1
|
Chandel S, Manikandan A, Mehta N, Nathan AA, Tiwari RK, Mohapatra SB, Chandran M, Jaleel A, Manoj N, Dixit M. The protein tyrosine phosphatase PTP-PEST mediates hypoxia-induced endothelial autophagy and angiogenesis via AMPK activation. J Cell Sci 2021; 134:jcs250274. [PMID: 33323505 DOI: 10.1242/jcs.250274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Global and endothelial loss of PTP-PEST (also known as PTPN12) is associated with impaired cardiovascular development and embryonic lethality. Although hypoxia is implicated in vascular remodelling and angiogenesis, its effect on PTP-PEST remains unexplored. Here we report that hypoxia (1% oxygen) increases protein levels and catalytic activity of PTP-PEST in primary endothelial cells. Immunoprecipitation followed by mass spectrometry revealed that α subunits of AMPK (α1 and α2, encoded by PRKAA1 and PRKAA2, respectively) interact with PTP-PEST under normoxia but not in hypoxia. Co-immunoprecipitation experiments confirmed this observation and determined that AMPK α subunits interact with the catalytic domain of PTP-PEST. Knockdown of PTP-PEST abrogated hypoxia-mediated tyrosine dephosphorylation and activation of AMPK (Thr172 phosphorylation). Absence of PTP-PEST also blocked hypoxia-induced autophagy (LC3 degradation and puncta formation), which was rescued by the AMPK activator metformin (500 µM). Because endothelial autophagy is a prerequisite for angiogenesis, knockdown of PTP-PEST also attenuated endothelial cell migration and capillary tube formation, with autophagy inducer rapamycin (200 nM) rescuing angiogenesis. In conclusion, this work identifies for the first time that PTP-PEST is a regulator of hypoxia-induced AMPK activation and endothelial autophagy to promote angiogenesis.
Collapse
Affiliation(s)
- Shivam Chandel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Amrutha Manikandan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Nikunj Mehta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Abel Arul Nathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Rakesh Kumar Tiwari
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Samar Bhallabha Mohapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Mahesh Chandran
- Cardiovascular Disease and Diabetes Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thyacaud Post, Thiruvananthpuram, Kerala 695014, India
| | - Abdul Jaleel
- Cardiovascular Disease and Diabetes Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thyacaud Post, Thiruvananthpuram, Kerala 695014, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| | - Madhulika Dixit
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu 600036, India
| |
Collapse
|
2
|
Favié LMA, Cox AR, van den Hoogen A, Nijboer CHA, Peeters-Scholte CMPCD, van Bel F, Egberts TCG, Rademaker CMA, Groenendaal F. Nitric Oxide Synthase Inhibition as a Neuroprotective Strategy Following Hypoxic-Ischemic Encephalopathy: Evidence From Animal Studies. Front Neurol 2018; 9:258. [PMID: 29725319 PMCID: PMC5916957 DOI: 10.3389/fneur.2018.00258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy following perinatal asphyxia is a leading cause of neonatal death and disability worldwide. Treatment with therapeutic hypothermia reduced adverse outcomes from 60 to 45%. Additional strategies are urgently needed to further improve the outcome for these neonates. Inhibition of nitric oxide synthase (NOS) is a potential neuroprotective target. This article reviews the evidence of neuroprotection by nitric oxide (NO) synthesis inhibition in animal models. METHODS Literature search using the EMBASE, Medline, Cochrane, and PubMed databases. Studies comparing NOS inhibition to placebo, with neuroprotective outcome measures, in relevant animal models were included. Methodologic quality of the included studies was assessed. RESULTS 26 studies were included using non-selective or selective NOS inhibition in rat, piglet, sheep, or rabbit animal models. A large variety in outcome measures was reported. Outcome measures were grouped as histological, biological, or neurobehavioral. Both non-selective and selective inhibitors show neuroprotective properties in one or more outcome measures. Methodologic quality was either low or moderate for all studies. CONCLUSION Inhibition of NO synthesis is a promising strategy for additional neuroprotection. In humans, intervention can only take place after the onset of the hypoxic-ischemic event. Therefore, combined inhibition of neuronal and inducible NOS seems the most likely candidate for human clinical trials. Future studies should determine its safety and effectiveness in neonates, as well as a potential sex-specific neuroprotective effect. Researchers should strive to improve methodologic quality of animal intervention studies by using a systematic approach in conducting and reporting of these studies.
