1
|
Sun K, Patel T, Kang SG, Yarahmady A, Srinivasan M, Julien O, Heras J, Mok SA. Disease-Associated Mutations in Tau Encode for Changes in Aggregate Structure Conformation. ACS Chem Neurosci 2023; 14:4282-4297. [PMID: 38054595 PMCID: PMC10741665 DOI: 10.1021/acschemneuro.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
The accumulation of tau fibrils is associated with neurodegenerative diseases, which are collectively termed tauopathies. Cryo-EM studies have shown that the packed fibril core of tau adopts distinct structures in different tauopathies, such as Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy. A subset of tauopathies are linked to missense mutations in the tau protein, but it is not clear whether these mutations impact the structure of tau fibrils. To answer this question, we developed a high-throughput protein purification platform and purified a panel of 37 tau variants using the full-length 0N4R splice isoform. Each of these variants was used to create fibrils in vitro, and their relative structures were studied using a high-throughput protease sensitivity platform. We find that a subset of the disease-associated mutations form fibrils that resemble wild-type tau, while others are strikingly different. The impact of mutations on tau structure was not clearly associated with either the location of the mutation or the relative kinetics of fibril assembly, suggesting that tau mutations alter the packed core structures through a complex molecular mechanism. Together, these studies show that single-point mutations can impact the assembly of tau into fibrils, providing insight into its association with pathology and disease.
Collapse
Affiliation(s)
- Kerry
T. Sun
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Tark Patel
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sang-Gyun Kang
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Allan Yarahmady
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Mahalashmi Srinivasan
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jónathan Heras
- Department
of Mathematics and Computer Sciences, University
of La Rioja, Logroño, Spain 26004
| | - Sue-Ann Mok
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
2
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Kawles A, Minogue G, Zouridakis A, Keszycki R, Gill N, Nassif C, Coventry C, Zhang H, Rogalski E, Flanagan ME, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Differential vulnerability of the dentate gyrus to tauopathies in dementias. Acta Neuropathol Commun 2023; 11:1. [PMID: 36597124 PMCID: PMC9811688 DOI: 10.1186/s40478-022-01485-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
The dentate gyrus (DG), a key hippocampal subregion in memory processing, generally resists phosphorylated tau accumulation in the amnestic dementia of the Alzheimer's type due to Alzheimer's disease (DAT-AD), but less is known about the susceptibility of the DG to other tauopathies. Here, we report stereologic densities of total DG neurons and tau inclusions in thirty-two brains of human participants with autopsy-confirmed tauopathies with distinct isoform profiles-3R Pick's disease (PiD, N = 8), 4R corticobasal degeneration (CBD, N = 8), 4R progressive supranuclear palsy (PSP, N = 8), and 3/4R AD (N = 8). All participants were diagnosed during life with primary progressive aphasia (PPA), an aphasic clinical dementia syndrome characterized by progressive deterioration of language abilities with spared non-language cognitive abilities in early stages, except for five patients with DAT-AD as a comparison group. 51% of total participants were female. All specimens were stained immunohistochemically with AT8 to visualize tau pathology, and PPA cases were stained for Nissl substance to visualize neurons. Unbiased stereological analysis was performed in granule and hilar DG cells, and inclusion-to-neuron ratios were calculated. In the PPA group, PiD had highest mean total (granule + hilar) densities of DG tau pathology (p < 0.001), followed by CBD, AD, then PSP. PPA-AD cases showed more inclusions in hilar cells compared to granule cells, while the opposite was true in PiD and CBD. Inclusion-to-neuron ratios revealed, on average, 33% of all DG neurons in PiD cases contained a tau inclusion, compared to ~ 7% in CBD, 2% in AD, and 0.4% in PSP. There was no significant difference between DAT-AD and PPA-AD pathologic tau burden, suggesting that differences in DG burden are not specific to clinical phenotype. We conclude that the DG is differentially vulnerable to pathologic tau accumulation, raising intriguing questions about the structural integrity and functional significance of hippocampal circuits in neurodegenerative dementias.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Caren Nassif
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Margaret E. Flanagan
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Eileen H. Bigio
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - M. Marsel Mesulam
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology & Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, 300 E. Superior Street, Tarry Building, 8th Floor, Chicago, IL 60611 USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| |
Collapse
|
4
|
Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021; 157:944-962. [PMID: 33349931 PMCID: PMC8248322 DOI: 10.1111/jnc.15280] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Alicia Dubinski
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Christine Vande Velde
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| |
Collapse
|
5
|
Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021; 22:197-208. [PMID: 33654312 DOI: 10.1038/s41583-021-00431-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP43; also known as TARDBP or TDP-43) is a key pathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 typically resides in the nucleus but can shuttle between the nucleus and the cytoplasm to exert its multiple functions, which include regulation of the splicing, trafficking and stabilization of RNA. Cytoplasmic mislocalization and nuclear loss of TDP43 have both been associated with ALS and FTD, suggesting that calibrated levels and correct localization of TDP43 - achieved through an autoregulatory loop and tightly controlled nucleocytoplasmic transport - safeguard its normal function. Furthermore, TDP43 can undergo phase transitions, including its dispersion into liquid droplets and its accumulation into irreversible cytoplasmic aggregates. Thus, autoregulation, nucleocytoplasmic transport and phase transition are all part of an intrinsic control system regulating the physiological levels and localization of TDP43, and together are essential for the cellular homeostasis that is affected in neurodegenerative disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
6
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
7
|
Barron MR, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. Increasing Tau 4R Tau Levels Exacerbates Hippocampal Tau Hyperphosphorylation in the hTau Model of Tauopathy but Also Tau Dephosphorylation Following Acute Systemic Inflammation. Front Immunol 2020; 11:293. [PMID: 32194553 PMCID: PMC7066213 DOI: 10.3389/fimmu.2020.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Inflammation is considered a mechanistic driver of Alzheimer's disease, thought to increase tau phosphorylation, the first step to the formation of neurofibrillary tangles (NFTs). To further understand how inflammation impacts the development of tau pathology, we used (hTau) mice, which express all six, non-mutated, human tau isoforms, but with an altered ratio of tau isoforms favoring 3R tau due to the concomitant loss of murine tau (mTau) that is predominantly 4R. Such an imbalance pattern has been related to susceptibility to NFTs formation, but whether or not this also affects susceptibility to systemic inflammation and related changes in tau phosphorylation is not known. To reduce the predominance of 3R tau by increasing 4R tau availability, we bred hTau mice on a heterozygous mTau background and compared the impact of systemic inflammation induced by lipopolysaccharide (LPS) in hTau mice hetero- or homozygous mTau knockout. Three-month-old male wild-type (Wt), mTau+/-, mTau-/-, hTau/mTau+/-, and hTau/mTau-/- mice were administered 100, 250, or 330 μg/kg of LPS or its vehicle phosphate buffer saline (PBS) [intravenously (i.v.), n = 8-9/group]. Sickness behavior, reflected by behavioral suppression in the spontaneous alternation task, hippocampal tau phosphorylation, measured by western immunoblotting, and circulating cytokine levels were quantified 4 h after LPS administration. The persistence of the LPS effects (250 μg/kg) on these measures, and food burrowing behavior, was assessed at 24 h post-inoculation in Wt, mTau+/-, and hTau/mTau+/- mice (n = 9-10/group). In the absence of immune stimulation, increasing 4R tau levels in hTau/mTau+/- exacerbated pS202 and pS396/404 tau phosphorylation, without altering total tau levels or worsening early behavioral perturbations characteristic of hTau/mTau-/- mice. We also show for the first time that modulating 4R tau levels in hTau mice affects the response to systemic inflammation. Behavior was suppressed in all genotypes 4 h following LPS administration, but hTau/mTau+/- exhibited more severe sickness behavior at the 100 μg/kg dose and a milder behavioral and cytokine response than hTau/mTau-/- mice at the 330 μg/kg dose. All LPS doses decreased tau phosphorylation at both epitopes in hTau/mTau+/- mice, but pS202 levels were selectively reduced at the 100 μg/kg dose in hTau/mTau-/- mice. Behavioral suppression and decreased tau phosphorylation persisted at 24 h following LPS administration in hTau/mTau+/- mice.
Collapse
Affiliation(s)
- Matthew R Barron
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jane Gartlon
- EMEA Knowledge Centre, Eisai Ltd., Hatfield, United Kingdom
| | | | | | - Marie-Christine Pardon
- School of Life Sciences, Division of Physiology, Pharmacology and Neuroscience, Medical School, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
10
|
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by extracellular β-amyloid plaques and intracellular neurofibrillary tangles (NFTs), which are considered as major targets for AD therapies. However, no effective therapy is available to cure or prevent the progression of AD up until now. Accumulation of NFTs, which consist of abnormally hyperphosphorylated tau, is directly correlated with the degree of dementia in AD patients. Emerging evidence indicates that the prion-like seeding and spreading of tau pathology may be the key driver of AD. In the past decades, greater understanding of tau pathway reveals new targets for the development of specific therapies. Here, we review the recent research progress in the mechanism underlying tau pathology in AD and briefly introduce tau-based therapeutics.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, United States
| |
Collapse
|
11
|
Hasegawa M. Structure of NFT: Biochemical Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:23-34. [PMID: 32096025 DOI: 10.1007/978-981-32-9358-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurofibrillary tangle (NFT), bundle of paired helical filaments in neurons is one of the defining features of Alzheimer's disease (AD) and their spreads well correlate with disease symptoms and progression of AD. Using the unusual insolubility, NFTs were partially purified and the antibodies were produced. Characterization of these antibodies and biochemical studies of tau in AD revealed that a hyperphosphorylated tau protein is the major component of NFTs. In 1998, mutations in the tau gene were discovered in FTDP-17, demonstrating that abnormalities of tau cause accumulation of tau and neurodegeneration. Abnormal tau pathology occurs not only in AD, but also in other neurodegenerative dementing disorders, such as Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). The tau isoforms accumulated in these inclusions are different among the diseases. Biochemical and proteinchemical analyses of these pathological tau proteins in these tauopathies demonstrated that the protease-resistant cores of the tau aggregates are composed of different microtubule binding regions and distinct between the diseases. Recent Cryo-EM analyses revealed the core structures of tau filaments in AD and PiD, confirming our biochemical observations. Further studies of tau and other abnormal proteins will provide important insights into molecular mechanisms of protein aggregation and prion-like propagation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
