1
|
Duque-Díaz E, Coveñas R. Mapping of folic acid in the children brainstem. Anat Cell Biol 2021; 54:340-349. [PMID: 33967031 PMCID: PMC8493014 DOI: 10.5115/acb.21.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
Using highly specific antisera, the neuroanatomical distribution of folic acid (FA) and retinoic acid (RA) has been studied for the first time in the children brainstem. Neither immunoreactive structures containing RA nor immunoreactive fibers containing FA were found. FA-immunoreactive perikarya (fusiform, small/medium in size, one short dendrite) were only found in the pons in three regions: central gray, reticular formation, and locus coeruleus. The number of cell bodies decreased with age. In the first case studied (2 years), a moderate density of cell bodies was observed in the central gray and reticular formation, whereas a low density was found in the locus coeruleus. In the second case (6 years), a low density of these perikarya was observed in the central gray, reticular formation, and locus coeruleus. In the third case (7 years), a low density of FA-immunoreactive cell bodies was found in the central gray and reticular formation, whereas in the locus coeruleus no immunoreactive cell bodies were observed. The distribution of FA in the central nervous system of humans and monkeys is different and, in addition, in these species the vitamin was located in different parts of the nerve cells. The restricted distribution of FA suggests that the vitamin is involved in specific physiological mechanisms.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Laboratory of Neurosciences, School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain.,Grupo GIR BMD (Bases Moleculares del Desarrollo), University of Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Ligand-modulated synthesis of gold nanoclusters for sensitive and selective detection of folic acid. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00266-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPrecisely changing the optical properties of gold nanoclusters (AuNCs) with different ligands offers a promising prospect for highly sensitive and selective drug sensing. In this study, AuNCs were synthesized with d-tryptophan (d-Trp) and its derivatives as the ligands. Optical measurements showed that d-Trp@AuNCs produced higher fluorescence intensity and shorter fluorescence emission wavelength than the d-Trp-derivatives-ligands protected AuNCs, indicating that the ligand-shell rigidity and core-shell charge transfer affected their fluorescent properties. At the excitation wavelength of 370 nm, the emission wavelength of d-Trp@AuNCs was 460 nm. The fluorescence changes revealed the high selectivity of d-Trp@AuNCs for detecting folic acid due to the static quenching and inner filter effect. In the presence of folic acid, the fluorescence of d-Trp@AuNCs was remarkably quenched with good linearity ranging from 6.3-100.0 μM (R2 = 0.997) and a detection limit of 5.8 μM. The proposed assay was successfully utilized to determine the amount of folic acid in human urine with recoveries from 94.3 to 107.3%. This work shows the great potential of d-Trp@AuNCs for detecting folic acid in real bio-samples. It also presents an effective strategy for preparation of the AuNCs with enhanced fluorescence efficiency by regulating the rigidity of the ligands shell and the core-shell charge transfer.
Collapse
|
3
|
Mangas A, Yajeya J, González N, Ruiz I, Pernìa M, Geffard M, Coveñas R. Gemst: a taylor-made combination that reverts neuroanatomical changes in stroke. Eur J Histochem 2017; 61:2790. [PMID: 28735520 PMCID: PMC5452634 DOI: 10.4081/ejh.2017.2790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023] Open
Abstract
In a single transient middle cerebral artery occlusion model of stroke and using immunohistochemical techniques, the effects of a new therapeutic approach named Gemst (a member of the Poly-L-Lysine innovative therapies) have been studied in the rat brain. The expression of inflammatory (CD45, CD11b), oxidative (NO-tryptophan, NO2-tyrosine) and indoleamine 2, 3-dioxygenase pathway (kynurenic acid, 3-hydroxy anthranilic acid) markers has been evaluated in early and late phases of stroke. For this purpose, we have developed eight highly specific monoclonal antibodies directed against some of these markers. In the early phase (3 and 5 days of the stroke, we observed no effect of Gemst treatment (7.5 mg/day, subcutaneously for 3, 5 days). In the late phase (21 days) of stroke and exclusively in the ipsilateral side of non-treated animals an overexpression of kynurenic acid, 3-hydroxy anthranilic acid, CD45, CD11b, GFAP and ionized calcium-binding adapter molecule 1 (IBA-1) was found. In treated animals, the overexpression of the four former markers was completely abolished whereas the overexpression of the two latter ones was decreased down to normal levels. Gemst reversed the pathological conditions of stroke to normal situations. Gemst exerts a multifunctional action: down-regulates the indoleamine 2, 3-dioxygenase pathway and abolishes brain infiltration, microglial activation and gliosis. Moreover, Gemst has no effect on the expression of doublecortin, a protein involved in neuronal migration. Gemst could be a new drug for the treatment of stroke since it reverses the pathological findings of stroke and normalizes brain tissue conditions following the ischemic insult.