Collapse
Affiliation(s)
- Laurent M. A. Favié
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Arlette R. Cox
- Department of Pharmacy, Academic Medical Center, Amsterdam, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cora H. A. Nijboer
- Laboratory of NeuroImmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Frank van Bel
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine C. G. Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Carin M. A. Rademaker
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Noninvasive monitoring of brain edema after hypoxia in newborn piglets. Pediatr Res 2018; 83:484-490. [PMID: 29069074 DOI: 10.1038/pr.2017.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
BackgroundDevelopment of cerebral edema after brain injury carries a high risk for brain damage and death. The present study tests the ability of a noninvasive cerebral edema monitoring system that uses near-infrared spectroscopy (NIRS) with water as the chromophore of interest to detect brain edema following hypoxia.MethodsVentilated piglets were exposed to hypoxia for 1 h, and then returned to normal oxygen levels for 4 h. An NIRS sensor was placed on the animal's head at baseline, and changes in light attenuation were converted to changes in H2O. Cerebral water content and aquaporin-4 protein (AQP4) expression were measured.ResultsThe system detected changes in NIRS-derived water signal as early as 2 h after hypoxia, and provided fivefold signal amplification, representing a 10% increase in brain water content and a sixfold increase in AQP4, 4 h after hypoxia. Changes in water signal correlated well with changes in cerebral water content (R=0.74) and AQP4 expression (R=0.97) in the piglet brain.ConclusionThe data show that NIRS can detect cerebral edema early in the injury process, thus providing an opportunity to initiate therapy at an earlier and more effective time-point after an insult than is available with current technology.
Collapse
|
4
|
Effects of Src Kinase Inhibition on Expression of Protein Tyrosine Phosphatase 1B after Brain Hypoxia in a Piglet Animal Model. Mediators Inflamm 2017. [PMID: 28626342 PMCID: PMC5463160 DOI: 10.1155/2017/2810295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Protein tyrosine phosphatases (PTPs) in conjunction with protein tyrosine kinases (PTKs) regulate cellular processes by posttranslational modifications of signal transduction proteins. PTP nonreceptor type 1B (PTP-1B) is an enzyme of the PTP family. We have previously shown that hypoxia induces an increase in activation of a class of nonreceptor PTK, the Src kinases. In the present study, we investigated the changes that occur in the expression of PTP-1B in the cytosolic component of the brain of newborn piglets acutely after hypoxia as well as long term for up to 2 weeks. Methods Newborn piglets were divided into groups: normoxia, hypoxia, hypoxia followed by 1 day and 15 days in FiO2 0.21, and hypoxia pretreated with Src kinase inhibitor PP2, prior to hypoxia followed by 1 day and 15 days. Hypoxia was achieved by providing 7% FiO2 for 1 hour and PTP-1B expression was measured via immunoblotting. Results PTP-1B increased posthypoxia by about 30% and persisted for 2 weeks while Src kinase inhibition attenuated the expected PTP-1B-increased expression. Conclusions Our study suggests that Src kinase mediates a hypoxia-induced increased PTP-1B expression.
Collapse
|
5
|
Taheripak G, Bakhtiyari S, Rajabibazl M, Pasalar P, Meshkani R. Protein tyrosine phosphatase 1B inhibition ameliorates palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells. Free Radic Biol Med 2013; 65:1435-1446. [PMID: 24120971 DOI: 10.1016/j.freeradbiomed.2013.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signaling pathway and is considered a promising therapeutic target in the treatment of diabetes. However, the role of PTP1B in palmitate-induced mitochondrial dysfunction and apoptosis in skeletal muscle cells has not been studied. Here we investigate the effects of PTP1B modulation on mitochondrial function and apoptosis and elucidate the underlying mechanisms in skeletal muscle cells. PTP1B inhibition significantly reduced palmitate-induced mitochondrial dysfunction and apoptosis in C2C12 cells, as these cells had increased expression levels of PGC-1α, Tfam, and NRF-1; enhanced ATP level and cellular viability; decreased TUNEL-positive cells; and decreased caspase-3 and -9 activity. Alternatively, overexpression of PTP1B resulted in mitochondrial dysfunction and apoptosis in these cells. PTP1B silencing improved mitochondrial dysfunction by an increase in the expression of SIRT1 and a reduction in the phosphorylation of p65 NF-κB. The protection from palmitate-induced apoptosis by PTP1B inhibition was also accompanied by a decrease in protein level of serine palmitoyl transferase, thus resulting in lower ceramide content in muscle cells. Exogenous addition of C2-ceramide to PTP1B-knockdown cells led to a reduced generation of reactive oxygen species (ROS), whereas PTP1B overexpression demonstrated an elevated ROS production in myotubes. In addition, PTP1B inhibition was accompanied by decreased JNK phosphorylation and increased insulin-stimulated Akt (Ser473) phosphorylation, whereas overexpression of PTP1B had the opposite effect. The overexpression of PTP1B also induced the nuclear localization of FOXO-1, but in contrast, suppression of PTP1B reduced palmitate-induced nuclear localization of FOXO-1. In summary, our results indicate that PTP1B modulation results in (1) alterations in mitochondrial function by changes in the activity of SIRT1/NF-κB/PGC-1α pathways and (2) changes in apoptosis that result from either a direct effect of PTP1B on the insulin signaling pathway or an indirect influence on ceramide content, ROS generation, JNK activation, and FOXO-1 nuclear translocation.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Pasalar
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran.