12
|
Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET Tracers for Imaging Proteinopathies. Semin Nucl Med 2017; 47:553-575. [PMID: 28826526 DOI: 10.1053/j.semnuclmed.2017.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we provide a review of the challenges and advances in developing successful PET imaging agents for 3 major types of aggregated amyloid proteins: amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn). These 3 amyloids are involved in the pathogenesis of a variety of neurodegenerative diseases, referred to as proteinopathies or proteopathies, that include Alzheimer disease, Lewy body dementias, multiple system atrophy, and frontotemporal dementias, among others. In the Introduction section, we briefly discuss the history of amyloid in neurodegenerative diseases and describe why progress in developing effective imaging agents has been hampered by the failure of crystallography to provide definitive ligand-protein interactions for rational radioligand design efforts. Instead, the field has relied on largely serendipitous, trial-and-error methods to achieve useful and specific PET amyloid imaging tracers for Aβ, tau, and α-syn deposits. Because many of the proteopathies involve more than 1 amyloid protein, it is important to develop selective PET tracers for the different amyloids to help assess the relative contribution of each to total amyloid burden. We use Pittsburgh compound B to illustrate some of the critical steps in developing a potent and selective Aβ PET imaging agent. Other selective Aβ and tau PET imaging compounds have followed similar pathways in their developmental processes. Success for selective α-syn PET imaging agents has not been realized yet, but work is ongoing in multiple laboratories throughout the world. In the tau sections, we provide background regarding 3-repeat (3R) and 4-repeat (4R) tau proteins and how they can affect the binding of tau radioligands in different tauopathies. We review the ongoing efforts to assess the properties of tau ligands, which are useful in 3R, 4R, or combined 3R-4R tauopathies. Finally, we describe in the α-syn sections recent attempts to develop selective tracers to image α-synucleinopathies.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
13
|
Varghese M, Santa-Maria I, Ho L, Ward L, Yemul S, Dubner L, Księżak-Reding H, Pasinetti GM. Extracellular Tau Paired Helical Filaments Differentially Affect Tau Pathogenic Mechanisms in Mitotic and Post-Mitotic Cells: Implications for Mechanisms of Tau Propagation in the Brain. J Alzheimers Dis 2016; 54:477-96. [DOI: 10.3233/jad-160166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Merina Varghese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Ismael Santa-Maria
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libby Ward
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shrishailam Yemul
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Lauren Dubner
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanna Księżak-Reding
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
14
|
Hasegawa M. Molecular Mechanisms in the Pathogenesis of Alzheimer's disease and Tauopathies-Prion-Like Seeded Aggregation and Phosphorylation. Biomolecules 2016; 6:biom6020024. [PMID: 27136595 PMCID: PMC4919919 DOI: 10.3390/biom6020024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022] Open
Abstract
Neurofibrillary tau pathology (tangles and threads) and extracellular amyloid-β (Aβ) pathology are defining features of Alzheimer’s disease. For 25 years, most research has focused on the amyloid hypothesis of AD pathogenesis and progression. But, because of failures in clinical trials of Aβ-targeted therapies and the new concept of prion-like propagation of intracellular abnormal proteins, tau has come back into the spotlight as a candidate therapeutic target in AD. Tau pathologies are found in a range of neurodegenerative disorders, but extensive analyses of pathological tau in diseased brains has demonstrated that the abnormal tau protein in each disease is structurally distinct, supporting the idea that progression of the diverse but characteristic tau pathologies occurs through prion-like seed-dependent aggregation. Therefore, intervention in the conversion of normal tau to abnormal forms and in cell-to-cell transmission of tau may be the key to development of disease-modifying therapies for AD and other dementing disorders.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science; Setagaya-ku 156-8506, Japan.
| |
Collapse
|
15
|
Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol 2016; 131:267-280. [PMID: 26538150 PMCID: PMC4713716 DOI: 10.1007/s00401-015-1503-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 01/17/2023]
Abstract
Intracellular filamentous tau pathology is the defining feature of tauopathies, which form a subset of neurodegenerative diseases. We have analyzed pathological tau in Alzheimer’s disease, and in frontotemporal lobar degeneration associated with tauopathy to include cases with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, and ones due to intronic mutations in MAPT. We found that the C-terminal band pattern of the pathological tau species is distinct for each disease. Immunoblot analysis of trypsin-resistant tau indicated that the different band patterns of the 7–18 kDa fragments in these diseases likely reflect different conformations of tau molecular species. Protein sequence and mass spectrometric analyses revealed the carboxyl-terminal region (residues 243–406) of tau comprises the protease-resistant core units of the tau aggregates, and the sequence lengths and precise regions involved are different among the diseases. These unique assembled tau cores may be used to classify and diagnose disease strains. Based on these results, we propose a new clinicopathological classification of tauopathies based on the biochemical properties of tau.
