1
|
Juul Rasmussen I, Luo J, Frikke-Schmidt R. Lipids, lipoproteins, and apolipoproteins: Associations with cognition and dementia. Atherosclerosis 2024; 398:118614. [PMID: 39340935 DOI: 10.1016/j.atherosclerosis.2024.118614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Due to increasing lifespan and aging populations globally there has been a steep rise in late-life dementia, which is now the second most common cause of death in high-income countries. In general, dementia can be divided into two major groups: Alzheimer's disease (AD) and vascular-related dementia (VD). AD is pathologically characterised by senile plaques containing amyloid-β and neurofibrillary tangles composed of hyperphosphorylated tau, whereas VD is dominated by vascular pathology such as cerebral small vessel disease, major strokes, and white matter lesions. Recently, the importance of vascular components in AD is increasingly recognized and it is estimated that up to 45 % of all dementia cases can be prevented by preventing or treating midlife cardiovascular risk factors such as physical inactivity, diabetes, and hypertension. Even though the brain contains approximately 25 % of the total body cholesterol pool, and several genetic variants related to the lipid metabolism have been identified in genome-wide associations studies of AD, the role of lipids, lipoproteins, and apolipoproteins in dementia risk is less well-known. In this review, we go through the current literature on lipids, lipoproteins, and apolipoproteins and risk of dementia. We conclude that the evidence is primarily insufficient or conflicting, possibly due to nonoptimal study designs. The future calls for large, prospective studies of midlife measurements of lipids, lipoproteins, and apolipoproteins and one-sample, individual level data Mendelian randomization studies to overcome survival bias. However, the current literature suggests that it is safe to say that what is good for the heart is good for the brain.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Denmark.
| | - Jiao Luo
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| |
Collapse
|
2
|
Zonneveld MH, Trompet S, Jukema JW, Noordam R. Exploring the possible causal effects of cardiac blood biomarkers in dementia and cognitive performance: a Mendelian randomization study. GeroScience 2023; 45:3165-3174. [PMID: 37178386 PMCID: PMC10643774 DOI: 10.1007/s11357-023-00814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Prospective cohort studies have implied associations between blood levels of troponin T, troponin I, NT-proBNP, GDF15, dementia, and cognitive function, without providing evidence favoring possible causality. We aimed to assess the causal associations of these cardiac blood biomarkers with dementia and cognition using two-sample Mendelian randomization (MR). Independent genetic instruments (p < 5e-7) for troponin T and I, N-terminal pro B-type natriuretic peptide (NT-proBNP) and growth-differentiation factor 15 (GDF15) were obtained from previously-performed genome-wide association studies of predominantly European ancestry. Summary statistics for gene-outcome associations in European-ancestry participants, for the two-sample MR analyses, were obtained for general cognitive performance (n = 257,842) and dementia (n = 111,326 clinically diagnosed and "proxy" AD cases, and 677,663 controls). Two-sample MR analyses were performed using inverse variance-weighted (IWV) analyses. Sensitivity analyses to evaluate horizontal pleiotropy included weighted median estimator, MR-Egger, and MR using cis-SNPs only. Using IVW, we did not find evidence for possible causal associations between genetically influenced cardiac biomarkers with cognition and dementia. For example, per standard deviation (SD) higher cardiac blood biomarker, the odds ratio for risk of dementia was 1.06 (95%CI 0.90; 1.21) for troponin T, 0.98 (95%CI 0.72; 1.23) for troponin I, 0.97 (95%CI 0.90; 1.06) for NT-proBNP and 1.07 (95%CI 0.93; 1.21) for GDF15. Sensitivity analyses showed higher GDF15 was significantly associated with higher dementia risk and worse cognitive function. We did not find strong evidence that cardiac biomarkers causally influence dementia risk. Future research should aim at elucidating the biological pathways through which cardiac blood biomarkers associate with dementia.
Collapse
Affiliation(s)
- Michelle H Zonneveld
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, the Netherlands.