| |
Collapse
|
6
|
Delivoria-Papadopoulos M. Mechanism of caspase-9 activation during hypoxia in the cerebral cortex of newborn piglets: the role of Src kinase. Neurosci Lett 2012; 523:19-23. [PMID: 22728821 PMCID: PMC3430369 DOI: 10.1016/j.neulet.2012.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022]
Abstract
We have previously shown that hypoxia results in increased activation of caspase-9 in the cerebral cortex of newborn piglets. The present study tests the hypothesis that the increased activation of caspase-9 during hypoxia is mediated by Src kinase. To test this hypothesis a highly selective Src kinase inhibitor PP2 [IC(50) 5 nm] was administered to prevent caspase-9 activation during hypoxia. Cytosolic fraction from the cerebral cortical tissue was isolated and the activation of caspase-9 was documented by the expression of active caspase-9 and the activity of caspase-9 and caspase-3. Piglets were divided into: normoxic (Nx, n=5), hypoxic (Hx, n=5) and hypoxic-treated with Src inhibitor (Hx-PP2). Hypoxia was induced by decreasing FiO(2) to 0.07 for 60 min. PP2 was administered (0.4 mg/kg, i.v.) 30 min prior to hypoxia. ATP and phosphocreatine (PCr) levels were determined to document cerebral tissue hypoxia. Activity of caspase-9 and caspase-3 were determined spectrofluorometrically using specific fluorogenic substrates. Expression of active caspase-9 was determined by Western blot using active caspase-9 antibody. Caspase-9 activity (nmoles/mg protein/h) was 1.40±0.12 in Nx, 2.12±0.11 in Hx (p<0.05 vs Nx) and 1.61±0.14 in Hx-PP2 (p<0.05 vs Hx). Active caspase-9 expression (OD×mm(2)) was 42.3±8.3 in Nx, 78.9±11.0 in Hx (p<0.05 vs Nx) and 41.2±7.6 in Hx-PP2 (p<0.05 vs Hx). Caspase-3 activity (nmoles/mg protein/h) was 4.11±0.1 in Nx, 6.51±0.1 in Hx (p<0.05 vs Nx) and 4.57±0.7 in Hx+PP2 (p<0.05 vs Hx). Active caspase-3 expression (OD×mm(2)) was 392.1±23.1 in Nx, 645.0±90.3 in Hx (p<0.05 vs Nx) and 329.7±51.5 in Hx-PP2 (p<0.05 vs Hx). The data show that pretreatment with Src kinase inhibitor prevents the hypoxia-induced increased expression of active caspase-9 and the activity of caspase-9. Src kinase inhibitor also prevented the hypoxia-induced increased activation of caspase-3, a consequence of caspase-9 activation. We conclude that the hypoxia-induced activation of caspase-9 is mediated by Src kinase. We propose Src kinase-dependent tyrosine phosphorylation (Tyr(154)) in the active site domain of caspase-9 is a potential mechanism of caspase-9 activation in the hypoxic brain.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19102, USA.
| |
Collapse
|
7
|
Mishra OP, Delivoria-Papadopoulos M. Mechanism of tyrosine phosphorylation of procaspase-9 and Apaf-1 in cytosolic fractions of the cerebral cortex of newborn piglets during hypoxia. Neurosci Lett 2010; 480:35-9. [PMID: 20570712 PMCID: PMC2910624 DOI: 10.1016/j.neulet.2010.05.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 01/12/2023]
Abstract
Previous studies have shown that cerebral hypoxia results in increased activity of caspase-9 in the cytosolic fraction of the cerebral cortex of newborn piglets. The present study tests the hypothesis that hypoxia results in increased tyrosine phosphorylation of procaspase-9 and apoptotic protease activating factor-1 (Apaf-1) and the hypoxia-induced increased tyrosine phosphorylation of procaspase-9 and Apaf-1 is mediated by nitric oxide. To test this hypothesis, 15 newborn piglets were divided into three groups: normoxic (Nx, n=5), hypoxic (Hx, n=5) and hypoxic treated with nNOS inhibitor I (Hx+nNOS I 0.4mg/kg, i.v., 30min prior to hypoxia) [16]. The hypoxic piglets were exposed to an FiO(2) of 0.06 for 1h. Tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Cytosolic fractions were isolated and tyrosine phosphorylated procaspase-9 and Apaf-1 were determined by immunoblotting using specific anti-procaspase-9, anti-Apaf-1 and anti-phosphotyrosine antibodies. ATP levels (mumoles/g brain) were 4.3+/-0.2 in the Nx and 1.4+/-0.3 in the Hx and 1.7+/-0.3 in Hx+nNOS I group (p<0.05 vs. Nx) groups. PCr levels (mumoles/g brain) were 3.8+/-0.3 in the Nx and 0.9+/-0.2 in the Hx and 1.0+/-0.4 in the Hx+nNOS I (p<0.05 vs. Nx) group. Density (ODxmm(2)) of tyrosine phosphorylatd procaspase-9 was 412+/-8 in the Nx, 1286+/-12 in the Hx (p<0.05 vs. Nx) and 421+/-10 in the Hx+nNOS I (p<0.05 vs. Hx) group. Density of tyrosine phosphorylated Apaf-1 was 11.72+/-1.11 in Nx, 24.50+/-2.33 in Hx (p<0.05 vs. Nx) and 16.63+/-1.57 in Hx+nNOS I (p<0.05 vs. Hx) group. We conclude that hypoxia results in increased tyrosine phosphorylation of procaspase-9 and Apaf-1 proteins in the cytosolic compartment and the hypoxia-induced increased tyrosine phosphorylation of procaspase-9 and Apaf-1 is mediated by nNOS derived nitric oxide. We propose that increased interaction between the tyrosine phosphorylated procaspase-9 and Apaf-1 molecules lead to increased activation of procaspase-9 to caspase-9 in the hypoxic brain that initiates programmed neuronal death.