Collapse
|
16
|
Dan A, Takahashi M, Masuda-Suzukake M, Kametani F, Nonaka T, Kondo H, Akiyama H, Arai T, Mann DMA, Saito Y, Hatsuta H, Murayama S, Hasegawa M. Extensive deamidation at asparagine residue 279 accounts for weak immunoreactivity of tau with RD4 antibody in Alzheimer's disease brain. Acta Neuropathol Commun 2013; 1:54. [PMID: 24252707 PMCID: PMC3893535 DOI: 10.1186/2051-5960-1-54] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 08/17/2013] [Indexed: 11/25/2022] Open
Abstract
Background Intracytoplasmic inclusions composed of filamentous tau proteins are defining characteristics of neurodegenerative tauopathies, but it remains unclear why different tau isoforms accumulate in different diseases and how they induce abnormal filamentous structures and pathologies. Two tau isoform-specific antibodies, RD3 and RD4, are widely used for immunohistochemical and biochemical studies of tau species in diseased brains. Results Here, we show that extensive irreversible post-translational deamidation takes place at asparagine residue 279 (N279) in the RD4 epitope of tau in Alzheimer’s disease (AD), but not corticobasal degeneration (CBD) or progressive supranuclear palsy (PSP), and this modification abrogates the immunoreactivity to RD4. An antiserum raised against deamidated RD4 peptide specifically recognized 4R tau isoforms, regardless of deamidation, and strongly stained tau in AD brain. We also found that mutant tau with N279D substitution showed reduced ability to bind to microtubules and to promote microtubule assembly. Conclusion The biochemical and structural differences of tau in AD from that in 4R tauopathies found in this study may therefore have implications for prion-like propagation of tau.
Collapse
|
17
|
Isoform transition from four-repeat to three-repeat tau underlies dendrosomatic and regional progression of neurofibrillary pathology. Acta Neuropathol 2013; 125:565-79. [PMID: 23407988 DOI: 10.1007/s00401-013-1097-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 02/03/2013] [Indexed: 10/27/2022]
Abstract
Regional progression of neurofibrillary tangles (NFTs) around the hippocampus was traced on thick sections double immunofluorolabeled with RD3 and RD4 antibodies, specific for three- and four-repeat tau, respectively. As reported, the cubic density of all tau-positive neurons was predominant in the entorhinal cortex and cornu ammonis (CA)1, and decreased progressively to the CA2-4 subregions. Among the three isoform profiles (RD3+/4-, RD3+/4+, and RD3-/4+), this regional gradient was replicated with RD3+/4- and RD3+/4+ neurons, while RD3-/4+ neurons exhibited the reverse gradient. Comparison of the subregion pairs confirmed a consistent profile shift along this gradient in every case regardless of the abundance of NFTs. To clarify the underlying mechanism of this regional profile shift, intraneuronal intensity of RD3 and RD4 immunoreactivity (IR) was quantified. Although their intensities were both lower in dendrites than in the soma, this gradient was steeper with RD4, leaving RD3 IR in dendrites. Dendritic arborization was abundant in RD3-/4+ pretangles, attenuated in RD3+/4+ neurons, and further attenuated in RD3+/4- ghost tangles. These findings suggest that dendritic RD4 IR retracts first, leaving RD3 IR in the dendrites. Taken together, this dendrite-oriented retraction initiates the gradual shift from RD3-/4+ pretangle neurons to RD3+/4- ghost tangles by way of RD3+/4+ NFTs. This intraneuronal profile shift may be a basis for the regional gradation featured by the similar profile shift during progression of NFT pathology.
Collapse
|
18
|
Abstract
Six tau isoforms differing in their affinity for microtubules are produced by alternative splicing from the MAPT (microtubule-associated protein tau) gene in adult human brain. Several MAPT mutations causing the familial tauopathy, FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17), affect alternative splicing of exon 10, encoding a microtubule-binding motif. Advanced RNA analysis methods have suggested that levels of exon 10-containing MAPT mRNA are elevated in Alzheimer's disease. Furthermore, the MAPT H1 haplotype, associated with Alzheimer's disease, promotes exon 10 inclusion in MAPT mRNA. Thus an accurate regulation of tau alternative splicing is critical for the maintenance of neuronal viability, and its alteration might be a contributing factor to Alzheimer's disease. Tau alternative splicing could represent a target for therapeutic intervention to delay the progression of pathology in familial as well as sporadic tauopathies.
Collapse
|
19
|
Voss K, Combs B, Patterson KR, Binder LI, Gamblin TC. Hsp70 alters tau function and aggregation in an isoform specific manner. Biochemistry 2012; 51:888-98. [PMID: 22236337 DOI: 10.1021/bi2018078] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tauopathies are characterized by abnormal aggregation of the microtubule associated protein tau. This aggregation is thought to occur when tau undergoes shifts from its native conformation to one that exposes hydrophobic areas on separate monomers, allowing contact and subsequent association into oligomers and filaments. Molecular chaperones normally function by binding to exposed hydrophobic stretches on proteins and assisting in their refolding. Chaperones of the heat shock protein 70 (Hsp70) family have been implicated in the prevention of abnormal tau aggregation in adult neurons. Tau exists as six alternatively spliced isoforms, and all six isoforms appear capable of forming the pathological aggregates seen in Alzheimer's disease. Because tau isoforms differ in primary sequence, we sought to determine whether Hsp70 would differentially affect the aggregation and microtubule assembly characteristics of the various tau isoforms. We found that Hsp70 inhibits tau aggregation directly and not through inducer-mediated effects. We also determined that Hsp70 inhibits the aggregation of each individual tau isoform and was more effective at inhibiting the three repeat isoforms. Finally, all tau isoforms robustly induced microtubule formation while in the presence of Hsp70. The results presented herein indicate that Hsp70 affects tau isoform dysfunction while having very little impact on the normal function of tau to mediate microtubule assembly. This indicates that targeting Hsp70 to tau may provide a therapeutic approach for the treatment of tauopathies that avoids disruption of normal tau function.