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
3
|
Pan Y, Li H, Wang Y, Meng X, Wang Y. Causal Effect of Lp(a) [Lipoprotein(a)] Level on Ischemic Stroke and Alzheimer Disease: A Mendelian Randomization Study. Stroke 2019; 50:3532-3539. [PMID: 31597550 DOI: 10.1161/strokeaha.119.026872] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background and Purpose- Stroke and Alzheimer disease are 2 major causes of neurological disability in aged people and shared overlapping predictors. In recent prospective studies, high Lp(a) [lipoprotein(a)] level is associated with high risk of stroke but low risk of Alzheimer disease. Whether this reflects a causal association remains to be established. The aim of this study is to examine the causal associations of Lp(a) concentrations on ischemic stroke, ischemic stroke subtypes, and Alzheimer disease. Methods- We used 9 single-nucleotide polymorphisms associated with Lp(a) concentrations as instrumental variables. Summary-level data on ischemic stroke and its subtypes were obtained from the Multiancestry Genome-Wide Association Study of Stroke consortium with European individuals ≤446 696 individuals. Summary-level data on Alzheimer disease were obtained from the International Genomics of Alzheimer Project With European individuals ≤54 162 individuals. Two-sample Mendelian randomization (MR) estimates were calculated with inverse-variance weighted, penalized inverse-variance weighted, simple median, weighted median, and MR Pleiotropy Residual Sum and Outlier approaches, and MR-Egger regression was used to explore pleiotropy. Results- Genetically predicted 1-SD log-transformed increase in Lp(a) concentrations was associated with a substantial increase in risk of large artery stroke (odds ratio, 1.20; 95% CI, 1.11-1.30; P<0.001) and a reduce in risk of small vessel stroke (odds ratio, 0.92; 95% CI, 0.88-0.97; P=0.001) and Alzheimer disease (odds ratio, 0.94; 95% CI, 0.91-0.97; P<0.001) using inverse-variance weighted method. No significant association was observed for total ischemic stroke or cardioembolic stroke. MR-Egger indicated no evidence of pleiotropic bias. Results were broadly consistent in sensitivity analyses using penalized inverse-variance weighted, simple median, weighted median, and MR Pleiotropy Residual Sum and Outlier approaches accounting for potential genetic pleiotropy or outliers. Conclusions- This study provides evidence to support that high Lp(a) concentrations was causally associated with an increased risk of large artery stroke but a decreased risk of small vessel stroke and Alzheimer disease. The mechanism underlying the double-edged sword effect of Lp(a) concentrations on neurological system requires further investigation.
Collapse
Affiliation(s)
- Yuesong Pan
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China; and China National Clinical Research Center for Neurological Diseases, Beijing
| | - Hao Li
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China; and China National Clinical Research Center for Neurological Diseases, Beijing
| | - Yilong Wang
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China; and China National Clinical Research Center for Neurological Diseases, Beijing
| | - Xia Meng
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China; and China National Clinical Research Center for Neurological Diseases, Beijing
| | - Yongjun Wang
- From the Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China; and China National Clinical Research Center for Neurological Diseases, Beijing
| |
Collapse
|
4
|
Yuan L, Liu J, Dong L, Cai C, Wang S, Wang B, Xiao R. Effects of APOE rs429358, rs7412 and GSTM1/GSTT1 Polymorphism on Plasma and Erythrocyte Antioxidant Parameters and Cognition in Old Chinese Adults. Nutrients 2015; 7:8261-73. [PMID: 26404360 PMCID: PMC4632411 DOI: 10.3390/nu7105391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/10/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein E (APOE) and oxidative damage were correlated with the risk of Alzheimer’s disease (AD). Glutathione S-transferase (GST) polymorphism was proved to be associated with body antioxidant capacity and involved in the oxidative damage related chronic diseases. To explore the combined effects of APOE rs429358, rs7412 and GSTM1/T1 polymorphism on antioxidant parameters and cognition in old Chinese adults, a community-based cross-sectional study was carried