Collapse
Affiliation(s)
- Om P Mishra
- Department of Pediatrics, Drexel University College of Medicine and St Christopher's Hospital for Children, Philadelphia, PA 19102, United States.
| | | |
Collapse
|
8
|
Mishra OP, Ashraf QM, Delivoria-Papadopoulos M. Hypoxia-induced activation of epidermal growth factor receptor (EGFR) kinase in the cerebral cortex of newborn piglets: the role of nitric oxide. Neurochem Res 2010; 35:1471-7. [PMID: 20532621 DOI: 10.1007/s11064-010-0208-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/26/2010] [Indexed: 01/26/2023]
Abstract
The present study aims to investigate the mechanism of EGFR kinase activation during hypoxia and tests the hypothesis that hypoxia-induced increased activation of EGFR kinase in the cerebral cortical membrane fraction of newborn piglets is mediated by nitric oxide (NO) derived from neuronal nitric oxide synthase (nNOS). Fifteen newborn piglets were divided into normoxic (Nx, n = 5), hypoxic (Hx, n = 5) and hypoxic-treated with nNOS inhibitor (Hx-nNOSi, n = 5). Hypoxia was induced by an FiO2 of 0.07 for 60 min. nNOS inhibitor I (selectivity >2,500 vs. endothelial NOS, eNOS, and >500 vs. inducible NOS, iNOS) was administered (0.4 mg/kg, i. v.) 30 min prior to hypoxia. EGFR kinase tyrosine phosphorylation at Tyr1173, an index of activation of EGFR kinase, was determined by Western blot analysis using an anti-phospho (pTyr(1173))-EGFR kinase antibody. Protein bands were analyzed by imaging densitometry and expressed as absorbance (OD x mm(2)). EGFR kinase activity was determined radiochemically using immunopurified enzyme. EGFR kinase activity was expressed as pmols/mg protein/hr. Density of phosphor (pTyr(1173))-EGFR kinase (OD x mm(2)) was 60.2 +/- 9.8 in Nx, 177.0 +/- 26.9 in Hx (P < 0.05 vs. Nx) and 79.9 +/- 15.7 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Activity of EGFR kinase (pmoles/mg protein/hr) was 4,603 +/- 155 in Nx, 8,493 +/- 427 in Hx (P < 0.05 vs. Nx) and 4,516 +/- 104 in Hx-nNOSi (P < 0.05 vs. Hx, P = NS vs. Nx). Pretreatment with nNOS inhibitor prevented the hypoxia-induced increased phosphorylation and increased activity of EGFR kinase. We conclude that the mechanism of hypoxia-induced increased activation of EGFR kinase is mediated by nNOS-derived NO.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
9
|
Maulik D, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: Role of nitric oxide. Neurosci Lett 2008; 439:94-9. [DOI: 10.1016/j.neulet.2008.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/25/2022]
|
10
|
Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia. J Neurosci 2008; 28:2949-58. [PMID: 18337426 DOI: 10.1523/jneurosci.5539-07.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during IH and conferring pattern sensitivity to pLTF. We hypothesized that spinal protein phosphatase inhibition would relieve this braking action of protein phosphatases, thereby revealing pLTF after SH. Anesthetized rats received intrathecal (C4) okadaic acid (25 nm) before SH (25 min, 11% O(2)). Unlike (vehicle) control rats, SH induced a significant pLTF in okadaic acid-treated rats that was indistinguishable from rats exposed to IH (three 5 min episodes, 11% O(2)). IH and SH with okadaic acid may elicit pLTF by similar, serotonin-dependent mechanisms, because intravenous methysergide blocks pLTF in rats receiving IH or okadaic acid plus SH. Okadaic acid did not alter IH-induced pLTF. In summary, pattern sensitivity in pLTF may reflect differential regulation of okadaic acid-sensitive serine/threonine phosphatases; presumably, these phosphatases are less active during/after IH versus SH. The specific okadaic acid-sensitive phosphatase(s) constraining pLTF and their spatiotemporal dynamics during and/or after IH and SH remain to be determined.
