapy in AD and for its diagnosis.
Collapse
|
39
|
Villette V, Poindessous-Jazat F, Simon A, Léna C, Roullot E, Bellessort B, Epelbaum J, Dutar P, Stéphan A. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. J Neurosci 2010; 30:10991-1003. [PMID: 20720106 PMCID: PMC6633464 DOI: 10.1523/jneurosci.6284-09.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 05/26/2010] [Accepted: 06/22/2010] [Indexed: 01/22/2023] Open
Abstract
The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.
Collapse
Affiliation(s)
- Vincent Villette
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Frédérique Poindessous-Jazat
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Axelle Simon
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Clément Léna
- Laboratoire de Neurobiologie, UMR 8544, Ecole Normale Supérieure, 75005 Paris, France, and
| | - Elodie Roullot
- Ecole Spéciale de Mécanique et d'Electricité-Sudria, Pôle de Recherche en Imagerie Appliquée à la Médecine, 94200 Ivry sur Seine, France
| | - Brice Bellessort
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Jacques Epelbaum
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Patrick Dutar
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Aline Stéphan
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| |
Collapse
|
40
|
Blazquez-Llorca L, Garcia-Marin V, Defelipe J. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients. Front Neuroanat 2010; 4:20. [PMID: 20631843 PMCID: PMC2903190 DOI: 10.3389/fnana.2010.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/28/2010] [Indexed: 12/16/2022] Open
Abstract
Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.
Collapse
Affiliation(s)
- Lidia Blazquez-Llorca
- Laboratorio de Circuitos Corticales (Centro de Tecnología Biomédica), Universidad Politécnica de Madrid Madrid, Spain
| | | | | |
Collapse
|
41
|
Insulin receptor signaling in the development of neuronal structure and function. Neural Dev 2010; 5:7. [PMID: 20230616 PMCID: PMC2843688 DOI: 10.1186/1749-8104-5-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/15/2010] [Indexed: 12/22/2022] Open
Abstract
Sensory experience plays a crucial role in regulating neuronal shape and in developing synaptic contacts during brain formation. These features are required for a neuron to receive, integrate, and transmit signals within the neuronal network so that animals can adapt to the constant changing environment. Insulin receptor signaling, which has been extensively studied in peripheral organ systems such as liver, muscle and adipocyte, has recently been shown to play important roles in the central nervous system. Here we review the current understanding of the underlying mechanisms that regulate structural and functional aspects of circuit development, particularly with respect to the role of insulin receptor signaling in synaptic function and the development of dendritic arbor morphology. The potential link between insulin receptor signaling malfunction and neurological disorders will also be discussed.
Collapse
|
42
|
Garcia-Marin V, Blazquez-Llorca L, Rodriguez JR, Boluda S, Muntane G, Ferrer I, Defelipe J. Diminished perisomatic GABAergic terminals on cortical neurons adjacent to amyloid plaques. Front Neuroanat 2009; 3:28. [PMID: 19949482 PMCID: PMC2784678 DOI: 10.3389/neuro.05.028.2009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/06/2009] [Indexed: 12/19/2022] Open
Abstract
One of the main pathological hallmarks of Alzheimer's disease (AD) is the accumulation of plaques in the cerebral cortex, which may appear either in the neuropil or in direct association with neuronal somata. Since different axonal systems innervate the dendritic (mostly glutamatergic) and perisomatic (mostly GABAergic) regions of neurons, the accumulation of plaques in the neuropil or associated with the soma might produce different alterations to synaptic circuits. We have used a variety of conventional light, confocal and electron microscopy techniques to study their relationship with neuronal somata in the cerebral cortex from AD patients and APP/PS1 transgenic mice. The main finding was that the membrane surfaces of neurons (mainly pyramidal cells) in contact with plaques lack GABAergic perisomatic synapses. Since these perisomatic synapses are thought to exert a strong influence on the output of pyramidal cells, their loss may lead to the hyperactivity of the neurons in contact with plaques. These results suggest that plaques modify circuits in a more selective manner than previously thought.
Collapse
Affiliation(s)
- Virginia Garcia-Marin
- Laboratorio de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Glutamate sensing with enzyme-modified floating-gate field effect transistors. Biosens Bioelectron 2009; 24:2384-9. [DOI: 10.1016/j.bios.2008.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/19/2022]
|
44
|
Bell KFS, Cuello AC. [Paradoxical increase in glutamatergic synaptic terminations in mild cognitive impairment due to Alzheimer's disease]. Med Sci (Paris) 2008; 24:807-9. [PMID: 18950575 DOI: 10.1051/medsci/20082410807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Relationships between expression of apolipoprotein E and beta-amyloid precursor protein are altered in proximity to Alzheimer beta-amyloid plaques: potential explanations from cell culture studies. J Neuropathol Exp Neurol 2008; 67:773-83. [PMID: 18648325 DOI: 10.1097/nen.0b013e318180ec47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Theories regarding the initiation and progression of Alzheimer disease (AD) often consider potential roles played by elevations of beta-amyloid precursor protein (betaAPP). Because it is the source of amyloid beta-peptide, betaAPP may simply contribute more pathogenic stimulus when elevated; some analyses have, however, reported a decline in betaAPP in AD. We found a progressive increase in neuronal betaAPP expression with increasing age in the brains of nondemented individuals, whereas in AD patient samples, betaAPP antigenicity decreased in neuronal somata in a manner that correlated with accumulation of mature amyloid beta-peptide plaques. In contrast, apolipoprotein E (ApoE) expression correlated with accumulation of plaques, and even greater amounts of ApoE were detected in plaques. Induction of betaAPP by glutamate in neuronal cell cultures was found to depend upon ApoE levels or activity. Thus, elevations in expression of ApoE and betaAPP by cellular stresses are likely normally linked in vivo, and uncoupling of this link, or other pathologic events in AD initiation, may leave neurons with diminished betaAPP expression, which might in turn reduce their resistance to stressors.