out in 477 Chinese adults aged from 55 to 75. Information on demography and lifestyle of the participants was collected with a questionnaire. Cognitive function was measured by using a Montreal Cognitive Assessment (MoCA) test. Fasting venous blood samples were collected for APOE rs429358, rs7412 and GSTM1/T1 genotyping, and parameter measurement. No association of APOE rs7412, rs429358 and GSTM1/T1 polymorphisms with cognition was detected in the old Chinese adults. APOE rs429358, rs7412 polymorphism was mainly associated with plasma α-tocopherol, low density lipoprotein cholesterol (LDL-C) and plasma total antioxidant capacity (T-AOC) levels (p < 0.05). Interaction of APOE rs429358 and GSTT1 genotype on the plasma triglyceride (TG) level and erythrocyte catalase (CAT) and GST enzyme activities were detected (p < 0.05). The subjects with APOE rs429358 T/C + C/C and GSTT1− genotype were found to have the highest plasma TG level, erythrocyte CAT enzyme activity, and the lowest GST enzyme activity compared to subjects with other genotypes (p < 0.05). Lowest erythrocyte CAT enzyme activity and highest glutathione peroxidase (GSH-Px) enzyme activity were detected in the subjects with APOE rs7412 T/C + T/T and GSTM1+ genotype as compared with subjects with other genotypes. The levels of plasma and erythrocyte antioxidant parameters were APOE genotype associated. GSTM1 or GSTT1 genotype modified the influence of APOE rs7412, rs429358 polymorphism on antioxidant parameters.
Collapse
Affiliation(s)
- Linhong Yuan
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Jinmeng Liu
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
| | - Li Dong
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
| | - Can Cai
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
| | - Sisi Wang
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
| | - Bo Wang
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
| | - Rong Xiao
- School of Public Health, Nutrition and Food Hygiene Department, Capital Medical University, Beijing 100069.
| |
Collapse
|
5
|
Galloway S, Pallebage-Gamarallage MMS, Takechi R, Jian L, Johnsen RD, Dhaliwal SS, Mamo JCL. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance. Lipids Health Dis 2008; 7:15. [PMID: 18426603 PMCID: PMC2359747 DOI: 10.1186/1476-511x-7-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/22/2008] [Indexed: 12/02/2022] Open
Abstract
Background Amyloid-β (Aβ), a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo) E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT) and apo E knockout (KO) mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w) unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.
Collapse
Affiliation(s)
- Susan Galloway
- School of Public Health and Australian Technology Network (ATN), Centre for Metabolic Fitness, Curtin University of Technology, Perth, Western Australia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Arra M, Emanuele E, Martinelli V, Minoretti P, Bertona M, Geroldi D. The M694V variant of the familial Mediterranean fever gene is associated with sporadic early-onset Alzheimer's disease in an Italian population sample. Dement Geriatr Cogn Disord 2007; 23:55-9. [PMID: 17090974 DOI: 10.1159/000096743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation is deemed to play a crucial role in the pathogenesis of Alzheimer's disease (AD). We sought to determine whether the proinflammatory M694V mutation of pyrin, the gene responsible for familial Mediterranean fever, could lead to an increased risk for AD. METHODS We compared the M694V variant genotypes in 378 sporadic AD patients and 384 healthy control subjects of Italian descent. RESULTS After adjustment for potential confounders, the M694V mutation was found to be associated with an increased risk for AD in subjects with an age at onset of 65 years or younger (multivariate-adjusted odds ratio, OR: 3.01, 95% confidence interval, CI: 1.24-6.72, p = 0.021), but not in patients with an age at onset older than 65 years (multivariate-adjusted OR: 0.81, 95% CI: 0.34-1.99, p = 0.847). Kaplan-Meier analysis indicated that AD patients bearing the M694V mutation presented with disease onset 7 years earlier than carriers of the wild-type genotype (log rank = 41.61, p < 0.001). CONCLUSION Our data indicate that the M694V sequence variant in the pyrin gene might influence the age at onset of AD in the Italian population.