Collapse
Affiliation(s)
- Kellen Voss
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | | | | | | | | |
Collapse
|
20
|
RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 2011; 31:1812-21. [PMID: 21343338 DOI: 10.1128/mcb.01149-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.
Collapse
|
21
|
Wegiel J, Kaczmarski W, Barua M, Kuchna I, Nowicki K, Wang KC, Wegiel J, Yang SM, Frackowiak J, Mazur-Kolecka B, Silverman WP, Reisberg B, Monteiro I, de Leon M, Wisniewski T, Dalton A, Lai F, Hwang YW, Adayev T, Liu F, Iqbal K, Iqbal IG, Gong CX. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J Neuropathol Exp Neurol 2011; 70:36-50. [PMID: 21157379 PMCID: PMC3083064 DOI: 10.1097/nen.0b013e318202bfa1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Triplication of chromosome 21 in Down syndrome (DS) results in overexpression of the minibrain kinase/dual-specificity tyrosine phosphorylated and regulated kinase 1A gene (DYRK1A). DYRK1A phosphorylates cytoplasmic tau protein and appears in intraneuronal neurofibrillary tangles (NFTs). We have previously shown significantly more DYRK1A-positive NFTs in DS brains than in sporadic Alzheimer disease (AD) brains. This study demonstrates a gene dosage-proportional increase in the level of DYRK1A in DS in the cytoplasm and the cell nucleus, and enhanced cytoplasmic and nuclear immunoreactivity of DYRK1A in DS. The results suggest that overexpressed DYRK1A may alter both phosphorylation of tau and alternative splicing factor (ASF). Two-dimensional electrophoresis revealed modification of ASF phosphorylation in DS/AD and AD in comparison to controls. Altered phosphorylation of ASF by overexpressed nuclear DYRK1A may contribute to the alternative splicing of the tau gene and an increase by 2.68 × of the 3R/4R ratio in DS/AD, and a several-fold increase in the number of 3R tau-positive NFTs in DS/AD subjects compared with that in sporadic AD subjects. These data support the hypothesis that phosphorylation of ASF by overexpressed DYRK1A may contribute to alternative splicing of exon 10, increased expression of 3R tau, and early onset of neurofibrillary degeneration in DS.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Motoi Y, Sahara N, Kambe T, Hattori N. Tau and neurodegenerative disorders. Biomol Concepts 2010; 1:131-45. [DOI: 10.1515/bmc.2010.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractThe mechanisms that render tau a toxic agent are still unclear, although increasing evidence supports the assertion that alterations of tau can directly cause neuronal degeneration. In addition, it is unclear whether neurodegeneration in various tauopathies occurs via a common mechanism or that specific differences exist. The aim of this review is to provide an overview of tauopathies from bench to bedside. The review begins with clinicopathological findings of familial and sporadic tauopathies. It includes a discussion of the similarities and differences between these two conditions. The second part concentrates on biochemical alterations of tau such as phosphorylation, truncation and acetylation. Although pathological phosphorylation of tau has been studied for many years, recently researchers have focused on the physiological role of tau during development. Finally, the review contains a summary of the significance of tauopathy model mice for research on neurofibrillary tangles, axonopathies, and synaptic alteration.
Collapse
Affiliation(s)
- Yumiko Motoi
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Naruhiko Sahara
- 2Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taiki Kambe
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Nobutaka Hattori
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| |
Collapse
|
23
|
Schraen-Maschke S, Sergeant N, Dhaenens CM, Bombois S, Deramecourt V, Caillet-Boudin ML, Pasquier F, Maurage CA, Sablonnière B, Vanmechelen E, Buée L. Tau as a biomarker of neurodegenerative diseases. Biomark Med 2010; 2:363-84. [PMID: 20477391 DOI: 10.2217/17520363.2.4.363] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The microtubule-associated protein Tau is mainly expressed in neurons of the CNS and is crucial in axonal maintenance and axonal transport. The rationale for Tau as a biomarker of neurodegenerative diseases is that it is a major component of abnormal intraneuronal aggregates observed in numerous tauopathies, including Alzheimer's disease. The molecular diversity of Tau is very useful when analyzing it in the brain or in the peripheral fluids. Immunohistochemical and biochemical characterization of Tau aggregates in the brain allows the postmortem classification and differential diagnosis of tauopathies. As peripheral biomarkers of Alzheimer's disease in the cerebrospinal fluid, Tau proteins are now validated for diagnosis and predictive purposes. For the future, the detailed characterization of Tau in the brain and in peripheral fluids will lead to novel promising biomarkers for differential diagnosis of dementia and monitoring of therapeutics.