Collapse
|
11
|
Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Effect of hypoxia on the expression of procaspase-9 and procaspase-3 in neuronal nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. Neurosci Lett 2008; 438:38-41. [PMID: 18468794 DOI: 10.1016/j.neulet.2008.03.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that cerebral hypoxia results in increased activity of caspase-9, a key initiator of programmed cell death, in the cytosolic fractions of the cerebral cortex of newborn piglets. The present study tests the hypothesis that hypoxia results in increased expression of procaspase-9 and procaspase-3 in neuronal nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. To test this hypothesis, expression of procaspase-9 and procaspase-3 was determined in 10 newborn piglets divided into two groups: normoxic (Nx, n=5) and hypoxic (Hx, n=5). The hypoxic piglets were exposed to an FiO(2) of 0.06 for 1h. Tissue hypoxia was documented by ATP and phosphocreatinine (PCr) levels. Neuronal nuclear, mitochondrial and cytosolic fractions were isolated and the expression of procaspase-9 and procaspase-3 was determined by immunoblotting using specific anti-procaspase-9 and anti-procaspase-3 antibodies. ATP levels (micromol/g brain) were 4.34+/-0.36 in the Nx and 1.43+/-0.28 in the Hx (p<0.001 vs. Nx) groups. PCr levels (micromol/g brain) were 3.75+/-0.27 in the Nx and 0.69+/-0.26 in the Hx (p<0.001 vs. Nx) group. Cytosolic procaspase-9 density (ODxmm(2)) was 88.82+/-17.55 in the Nx and 215.54+/-22.77 in the Hx (p<0.001 vs. Nx). Mitochondrial procaspase-9 density (ODxmm(2)) was 104.67+/-12.75 in the Nx and 183.44+/-16.69 in the Hx (p<0.001 vs. Nx). Nuclear procaspase-9 density (ODxmm(2)) was 135.56+/-15.36 in the Nx and 190.66+/-29.35 in the Hx (p<0.001 vs. Nx). Cytosolic procaspase-3 density (ODxmm(2)) was 23.72+/-3.71 in the Nx and 92.44+/-8.46 in the Hx (p<0.001 vs. Nx). Mitochondrial procaspase-3 density (ODxmm(2)) was 22.12+/-2.97 in the Nx and 51.22+/-10.67 in the Hx (p<0.001 vs. Nx). Nuclear procaspase-3 density (ODxmm(2)) was 53.80+/-7.18 in the Nx and 84.67+/-5.63 in the Hx (p<0.001 vs. Nx). We conclude that procaspase-9 and procaspase-3 proteins increased in all cell compartments including cytosolic, mitochondrial and nuclear during hypoxia, indicating increased expression of procaspase-9 during hypoxia. We propose that following increased expression of procaspase-9 and procaspase-3, these molecules traffic among the various cell compartments and become available for their activation resulting in increased caspase-9 and caspase-3 activity.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine and St. Christopher's Hospital for Children, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
12
|
Small interference RNA against PTP-1B reduces hypoxia/reoxygenation induced apoptosis of rat cardiomyocytes. Apoptosis 2008; 13:383-93. [DOI: 10.1007/s10495-008-0181-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, El-Armouche A, Kranias EG, Casadei B. Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res 2007; 102:242-9. [PMID: 18007024 DOI: 10.1161/circresaha.107.164798] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stimulation of nitric oxide (NO) release from the coronary endothelium facilitates myocardial relaxation via a cGMP-dependent reduction in myofilament Ca2+ sensitivity. Recent evidence suggests that NO released by a neuronal NO synthase (nNOS) in the myocardium can also hasten left ventricular relaxation; however, the mechanism underlying these findings is uncertain. Here we show that both relaxation (TR50) and the rate of [Ca2+]i transient decay (tau) are significantly prolonged in field-stimulated or voltage-clamped left ventricular myocytes from nNOS-/- mice and in wild-type myocytes (nNOS+/+) after acute nNOS inhibition. Disabling the sarcoplasmic reticulum abolished the differences in TR50 and tau, suggesting that impaired sarcoplasmic reticulum Ca2+ reuptake may account for the slower relaxation in nNOS-/- mice. In line with these findings, disruption of nNOS (but not of endothelial NOS) decreased phospholamban phosphorylation (P-Ser16 PLN), whereas nNOS inhibition had no effect on TR50 or tau in PLN-/- myocytes. Inhibition of cGMP signaling had no effect on relaxation in either group whereas protein kinase A inhibition abolished the difference in relaxation and PLN phosphorylation by decreasing P-Ser16 PLN and prolonging TR50 in nNOS+/+ myocytes. Conversely, inhibition of type 1 or 2A protein phosphatases shortened TR50 and increased P-Ser16 PLN in nNOS-/- but not in nNOS+/+ myocytes, in agreement with data showing increased protein phosphatase activity in nNOS-/- hearts. Taken together, our findings identify a novel mechanism by which myocardial nNOS promotes left ventricular relaxation by regulating the protein kinase A-mediated phosphorylation of PLN and the rate of sarcoplasmic reticulum Ca2+ reuptake via a cGMP-independent effect on protein phosphatase activity.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Delivoria-Papadopoulos M, Gorn M, Ashraf QM, Mishra OP. ATP and cytochrome c-dependent activation of caspase-9 during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2007; 429:115-9. [PMID: 17976908 DOI: 10.1016/j.neulet.2007.09.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/28/2007] [Accepted: 09/30/2007] [Indexed: 11/25/2022]