Collapse
Affiliation(s)
- Mariarosa Arra
- Interdepartmental Center for Research in Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Raygani AV, Rahimi Z, Kharazi H, Tavilani H, Pourmotabbed T. Association between apolipoprotein E polymorphism and serum lipid and apolipoprotein levels with Alzheimer's disease. Neurosci Lett 2006; 408:68-72. [PMID: 16997467 DOI: 10.1016/j.neulet.2006.08.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/16/2006] [Accepted: 08/19/2006] [Indexed: 10/24/2022]
Abstract
We have recently demonstrated that apolipoprotein E (APOE)-varepsilon4 allele is a risk factor for Alzheimer disease (AD) in Tehran, Iran. The current study specifically aimed to examine whether APOE polymorphism in association with serum lipids-apolipoprotein level is a risk factor for AD in a population from Tehran, Iran. APOE polymorphism and plasma lipids, apoA1, apoB and lipoprotein (a) (Lp(a)) levels were determined in 94 AD patients and 111matched controls. Our study demonstrated a significant association between APOE polymorphism and the level of plasma lipids and apolipoprotein with AD in this population. The AD subjects had significantly lower apoA1 (p<0.001) and HDL-C (p<0.01) and higher apoB (p=0.01) and LDL-C (p=0.02) levels than that of the control group. The AD subjects carrying APOE-varepsilon4 allele had lower plasma apoA1 (t=5.2, p<0.002) and HDL-C level (t=2.7, p=0.01) but had higher plasma apoB (t=-5.4, p<0.002), LDL-C (t=-4.6, p=0.005) and total cholesterol (TC) (t=-2.7, p=0.01) than that of the non APOE-varepsilon4 carriers. These results indicated that AD patients with APOE-varepsilon4 allele has a distinct plasma lipid profile and carrier of this allele with low levels of apoA1 and HDL-C may be more susceptible to AD.
Collapse
Affiliation(s)
- Asad Vaisi Raygani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Daneshgah Avenue, P.O. Box 67148, 69914 Kermanshah, Iran.
| | | | | | | | | |
Collapse
|
8
|
Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Todarello O, Pellicani V, Capurso SA, Pietrarossa G, Santamato V, Capurso A, Panza F. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 2006; 364:91-112. [PMID: 16139826 DOI: 10.1016/j.cca.2005.06.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/16/2005] [Accepted: 06/17/2005] [Indexed: 11/24/2022]
Abstract
Plasma and serum biochemical markers proposed for cognitive decline of degenerative (Alzheimer's disease, AD) or vascular origin and predementia syndromes (mild cognitive impairment and other related entities) are based on pathophysiologic processes such as lipoprotein metabolism (total cholesterol, apolipoprotein E, 24S-hydroxy-cholesterol), and vascular disease (homocysteine, lipoprotein(a)); SP formation (amyloid beta(Abeta)-protein, Abeta autoantibodies, platelet APP isoforms), oxidative stress (isoprostanes, vitamin E), and inflammation (cytokines). This review will focus on the current knowledge on circulating serum and plasma biomarkers of cognitive decline and dementia that are linked to cholesterol homeostasis and lipoprotein abnormalities, senile plaque formation and amyloid precursor protein (APP) metabolism, oxidative stress, and inflammatory reactions. Special emphasis will, however, be placed on biomarkers related to lipoprotein metabolism and vascular disease. Analytically, most plasma and serum proteins or metabolites lack reproducibility, sensitivity, or specificity for the diagnosis, risk and progression assessment, or therapeutic monitoring of AD and other dementing disorders. Measures linked to lipoprotein metabolism and vascular disease, APP metabolism, oxidative stress, or inflammation appear altered in AD relative to controls, but lack sufficient discriminatory power. Measures combining several biomarkers or incorporating a range of proteins in plasma and small molecule metabolites are promising approaches for the development of plasma or serum-based diagnostic tests for AD and other dementing disorders, as well as for predementia syndromes.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11-70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Panza F, D'Introno A, Colacicco AM, Capurso C, Pichichero G, Capurso SA, Capurso A, Solfrizzi V. Lipid metabolism in cognitive decline and dementia. ACTA ACUST UNITED AC 2006; 51:275-92. [PMID: 16410024 DOI: 10.1016/j.brainresrev.2005.11.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/25/2005] [Accepted: 11/30/2005] [Indexed: 11/19/2022]