Collapse
|
24
|
Sutherland GT, Nowak G, Halliday GM, Kril JJ. Tau isoform expression in frontotemporal dementia without tau deposition. J Clin Neurosci 2007; 14:1182-5. [DOI: 10.1016/j.jocn.2006.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/13/2006] [Accepted: 10/18/2006] [Indexed: 11/27/2022]
|
25
|
Conrad C, Zhu J, Conrad C, Schoenfeld D, Fang Z, Ingelsson M, Stamm S, Church G, Hyman BT. Single molecule profiling of tau gene expression in Alzheimer's disease. J Neurochem 2007; 103:1228-36. [PMID: 17727636 DOI: 10.1111/j.1471-4159.2007.04857.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tau is a microtubule-associated protein that is important for establishing and maintaining neuronal morphology. In addition to its role in normal cells, tau protein is involved in many neurodegenerative diseases, e.g. Alzheimer's disease (AD) and frontotemporal dementia, as the main component of intraneuronal aggregates. Alternative splicing of tau gene in the brain can give rise to at least six protein variants. A causative role of skewed tau exon 10 inclusion has been defined in frontotemporal dementia; however, no link was established between the aberrant splicing of tau and AD. Here, we applied a single-molecule-based technology, polymerase colony or polony, to simultaneously monitor tau splicing variant and haplotype profile in sporadic AD and normal brains. We found that the coordinated expression of tau exons 2 and 10 is altered in AD. Additional investigations of cis and trans mechanisms of this observation revealed a decreased protein expression of a known tau splicing factor, htra2-beta-1 in AD, thereby implicating a trans mechanism. Our results demonstrate that dysregulation of combinatorial splicing might serve as a signature for aging-related diseases, and the polony assay could be widely adapted for the study of other tauopathies. Furthermore, splicing-based therapeutics is an emerging area of drug development, and a well-defined and quantitative assay for monitoring single-gene transcriptome will be relevant for such development.
Collapse
Affiliation(s)
- Chris Conrad
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bracco L, Throo E, Cochet O, Einstein R, Maurier F. Methods and platforms for the quantification of splice variants' expression. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 44:1-25. [PMID: 17076262 DOI: 10.1007/978-3-540-34449-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The relatively limited number of human protein encoding genes highlights the importance of the diversity generated at the level of the mRNA transcripts. As alternative RNA splicing plays a key role in mediating this diversity, it becomes critical to develop the tools and platforms that will deliver quantitative information on the specific expression levels associated with splice isoforms. This chapter describes the constraints generated by this global transcriptome analysis and the state-of-the-art techniques and products available to the scientific community.
Collapse
Affiliation(s)
- Laurent Bracco
- ExonHit Therapeutics, 65 Boulevard Masséna, F-75013 Paris
| | | | | | | | | |
Collapse
|
27
|
Abstract
Filamentous tau deposits in neurons or glial cells are the hallmark lesions of neurodegenerative tauopathies, such as Alzheimer's disease, Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Biochemical analyses of Sarkosyl-insoluble tau from brains with tauopathies have revealed that tau deposits in different diseases consisted of different tau isoforms (i.e., all six tau isoforms occur in Alzheimer's disease, four repeat tau isoforms occur in corticobasal degeneration or progressive supranuclear palsy, and three repeat tau isoforms occur in Pick's disease). The discovery of mutations in the tau gene in FTDP-17 has established that abnormalities in tau function or expression are sufficient to cause filamentous aggregation of hyperphosphorylated tau and neurodegeneration similar to that seen in sporadic tauopathies. Because the number of tau inclusions and their regional distribution correlate with clinical symptoms, inhibition of tau aggregation or filament formation in neurons or glial cells may prevent neurodegeneration. We have investigated the effects of 42 compounds belonging to nine different chemical classes on tau filament formation, and found that several phenothiazine and polyphenol compounds, and one porphyrin compound inhibit tau filament formation.
Collapse
Affiliation(s)
- Masato Hasegawa
- Department of Molecular Neurobiology, Tokyo Institute of Psychiatry, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan.
| |
Collapse
|
28
|
Wakabayashi K, Mori F, Hasegawa M, Kusumi T, Yoshimura I, Takahashi H, Kaneko S. Co-localization of beta-peptide and phosphorylated tau in astrocytes in a patient with corticobasal degeneration. Neuropathology 2006; 26:66-71. [PMID: 16521482 DOI: 10.1111/j.1440-1789.2006.00635.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The co-localization of amyloid beta (Abeta) and phosphorylated tau in astrocytes in a patient with corticobasal degeneration is described. At autopsy, the present case exhibited neuropathological findings compatible with those of corticobasal degeneration, including atrophy of the frontal and temporal lobes, neuronal loss and gliosis in the cortical and subcortical regions, and presence of cortical ballooned neurons and astrocytic plaques. Moreover, many senile plaques were found in the cerebral cortex. There were also clusters of Abeta-positive granules associated with astrocytic cytoplasm and processes in the subiculum and entorhinal cortex. In the entorhinal cortex, the Abeta-positive granules were occasionally co-localized with phosphorylated tau-positive fibrillary structures in the astrocytic cytoplasm. To our knowledge, this is the first demonstration of co-localization of Abeta and phosphorylated tau in astrocytes. This phenomenon implies that phagocytosis of Abeta coincides with production of phosphorylated tau in the same reactive astrocytes.