Abstract
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, in the cytosolic fraction of the cerebral cortex of newborn piglets. The present study examines the mechanism of caspase-9 activation during hypoxia and tests the hypothesis that the ATP and cytochrome c-dependent activation of caspase-9 increases in the cytosol of the cerebral cortex of newborn piglets. Newborn piglets were divided into normoxic (Nx, n=4), and hypoxic (Hx, n=4) groups. Anesthetized, ventilated animals were exposed to an FiO(2) of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Cytosolic fraction was isolated and passed through a G25-Sephadex column to remove endogenous ATP and cytochrome c. Fractions were collected and protein determined by UV spectrophotometry at 280 nm. Eluted high-molecular weight samples from normoxic and hypoxic animals were divided into four subgroups: subgroup 1 (control), incubated without added ATP and cytochrome c; subgroup 2, incubated with added ATP; subgroup 3, incubated with added cytochrome c; and subgroup 4, incubated with added ATP and cytochrome c. The incubation was carried out at 37 degrees C for 30 min. Following incubation, the protein was separated by 12% SDS-PAGE and active caspase-9 was detected using specific active caspase-9 antibody. Protein bands were detected by enhanced chemiluminescence. Protein density was determined by imaging densitometry and expressed as absorbance (OD x mm(2)). ATP (mumol/g brain) level was 4.7 +/- 0.18 in normoxic, as compared to 1.53 +/- 0.16 in hypoxic (p < 0.05 vs. Nx). PCr (mumol/g brain) level was 4.03 +/- 0.11 in the normoxic and 1.1 +/- 0.3 in the hypoxic brain (p < 0.05 vs. Nx). In the normoxic preparations, active caspase-9 density increased by 9, 4 and 20% in the presence of ATP, cytochrome c and ATP+cytochrome c, respectively. In the hypoxic preparations, active caspase-9 density increased by 30, 45 and 60% in the presence of ATP, cytochrome c and ATP+cytochrome c, respectively. These results show that incubation with ATP, cytochrome c and ATP+cytochrome c result in a significantly increased activation of caspase-9 in the hypoxic group (p < 0.05). We conclude that the ATP and cytochrome c dependent activation of caspase-9 is increased during hypoxia. We propose that the ATP and cytochrome c sites of apoptotic protease activating factor I that mediate caspase-9 activation are modified during hypoxia.
Collapse
Affiliation(s)
- Maria Delivoria-Papadopoulos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19102, United States.
| | | | | | | |
Collapse
|
15
|
Carlucci F, Marinello E, Rosi F, Floccari F, Gerunda G, Neri D, Tabucchi A. Nitric oxide generation is associated with an unbalance of protein tyrosine phosphatases during liver transplantation. Biomed Pharmacother 2007; 61:216-21. [PMID: 17462855 DOI: 10.1016/j.biopha.2007.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Indexed: 11/22/2022] Open
Abstract
Organ dysfunction secondary to ischemia-reperfusion (I/R) injury still represents a major problem in liver transplantation. Apoptosis has been observed in hepatocytes and sinusoidal endothelial cell, following I/R injury and it has been postulated as a contributing factor in ischemia-reperfusion graft dysfunction, involving a complex series of events, as changes of protein tyrosine-kinase phosphorylation. We evaluated hepatic purine metabolites, protein tyrosine phosphatases (PTPs), nitrate plus nitrite levels (NOx), caspase-3 (C-3) activity and DNA fragmentation in the time course of twelve pig orthotopic liver transplantation. Biopsies were taken before explantation (t0), after cold ischemic storage (t1) and 30 min from reperfusion (t2). During the ischemic period we observed a reduction of high energy phosphates and an increase of purine bases; PTP activity was largely increased. At t2 high energy phosphates showed a tendency to increase with respect to t1, with a partial restoration of phosphorylation potential, measured as ATP/ADT ratio. PTP activity was significantly reduced, with a concomitant increase of NOx production and C-3 activity; in a considerable number of cases we observed a sustained DNA fragmentation. We speculate that NOx production could be related to nitrosative stress, which in turn leads to dynamic alteration in PTP balance and cell signalling, regulating the activity of a number of proteins implicated in apoptotic cell death. These findings could be of interest in new potential strategy to prevent and treat I/R injury.
