1
|
Gambino G, Brighina F, Allegra M, Marrale M, Collura G, Gagliardo C, Attanzio A, Tesoriere L, Di Majo D, Ferraro G, Sardo P, Giglia G. Modulation of Human Motor Cortical Excitability and Plasticity by Opuntia Ficus Indica Fruit Consumption: Evidence from a Preliminary Study through Non-Invasive Brain Stimulation. Nutrients 2022; 14:nu14224915. [PMID: 36432601 PMCID: PMC9694319 DOI: 10.3390/nu14224915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Indicaxanthin (IX) from Opuntia Ficus Indica (OFI) has been shown to exert numerous biological effects both in vitro and in vivo, such as antioxidant, anti-inflammatory, neuro-modulatory activity in rodent models. Our goal was to investigate the eventual neuro-active role of orally assumed fruits containing high levels of IX at nutritionally-relevant amounts in healthy subjects, exploring cortical excitability and plasticity in the human motor cortex (M1). To this purpose, we applied paired-pulse transcranial magnetic stimulation and anodal transcranial direct current stimulation (a-tDCS) in basal conditions and followed the consumption of yellow cactus pear fruits containing IX or white cactus pear fruits devoid of IX (placebo). Furthermore, resting state-functional MRI (rs-fMRI) preliminary acquisitions were performed before and after consumption of the same number of yellow fruits. Our data revealed that the consumption of IX-containing fruits could specifically activate intracortical excitatory circuits, differently from the placebo-controlled group. Furthermore, we found that following the ingestion of IX-containing fruits, elevated network activity of glutamatergic intracortical circuits can homeostatically be restored to baseline levels following a-tDCS stimulation. No significant differences were observed through rs-fMRI acquisitions. These outcomes suggest that IX from OFI increases intracortical excitability of M1 and leads to homeostatic cortical plasticity responses.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Correspondence: (G.G.); (P.S.)
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry “Emilio Segrè”, University of Palermo, 90134 Palermo, Italy
| | - Giorgio Collura
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Cesare Gagliardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90134 Palermo, Italy
- Correspondence: (G.G.); (P.S.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
2
|
Confounding effects of caffeine on neuroplasticity induced by transcranial alternating current stimulation and paired associative stimulation. Clin Neurophysiol 2021; 132:1367-1379. [PMID: 33762129 DOI: 10.1016/j.clinph.2021.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We examined the effects of caffeine, time of day, and alertness fluctuation on plasticity effects after transcranial alternating current stimulation (tACS) or 25 ms paired associative stimulation (PAS25) in caffeine-naïve and caffeine-adapted subjects. METHODS In two randomised, double-blinded, cross-over or placebo-controlled (caffeine) studies, we measured sixty subjects in eight sessions (n = 30, Male: Female = 1:1 in each study). RESULTS We found caffeine increased motor cortex excitability in caffeine naïve subjects. The aftereffects in caffeine naïve subjects were enhanced and prolonged when combined with PAS 25. Caffeine also increased alertness and the motor evoked potentials (MEPs) were reduced under light deprivation in caffeine consumers both with and without caffeine. In caffeine consumers, the time of day had no effect on tACS-induced plasticity. CONCLUSIONS We conclude that caffeine should be avoided or controlled as confounding factor for brain stimulation protocols. It is also important to keep the brightness constant in all sessions and study groups should not be mixed with caffeine-naïve and caffeine consuming participants. SIGNIFICANCE Caffeine is one of the confounding factors in the plasticity induction studies and it induces different excitability effects in caffeine-naïve and caffeine-adapted subjects. This study was registered in the ClinicalTrials.gov with these registration IDs: 1) NCT03720665 https://clinicaltrials.gov/ct2/results?cond=NCT03720665&term=&cntry=&state=&city=&dist= 2) NCT04011670 https://clinicaltrials.gov/ct2/results?cond=&term=NCT04011670&cntry=&state=&city=&dist=.