Collapse
Affiliation(s)
- Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H, Riederer P, Möller HJ, Andreadis A, Henkel K, Stamm S. The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer's disease. J Neurochem 2006; 96:635-44. [PMID: 16371011 DOI: 10.1111/j.1471-4159.2005.03552.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathological inclusions containing fibrillar aggregates of hyperphosphorylated tau protein are a characteristic feature in tauopathies, which include Alzheimer's disease (AD). Tau is a microtubule-associated protein whose transcript undergoes alternative splicing in the brain. Exon 10 encodes one of four microtubule-binding repeats. Exon 10 inclusion gives rise to tau protein isoforms containing four microtubule-binding repeats (4R) whereas exclusion leads to isoforms containing only three repeats (3R). The ratio between 3R and 4R isoforms is tightly controlled via alternative splicing in the human adult nervous system and distortion of this balance results in neurodegeneration. Previous studies showed that several splicing regulators, among them hTRA2-beta1 and CLK2, regulate exon 10 alternative splicing. Like most splicing factors, htra2-beta and clk2 pre-mRNAs are regulated by alternative splicing. Here, we investigated whether human postmortem brain tissue of AD patients reveal differences in alternative splicing patterns of the tau, htra2-beta, presenilin 2 and clk2 genes when compared with age-matched controls. We found that the splicing patterns of all four genes are altered in affected brain areas of sporadic AD patients. In these affected areas, the amount of mRNAs of tau isoforms including exon 10, the htra2-beta1 isoform and an inactive form of clk2 are significantly increased. These findings suggest that a misregulation of alternative splicing seems to contribute to sporadic AD.
Collapse
Affiliation(s)
- Daniela C Glatz
- Molecular and Clinical Neurobiology, Department of Psychiatry Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Novoyatleva T, Tang Y, Rafalska I, Stamm S. Pre-mRNA Missplicing as a Cause of Human Disease. ALTERNATIVE SPLICING AND DISEASE 2006; 44:27-46. [PMID: 17076263 DOI: 10.1007/978-3-540-34449-0_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regulated alternative splice site selection emerges as one of the most important mechanisms to control the expression of genetic information in humans. It is therefore not surprising that a growing number of diseases are either associated with or caused by changes in alternative splicing. These diseases can be caused by mutation in regulatory sequences of the pre-mRNA or by changes in the concentration of trans-acting factors. The pathological expression of mRNA isoforms can be treated by transferring nucleic acids derivatives into cells that interfere with sequence elements on the pre-mRNA, which results in the desired splice site selection. Recently, a growing number of low molecular weight drugs have been discovered that influence splice site selection in vivo. These findings prove the principle that diseases caused by missplicing events could eventually be cured.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- University of Erlangen, Institute for Biochemistry, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | | | |
Collapse
|
31
|
Saito Y, Motoyoshi Y, Kashima T, Izumiyama-Shimomura N, Toda T, Nakano I, Hasegawa M, Murayama S. Unique Tauopathy in Fukuyama-Type Congenital Muscular Dystrophy. J Neuropathol Exp Neurol 2005; 64:1118-26. [PMID: 16319722 DOI: 10.1097/01.jnen.0000190069.10633.c2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fukuyama-type congenital muscular dystrophy (FCMD) is characterized by muscular dystrophy and cortical dysgenesis of the cerebrum and cerebellum. We investigated the extent and nature of tauopathy in the brains of 7 postfetal (14-34 years of age) and 2 fetal (18- and 20-week gestational age) FCMD cases. In all postfetal cases, tauopathy was found in the areas of cortical dysgenesis in the cerebrum, in addition to predictable sites such as the hippocampus. In fetal cases, the neuropil of malformed cerebral cortex was diffusely immunostained with anti-aberrantly phosphorylated tau antibodies. By immunoelectron microscopy, the epitope of the antibodies was associated with microtubule-like bundles within cellular processes protruding through disrupted glia limitans. In Western blot analysis, a unique 50-kDa band of tau was detected in a fetal and a postfetal case. In addition, 3 to 4 tau bands of 60 to 68 kD, similar to tau in Alzheimer disease, were also detected in the latter. After dephosphorylation, the insoluble tau from the fetal and the postfetal cases showed highly similar immunoblotting patterns. This anomalous phosphorylation of tau may be related to the development of the cortical dysgenesis in FCMD and may shed light on the biologic function of tau in the development of the central nervous system.