Collapse
Affiliation(s)
- F Carlucci
- Dipartimento di Medicina Interna, Scienze Endocrino-Metaboliche e Biochimica Università di Siena, Polo Scientifico Universitario di San Miniato, Via Aldo Moro, 253100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mishra OP, Delivoria-Papadopoulos M. Effect of neuronal nitric oxide synthase inhibition on caspase-9 activity during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 2006; 401:81-5. [PMID: 16545906 DOI: 10.1016/j.neulet.2006.02.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/04/2006] [Accepted: 02/23/2006] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cerebral hypoxia results in increased activity of caspase-9, a key initiator of programmed cell death. We have also shown increased nitric oxide (NO) free radical generation during hypoxia in the cerebral cortex of newborn piglets. The present study tests the hypothesis that hypoxia-induced increase in caspase-9 activity in the cerebral cortex of newborn piglets is mediated by NO derived from neuronal nitric oxide synthase (nNOS). To test this hypothesis, cytosolic caspase-9 activity was determined in 15 newborn piglets divided into three groups: normoxic (Nx, n=5), hypoxic (Hx, n=5), and Hx pretreated with 7-nitroindazole sodium salt (7-NINA), a selective nNOS inhibitor, 1mg/kg, i.p., 1h prior to hypoxia (Hx+7NI, n=5). The hypoxic piglets were exposed to an FiO(2) of 0.06 for 1h. Tissue hypoxia was documented by ATP and phosphocreatinine (PCr) levels. The cytosolic fraction was obtained from the cerebral cortical tissue following centrifugation at 100,000 x g for 1h and caspase-9 activity was assayed using Ac-Leu-Glu-His-Asp-amino-4-methyl coumarin, a specific fluorogenic substrate for caspase-9. Caspase-9 activity was determined spectroflourometrically at 460 nm using 380 nm as excitation wavelength. ATP levels (micromol/g brain) were 4.35+/-0.21 in the Nx 1.43+/-0.28 in the Hx (p<0.05 versus Nx), and 1.73+/-0.33 in the Hx+7-NINA group (p<0.05 versus Nx, p=NS versus Hx). PCr levels (micromol/g brain) were 3.80+/-0.26 in the Nx, 0.96+/-0.20 in the Hx (p<0.05 versus Nx), and 1.09+/-0.39 in the Hx+7 NINA group (p<0.05 versus Nx, p=NS versus Hx). Cytosolic caspase-9 activity (nmol/mg protein/h), increased from 1.27+/-0.15 in the Nx to 2.13+/-0.14 in the Hx (p<0.05 versus Nx) compared to 1.10+/-0.21 in the Hx+7-NINA group (p<0.05 versus Hx, p=NS versus Nx). Caspase-3 activity (nmol/mg protein/h) also increased from 9.39+/-0.73 in Nx to 18.94+/-3.64 in Hx (p<0.05 versus Nx) compared to 8.04+/-1.05 in the Hx+7-NINA group (p<0.05 versus Hx, p=NS versus Nx). The data show that administration of 7-NINA, an nNOS inhibitor, prevented the hypoxia-induced increase in caspase-9 activity that leads to increase in caspase-3 activity. Since nNOS inhibition blocked the increase in caspase-9 activity during hypoxia, we conclude that hypoxia-induced increase in caspase-9 activity is mediated by nNOS derived NO. We propose that the NO generated during hypoxia leads to activation of caspase-9 and results in initiation of caspase-cascade-dependent hypoxic neuronal death.
Collapse
Affiliation(s)
- Om P Mishra
- Department of Pediatrics, Drexel University College of Medicine and St Christopher's Hospital for Children, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
17
|
Lopez CJ, Qayyum I, Mishra OP, Delivoria-Papadopoulos M. Effect of nitration on protein tyrosine phosphatase and protein phosphatase activity in neuronal cell membranes of newborn piglets. Neurosci Lett 2005; 386:78-81. [PMID: 16039061 DOI: 10.1016/j.neulet.2005.04.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 04/28/2005] [Accepted: 04/30/2005] [Indexed: 10/25/2022]
Abstract
Protein tyrosine phosphatase predominantly determines the status of protein tyrosine kinase-dependent phosphorylation of specific proteins and controls the survival and death of neurons. Previous studies have shown that protein tyrosine phosphatase activity is decreased during hypoxia in cortical membranes of the newborn piglet. We have also shown that nitric oxide (NO) free radicals are generated during hypoxia, and may result in modification of protein tyrosine phosphatase via peroxynitrite-mediated modification. The present study tests the hypothesis that the hypoxia-induced decrease in protein tyrosine phosphatase activity is NO-mediated. To test this hypothesis, in vitro experiments were conducted by measuring protein tyrosine phosphatase activity in the presence of an NO donor, sodium nitroprusside (SNP), or peroxynitrite. Since 3-nitrotyrosine is produced as a consequence of peroxynitrite reactions, we have also examined the effect of 3-nitrotyrosine on protein phophatase activity. Cerebral cortical P(2) membranes were prepared from seven normoxic newborn piglets and each sample was divided into three aliquots: a control group, a SNP group (exposed to 200 microM SNP), and a peroxynitrite group (exposed to 100 microM peroxynitrite). Protein tyrosine phosphatase activity was determined spectrophotometrically in the presence or absence of 2 microM bpV(phen), a highly selective inhibitor of protein tyrosine phosphatase. The protein tyrosine phosphatase activity was 198+/-25 nmol/mg protein/h in the normoxic group, 177+/-30 nmol/mg protein/h in the SNP group (p=NS versus normoxic) and 77+/-20 nmol/mg protein/h in the peroxynitrite group (p<0.001 versus normoxic). The results show that peroxynitrite but not SNP exposure results in decreased protein tyrosine phosphatase activity in vitro. Furthermore 3-nitrotyrosine (100 microm), a product of peroxynitrite, decreased the enzyme activity from 926+/-102 to 200+/-77 (p<0.001). We conclude that protein tyrosine phosphatase regulation is mediated by peroxynitrite. We propose that hypoxia-induced NO production leading to peroxynitrite formation is a potential mechanism of protein tyrosine phosphatase inactivation in vivo. The NO-induced decrease in protein tyrosine phosphatase and protein phosphatase activity, leading to Bcl-2 protein phosphorylation and loss of its antiapoptotic activity may be a NO-mediated mechanism of programmed cell death in the hypoxic brain.