Collapse
|
3
|
Seeger TA, Kirton A, Esser MJ, Gallagher C, Dunn J, Zewdie E, Damji O, Ciechanski P, Barlow KM. Cortical excitability after pediatric mild traumatic brain injury. Brain Stimul 2017; 10:305-314. [DOI: 10.1016/j.brs.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022] Open
|
4
|
Schambra HM, Martinez-Hernandez IE, Slane KJ, Boehme AK, Marshall RS, Lazar RM. The neurophysiological effects of single-dose theophylline in patients with chronic stroke: A double-blind, placebo-controlled, randomized cross-over study. Restor Neurol Neurosci 2016; 34:799-813. [PMID: 27567756 PMCID: PMC5333922 DOI: 10.3233/rnn-160657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Reducing inhibitory neurotransmission with pharmacological agents is a potential approach for augmenting plasticity after stroke. Previous work in healthy subjects showed diminished intracortical inhibition after administration of theophylline. OBJECTIVE We assessed the effect of single-dose theophylline on intracortical and interhemispheric inhibition in patients with chronic stroke, in a double-blind, placebo-controlled, cross-over study. METHODS Eighteen subjects were randomly administered 300 mg of extended-release theophylline or placebo. Immediately and 5 hours following administration, transcranial magnetic stimulation was used to assess bihemispheric resting motor threshold, short-interval intracortical inhibition, long-interval intracortical inhibition, and interhemispheric inhibition. Adverse effects on cardiovascular, neurological, and motor performance outcomes were also surveilled. Change between morning and afternoon sessions were compared across conditions. One week later, patients underwent the same assessments after crossing over to the opposite experimental condition. Subjects and investigators were blinded to the experimental condition during data acquisition and analysis. RESULTS For both hemispheres, changes in intracortical or interhemispheric neurophysiology were comparable under theophylline and placebo conditions. Theophylline induced no adverse neurological, cardiovascular, or motor performance effects. For both conditions and hemipsheres, the baseline level of inhibition inversely correlated with its change between sessions: less baseline inhibition (i.e. disinhibition) was associated with a strengthening in inhibition over the day, and vice versa. CONCLUSION A single dose of theophylline is well-tolerated by patients with chronic stroke, but does not alter cortical excitability. The inverse relationship between baseline inhibition and its change suggests the existence of a homeostatic process. The lack of effect on cortical inhibition may be related to an insufficiently long exposure to theophylline, or to differential responsiveness of disinhibited neural circuitry in patients with stroke.
Collapse
Affiliation(s)
- Heidi M. Schambra
- Departments of Neurology and Rehabilitation and Regenerative Medicine, Motor Performance Laboratory, Columbia University Medical Center, New York, NY, USA
| | - Isis E. Martinez-Hernandez
- Departments of Neurology and Rehabilitation and Regenerative Medicine, Motor Performance Laboratory, Columbia University Medical Center, New York, NY, USA
| | - Kevin J. Slane
- Department of Neurology, Richard and Jenny Levine Cerebral Localization Laboratory, Columbia University Medical Center, New York, NY, USA
| | - Amelia K. Boehme
- Department of Neurology, Richard and Jenny Levine Cerebral Localization Laboratory, Columbia University Medical Center, New York, NY, USA
| | - Randolph S. Marshall
- Department of Neurology, Richard and Jenny Levine Cerebral Localization Laboratory, Columbia University Medical Center, New York, NY, USA
| | - Ronald M. Lazar
- Department of Neurology, Richard and Jenny Levine Cerebral Localization Laboratory, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 483] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Neef N, Paulus W, Neef A, von Gudenberg AW, Sommer M. Reduced intracortical inhibition and facilitation in the primary motor tongue representation of adults who stutter. Clin Neurophysiol 2011; 122:1802-11. [PMID: 21377925 DOI: 10.1016/j.clinph.2011.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/02/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
|
7
|
Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U. State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 2008; 1:151-63. [PMID: 20633382 DOI: 10.1016/j.brs.2008.06.002] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/02/2008] [Accepted: 06/06/2008] [Indexed: 11/19/2022] Open
Abstract
The combination of brain stimulation techniques like transcranial magnetic stimulation (TMS) with CNS active drugs in humans now offers a unique opportunity to explore the physiologic effects of these substances in vivo in the human brain. Motor threshold, motor evoked potential size, motor evoked potential intensity curves, cortical silent period, short-interval intracortical inhibition, intracortical facilitation, short-interval intracortical facilitation, long-interval intracortical inhibition and short latency afferent inhibition represent the repertoire for investigating drug effects on motor cortical excitability by TMS. Here we present an updated overview on the pharmacophysiologic mechanisms with special emphasis on methodologic pitfalls and possible future developments or requirements.