Collapse
|
46
|
Minkeviciene R, Ihalainen J, Malm T, Matilainen O, Keksa-Goldsteine V, Goldsteins G, Iivonen H, Leguit N, Glennon J, Koistinaho J, Banerjee P, Tanila H. Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. J Neurochem 2008; 105:584-94. [DOI: 10.1111/j.1471-4159.2007.05147.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Bell KFS, Zheng L, Fahrenholz F, Cuello AC. ADAM-10 over-expression increases cortical synaptogenesis. Neurobiol Aging 2008; 29:554-65. [PMID: 17187903 DOI: 10.1016/j.neurobiolaging.2006.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/25/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.
Collapse
Affiliation(s)
- Karen F S Bell
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
48
|
Rak M, Del Bigio MR, Mai S, Westaway D, Gough K. Dense-core and diffuse Abeta plaques in TgCRND8 mice studied with synchrotron FTIR microspectroscopy. Biopolymers 2007; 87:207-17. [PMID: 17680701 DOI: 10.1002/bip.20820] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plaques composed of the Abeta peptide are the main pathological feature of Alzheimer's disease. Dense-core plaques are fibrillar deposits of Abeta, showing all the classical properties of amyloid including beta-sheet secondary structure, while diffuse plaques are amorphous deposits. We studied both plaque types, using synchrotron infrared (IR) microspectroscopy, a technique that allows the chemical composition and average protein secondary structure to be investigated in situ. We examined plaques in hippocampal, cortical and caudal tissue from 5- to 21-month-old TgCRND8 mice, a transgenic model expressing doubly mutant amyloid precursor protein, and displaying impaired hippocampal function and robust pathology from an early age. Spectral analysis confirmed that the congophilic plaque cores were composed of protein in a beta-sheet conformation. The amide I maximum of plaque cores was at 1623 cm(-1), and unlike for in vitro Abeta fibrils, the high-frequency (1680-1690 cm(-1)) component attributed to antiparallel beta-sheet was not observed. A significant elevation in phospholipids was found around dense-core plaques in TgCRND8 mice ranging in age from 5 to 21 months. In contrast, diffuse plaques were not associated with IR detectable changes in protein secondary structure or relative concentrations of any other tissue components.
Collapse
Affiliation(s)
- Margaret Rak
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | | | | | | |
Collapse
|
49
|
Bell KFS, Bennett DA, Cuello AC. Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci 2007; 27:10810-7. [PMID: 17913914 PMCID: PMC6672819 DOI: 10.1523/jneurosci.3269-07.2007] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic integrity is now recognized as a central component of Alzheimer's disease. Surprisingly, however, the structural status of glutamatergic synapses in Alzheimer's disease is unclear, despite the fact that glutamate is the major excitatory transmitter of the CNS and has key roles in excitotoxicity and long-term potentiation. The identification of specific markers of glutamatergic neurons now allows an assessment of the structural involvement of the glutamatergic system across progressive stages of the Alzheimer's pathology, an opportunity not afforded by previously used neurochemical approaches. Glutamatergic presynaptic bouton density and dystrophic neurite abundance were quantified in midfrontal gyrus brain tissue from subjects with no cognitive impairment, mild cognitive impairment, or mild- or severe-stage Alzheimer's disease. Our study demonstrates a striking pathology-dependent pattern of glutamatergic synaptic remodeling with disease progression. Subjects with mild cognitive impairment display a paradoxical elevation in glutamatergic presynaptic bouton density, a situation akin to that observed in the cholinergic system, which then depletes and drops with disease progression. This pattern of synaptic remodeling mirrors our previous findings in transgenic animal models and is of major relevance to current transmitter-based therapeutics.
Collapse
Affiliation(s)
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Armour Academic Center, Chicago, Illinois 60612
| | - A. Claudio Cuello
- Departments of Pharmacology and Therapeutics
- Anatomy and Cell Biology, and
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3G 1Y6, and
| |
Collapse
|
50
|
Perez SE, Dar S, Ikonomovic MD, DeKosky ST, Mufson EJ. Cholinergic forebrain degeneration in the APPswe/PS1DeltaE9 transgenic mouse. Neurobiol Dis 2007; 28:3-15. [PMID: 17662610 PMCID: PMC2245889 DOI: 10.1016/j.nbd.2007.06.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/18/2022] Open
Abstract
The impact of Abeta deposition upon cholinergic intrinsic cortical and striatal, as well as basal forebrain long projection neuronal systems was qualitatively and quantitatively evaluated in young (2-6 months) and middle-aged (10-16 months) APPswe/PS1DeltaE9 transgenic (tg) mice. Cholinergic neuritic swellings occurred as early as 2-3 months of age in the cortex and hippocampus and 5-6 months in the striatum of tg mice. However, cholinergic neuron number or choline acetyltransferase (ChAT) optical density measurements remained unchanged in the forebrain structures with age in APPswe/PS1DeltaE9 tg mice. ChAT enzyme activity decreased significantly in the cortex and hippocampus of middle-aged tg mice. These results suggest that Abeta deposition has age-dependent effects on cortical and hippocampal ChAT fiber networks and enzyme activity, but does not impact the survival of cholinergic intrinsic or long projection forebrain neurons in APPswe/PS1DeltaE9 tg mice.
Collapse
Affiliation(s)
- Sylvia E. Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Saleem Dar
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Steven T. DeKosky
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|