Collapse
Affiliation(s)
- Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamazaki M, Hasegawa M, Mori O, Murayama S, Tsuchiya K, Ikeda K, Chen KM, Katayama Y, Oyanagi K. Tau-Positive Fine Granules in the Cerebral White Matter: A Novel Finding Among the Tauopathies Exclusive to Parkinsonism-Dementia Complex of Guam. J Neuropathol Exp Neurol 2005; 64:839-46. [PMID: 16215455 DOI: 10.1097/01.jnen.0000182977.79483.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We examined the autopsied brains of cases of 6 types of tauopathy: parkinsonism-dementia complex of Guam (PDC), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Pick disease, Alzheimer disease (AD), and myotonic dystrophy together with Guamanian controls. Light microscopy sections of these brains were examined using anti-tau antibodies. Tau-positive fine granules (TFGs) were globe-shaped, and 3 to 6 mum in diameter, were observed predominantly in the frontal white matter in 30 of the 35 patients with PDC. However, no TFGs were found in association with PSP, myotonic dystrophy, Pick disease, AD, or CBD. Western blot analysis of frozen brain tissue taken from the PDC cases revealed that the frontal cortex was hyperphosphorylated and contained 6 tau isoforms (3R+4R tau). However, in the present study, it was revealed that the novel TFGs in the white matter of patients with PDC was composed of 4R tau. Western blot analysis of sarkosyl-insoluble tau from the white matter of the PDC cases showed 2 major bands of 60 and 64 kDa and one minor band of 67 kDa. After dephosphorylation, these bands resolved into one major band of 4-repeat (4R) tau isoform and 3 minor bands of 3-repeat (3R) and 4R tau isoforms. Moreover, the TFGs observed in cases in which the number of neurofibrillary tangles (NFTs) was higher than the threshold level were not correlated with the presence of cortical NFTs. In conclusion, these novel TFGs were found almost exclusively in PDC brains and could therefore be considered as a characteristic neuropathologic marker of this particular tauopathy. The TFGs were hyperphosphorylated tau-positive structures that may be formed by a different mechanism from that used to produce cortical NFTs.
Collapse
Affiliation(s)
- Mineo Yamazaki
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu-shi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Connell JW, Rodriguez-Martin T, Gibb GM, Kahn NM, Grierson AJ, Hanger DP, Revesz T, Lantos PL, Anderton BH, Gallo JM. Quantitative analysis of tau isoform transcripts in sporadic tauopathies. ACTA ACUST UNITED AC 2005; 137:104-9. [PMID: 15950767 DOI: 10.1016/j.molbrainres.2005.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/27/2005] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Abstract
A number of neurodegenerative diseases, including Alzheimer's disease (AD), are characterized by intraneuronal accumulation of the tau protein. Some forms of FTDP-17 are caused by mutations in the tau gene affecting exon 10 splicing. Therefore, dysregulation of tau pre-mRNA splicing may be a contributing factor to sporadic tauopathies. To address this question, we devised a real-time RT-PCR strategy based on the use of a single fluorogenic probe to evaluate the ratio between tau isoforms containing or lacking exon 10 (4R/3R ratio) in post-mortem brain samples. We found a two- to six-fold increase in the 4R/3R ratio in cases of FTDP-17 linked to a splice site mutation, hence confirming the validity of the strategy. The difference in the 4R/3R ratio in the superior temporal and superior frontal gyri between AD and control brains was not statistically significant. Similarly, there was no significant difference in the 4R/3R ratio between Pick's disease cases and controls, indicating that the predominance of tau3R protein in PiD reflects post-translational modifications of specific isoforms. This study indicates that post-translational events are likely to be the main factors controlling tau isoform composition in sporadic tauopathies and highlights the benefit of quantitative RT-PCR in the assessment of splicing abnormalities in tauopathies.
Collapse
Affiliation(s)
- J W Connell
- Department of Neuroscience, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fehlbaum P, Guihal C, Bracco L, Cochet O. A microarray configuration to quantify expression levels and relative abundance of splice variants. Nucleic Acids Res 2005; 33:e47. [PMID: 15760843 PMCID: PMC1064144 DOI: 10.1093/nar/gni047] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/17/2005] [Accepted: 02/17/2005] [Indexed: 01/17/2023] Open
Abstract
Over the past decade, alternative RNA splicing has raised a great interest appearing to be of high importance in the generation of expression diversity. This regulatory process plays a critical role in the normal development and its impact on the initiation and development of human disorders as well as on the pharmacological properties of drugs is increasingly being recognized. Only few studies describe specific alternative splicing expression profiling. Microarray strategies have been conceived to address alternative splicing events but with very few experimental data related to their abilities to provide true quantification values. We have developed a specific microarray configuration relying on a few, well optimized probes per splice event. Basically, five probes of 24mer are used to fully characterize a splice event. These probes are of two types, exon probes and junction probes, and are either specific to a splice event or not. The performances of such a 'splice array' were validated on synthetic model systems and on complex biological materials. The results indicate that DNA chips based on this design combining exon and junction derived probes enable the detection and, absolute and relative quantification of splice variants. In addition, this strategy is compatible with all the microarrays that use oligonucleotide probes.
Collapse
Affiliation(s)
- Pascale Fehlbaum
- ExonHit Therapeutics63/65 boulevard Masséna, 75013 Paris, France
| | - Caroline Guihal
- ExonHit Therapeutics63/65 boulevard Masséna, 75013 Paris, France
| | - Laurent Bracco
- ExonHit Therapeutics63/65 boulevard Masséna, 75013 Paris, France
| | - Olivier Cochet
- ExonHit Therapeutics63/65 boulevard Masséna, 75013 Paris, France
| |
Collapse
|