Abstract
This review will focus on the current knowledge on circulating serum and plasma risk factors of cognitive decline of degenerative (Alzheimer's disease, AD) or vascular origin (vascular dementia, VaD) linked to cholesterol homeostasis and lipoprotein disturbances, i.e. total cholesterol (TC), 24S-hydroxy-cholesterol, lipoprotein(a) (Lp(a)), or apolipoprotein E (APOE). These measures linked to lipoprotein metabolism appear to be altered in AD, VaD, or predementia syndrome relative to controls, but with contrasting results. At present, several studies have demonstrated the dependence of APOE serum levels upon the APOE genotype, nonetheless serum APOE levels seems not to be a credible risk factor or a biochemical marker for AD instead of APOE genotyping. In fact, there was no consistent association of serum or plasma apoE protein levels with the disease when controlled for APOE genotype. In addition, there are some evidence that higher Lp(a) levels could be linked with AD, although there are studies suggesting an increased presence of low molecular weight apo(a) in AD, VaD, and frontotemporal dementia, that are associated with elevated Lp(a) levels. In fact, the apo(a) gene is highly polymorphic in length due to variation in the numbers of a sequence encoding the apo(a) kringle 4 domain, and plasma levels of Lp(a) are inversely correlated with apo(a) size. Furthermore, although serum/plasma levels of TC and 24S-hydroxycholesterol are not credible diagnostic markers for AD and cognitive decline, the current evidence suggests that they may be modifiable risk/protective factors. The prevailing wisdom is that high TC is a risk factor for dementia. However, the relationship between TC and dementia may vary considerably depending on when cholesterol is measured over the life course or, alternatively, in relation to the underlying course of the disease. Several observational studies have suggested that statins, which are effective in lowering cholesterol, may reduce the risk of dementia, but the results of these reports are inconclusive. Thus, more studies with long-term follow-up and serial assessments of TC are needed to further clarify the causal relationship between cholesterol and dementia.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A. Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. Proc Natl Acad Sci U S A 2004; 101:15148-53. [PMID: 15471992 PMCID: PMC523448 DOI: 10.1073/pnas.0404315101] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Indexed: 11/18/2022] Open
Abstract
A major challenge in human genetics is identifying the molecular basis of common heritable disorders. In contrast to rare single-gene diseases, multifactorial disorders are thought to arise from the combined effect of multiple gene variants, such that any single variant may have only a modest effect on disease susceptibility. We present a method to identify genes that may harbor a significant proportion of the genetic variation that predisposes individuals to a given multifactorial disorder. First, we perform an automated literature analysis that predicts physical interactions (edges) among candidate disease genes (seed nodes, selected on the basis of prior information) and other molecular entities. We derive models of molecular networks from this analysis and map the seed nodes to them. We then compute the graph-theoretic distance (the minimum number of edges that must be traversed) between the seed nodes and all other nodes in the network. We assume that nodes that are found in close proximity to multiple seed nodes are the best disease-related candidate genes. To evaluate this approach, we selected four seed genes, each with a proven role in Alzheimer's disease (AD). The method performed well in predicting additional network nodes that match AD gene candidates identified manually by an expert. We also show that the method prioritizes among the seed nodes themselves, rejecting false-positive seeds that are derived from (noisy) whole-genome genetic-linkage scans. We propose that this strategy will provide a valuable means to bridge genetic and genomic knowledge in the search for genetic determinants of multifactorial disorders.
Collapse
Affiliation(s)
- Michael Krauthammer
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|