Collapse
Affiliation(s)
- Carlos J Lopez
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
18
|
Mishra OP, Delivoria-Papadopoulos M. Effect of hypoxia on protein tyrosine kinase activity in cortical membranes of newborn piglets—the role of nitric oxide. Neurosci Lett 2004; 372:114-8. [PMID: 15531099 DOI: 10.1016/j.neulet.2004.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that cerebral hypoxia results in increased tyrosine phosphorylation of cerebral cortical cell membrane proteins as well as nuclear membrane anti-apoptotic protein, Bcl-2. The present study tests the hypothesis that hypoxia results in increased protein tyrosine kinase activity in cortical cell membranes of newborn piglets and that the inhibition of neuronal NOS by administration of 7-nitroindazole sodium salt (7-NINA), a selective inhibitor of nitric oxide synthase (NOS), will prevent the hypoxia-induced increase in protein tyrosine kinase activity. To test this hypothesis, protein tyrosine kinase activity was determined in cerebral cortical membranes of 2- to 4-day-old newborn piglets divided into normoxic (n=6), hypoxic (n=5) and 7-NINA-treated hypoxic (n=5) (7-NINA, 1mg/kg, i.p., prior to hypoxia) groups. Tissue hypoxia was achieved by exposing the animals to an FiO(2) of 0.07 for 60 min and was documented biochemically by determining tissue ATP and phosphocreatine (PCr) levels. Cortical P(2) membranes were isolated and protein tyrosine kinase activity determined by (33)P incorporation into a specific peptide substrate for 15 min at 37 degrees C in a medium containing 100 mM HEPES, pH 7.0, 1mM EDTA, 125 mM MgCl(2), 25 mM MnCl(2), 2mM DTT, 0.2 mM sodium orthovanadate, 2mM EGTA, 150 microM tyrosine kinase peptide substrate [Lys 19] cdc2(6-20)-NH(2), (33)P-ATP, and 10 microg of membrane protein. Protein tyrosine kinase activity was determined by the difference between (33)P incorporation in the presence and absence of specific peptide substrate and expressed as pmol/mg protein/h. The ATP values in the normoxic, hypoxic and 7-NINA-treated hypoxic animals were ATP: 4.57+/-0.45 micromol/g, 1.29+/-0.23 micromol/g (p<0.05 versus normoxic) and 1.50+/-0.14 micromol/g brain (p<0.05 versus normoxic), respectively. The PCr values in the normoxic, hypoxic and 7-NINA-treated hypoxic animals were: 3.77+/-0.36 micromol/g, 0.77+/-0.13 micromol/g (p<0.05 versus normoxic) and 1.02+/-0.24 micromol/g brain (p<0.05 versus normoxic), respectively. Protein tyrosine kinase activity in the normoxic, hypoxic and the 7-NINA-treated groups was 378+/-77 pmol/mg protein/h, 854+/-169 pmol/mg protein/h (p<0.05 versus normoxic) and 464+/-129 pmol/mg protein/h (p<0.05 versus hypoxic), respectively. The data show that cerebral tissue hypoxia results in increased protein tyrosin kinase activity in cortical membranes of newborn piglets and pretreatment with 7-NINA prevents the hypoxia-induced increase in protein tyrosine kinase activity. We conclude that the hypoxia-induced increase in protein tyrosine kinase activity is NO-mediated. We propose that the hypoxia-induced increase in protein tyrosine kinase activity leading to increased phosphorylation of Bcl-2 is a critical link to hypoxic neuronal injury pathway.
Collapse
Affiliation(s)
- Om Prakash Mishra
- Department of Pediatrics, Neonatal Research Laboratory, Drexel University College of Medicine, MCP, Room 701, 7th Floor Heritage Building, 3300 Henry Avenue, Philadelphia, PA 19129, USA.
| | | |
Collapse
|