Collapse
Affiliation(s)
- Walter Paulus
- Department of Clinical Neurophysiology, University of Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hüpfl M, Schmatzer I, Buzath A, Burger H, Hörauf K, Ihra G, Marhofer P, Nagele P. The effects of aminophylline on bispectral index during inhalational and total intravenous anaesthesia. Anaesthesia 2008; 63:583-7. [PMID: 18279487 DOI: 10.1111/j.1365-2044.2008.05445.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aminophylline is usually used during anaesthesia to treat bronchospasm but recent findings suggest that it can also be used to shorten recovery time after general anaesthesia. However, it is unclear whether aminophylline shows similar properties during a steady-state phase of deep surgical anaesthesia. We therefore wanted to test the hypothesis that the administration of aminophylline leads to an increase in bispectral index as a surrogate parameter suggesting a lighter plane of anaesthesia. The study was designed as a double-blind, randomised, controlled trial with two main groups (aminophylline and placebo) and two subgroups (sevoflurane and propofol). We studied 60 patients. The injection of aminophylline 3 mg x kg(-1) was associated with significant increases in bispectral index up to 10 min after its injection, while heart rate and blood pressure did not change. It appears that aminophylline has the ability to partially antagonise the sedative effects of general anaesthetics.
Collapse
Affiliation(s)
- M Hüpfl
- Department of Anesthesia and General Intensive Care, Medical University Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Movsessian P. Neuropharmacology of theophylline induced stuttering: the role of dopamine, adenosine and GABA. Med Hypotheses 2005; 64:290-7. [PMID: 15607558 DOI: 10.1016/j.mehy.2004.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 07/19/2004] [Indexed: 11/24/2022]
Abstract
Developmental stuttering is a poorly understood speech disorder that starts out in childhood and some individuals continue to stutter throughout their lives. Stuttering is a disruption in smooth and fluent speech. Some stuttering primarily involves vocal blocks, which are spasms of the laryngeal musculature while prolongations, and repetitions of sound occur in other cases. Acquired stuttering, on the other hand, can occur at all ages and can be caused by brain injury and by pharmacological agents. Theophylline-induced stuttering is form of acquired stuttering. It is a rare side effect of theophylline therapy, but it provides interesting clues to the pharmacological mechanisms involved in stuttering. Theophylline-induced stuttering may involve the disrupt the optimal balance between excitatory and inhibitory neurotransmission throughout the brain by inhibiting GABA receptors. The disruption of the optimal balance between excitatory and inhibitory neurotransmission can also cause dysfunction in white matter fiber tracts such as those that connect the Broca's area to the motor cortex. This leads to a hyperexitation of the motor cortex which may mimic the motor cortex hyperexitability that exists in developmental stuttering. Theophylline also enhances dopaminergic neurotransmission through the inhibition of adenosine receptors and this may mimic the hyperdopaminergic state that exists in the brain of developmental stutterers. Theophylline causes the greatest release of dopamine in the basal ganglia through the inhibition of adenosine and GABA receptors. This may also cause dysfunction in the basal ganglia similar in some ways to the dysfunction that exits in developmental stuttering. Pharmacological enhancement of dopaminergic neurotransmission by other drugs been reported to cause stuttering in fluent individuals and to aggrevate dysfluency in stutterers.
Collapse
|
10
|
Abstract
The application of a single dose of a CNS active drug with a well-defined mode of action on a neurotransmitter or neuromodulator system may be used for testing pharmaco-physiological properties of transcranial magnetic stimulation (TMS) measures of cortical excitability. Conversely, a physiologically well-defined single TMS measure of cortical excitability may be used as a biological marker of acute drug effects at the systems level of the cerebral cortex. An array of defined TMS measures may be used to study the pattern of effects of a drug with unknown or multiple modes of action. Acute drug effects may be rather different from chronic drug effects. These differences can also be studied by TMS measures. Finally, TMS or repetitive TMS by themselves may induce changes in endogenous neurotransmitters or neuromodulators. All these possible interactions are the focus of this in-depth review on TMS and drugs.
Collapse
Affiliation(s)
- Ulf Ziemann
- Motor Cortex Laboratory, Clinic of Neurology, Johann Wolfgang Goethe University Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany.
| |
Collapse
|