Collapse
|
4
|
Mangas A, Yajeya J, González N, Ruiz I, Duleu S, Geffard M, Coveñas R. Overexpression of kynurenic acid in stroke: An endogenous neuroprotector? Ann Anat 2017; 211:33-38. [PMID: 28163204 DOI: 10.1016/j.aanat.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
It is known that kynurenic acid (KYNA) exerts a neuroprotective effect against the neuronal loss induced by ischemia; acting as a scavenger, and exerting antioxidant action. In order to study the distribution of KYNA, a highly specific monoclonal antibody directed against KYNA was developed. This distribution was studied in control rats and in animals in which a middle cerebral artery occlusion (stroke model) was induced. By double immunohistochemistry, astrocytes containing KYNA and GFAP were exclusively found in the ipsilateral cerebral cortex and/or striatum, at 2, 5 and 21days after the induction of stroke. In control animals and in the contralateral side of the stroke animals, no immunoreactivity for KYNA was found. Under pathological conditions, the presence of KYNA is reported for the first time in the mammalian brain from early phases of stroke. The distribution of KYNA matches perfectly with the infarcted regions suggesting that, in stroke, this overexpressed molecule could be involved in neuroprotective/scavenger/antioxidant mechanisms.
Collapse
Affiliation(s)
- A Mangas
- Gemacbio, Saint Jean d'Illac, France; Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France; Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain.
| | - J Yajeya
- School of Medicine, Department of Physiology, University of Salamanca, Salamanca, Spain
| | - N González
- Gemacbio, Saint Jean d'Illac, France; Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France
| | - I Ruiz
- Gemacbio, Saint Jean d'Illac, France
| | - S Duleu
- Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France
| | - M Geffard
- Gemacbio, Saint Jean d'Illac, France; Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France
| | - R Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Mangas A, Yajeya J, González N, Duleu S, Geffard M, Coveñas R. NO-tryptophan: a new small molecule located in the rat brain. Eur J Histochem 2016; 60:2692. [PMID: 27734994 PMCID: PMC5062636 DOI: 10.4081/ejh.2016.2692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 08/24/2016] [Indexed: 11/23/2022] Open
Abstract
A highly specific monoclonal antibody directed against nitric oxide-tryptophan (NO-W) with good affinity (10-9 M) and specificity was developed. In the rat brain, using an indirect immunoperoxidase technique, cell bodies containing NO-W were exclusively found in the intermediate and dorsal parts of the lateral septal nucleus. No immunoreactive fibres were found in the rat brain. This work reports the first visualization and the morphological characteristics of cell bodies containing NO-W in the mammalian brain. The restricted distribution of NO-W in the rat brain suggests that this molecule could be involved in specific physiological mechanisms.
Collapse
Affiliation(s)
- A Mangas
- Gemacbio - Institute for the Development of Research in Human Pathology and Therapeutic (IDRPHT) -University of Salamanca.
| | | | | | | | | | | |
Collapse
|
6
|
Coveñas R, González-Fuentes J, Rivas-Infante E, Lagartos-Donate M, Mangas A, Geffard M, Arroyo-Jiménez M, Cebada-Sánchez S, Insausti R, Marcos P. Developmental study of vitamin C distribution in children's brainstems by immunohistochemistry. Ann Anat 2015; 201:65-78. [DOI: 10.1016/j.aanat.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/26/2023]
|
7
|
Blaylock RL, Maroon J. Natural plant products and extracts that reduce immunoexcitotoxicity-associated neurodegeneration and promote repair within the central nervous system. Surg Neurol Int 2012; 3:19. [PMID: 22439110 PMCID: PMC3307240 DOI: 10.4103/2152-7806.92935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/11/2012] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the pathophysiological and biochemical basis of a number of neurological disorders has increased enormously over the last three decades. Parallel with this growth of knowledge has been a clearer understanding of the mechanism by which a number of naturally occurring plant extracts, as well as whole plants, can affect these mechanisms so as to offer protection against injury and promote healing of neurological tissues. Curcumin, quercetin, green tea catechins, balcalein, and luteolin have been extensively studied, and they demonstrate important effects on cell signaling that go far beyond their antioxidant effects. Of particular interest is the effect of these compounds on immunoexcitotoxicity, which, the authors suggest, is a common mechanism in a number of neurological disorders. By suppressing or affecting microglial activation states as well as the excitotoxic cascade and inflammatory mediators, these compounds dramatically affect the pathophysiology of central nervous system disorders and promote the release and generation of neurotrophic factors essential for central nervous system healing. We discuss the various aspects of these processes and suggest future directions for study.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, Department of Biology, Belhaven University, Jackson, MS 39157, USA
| | | |
Collapse
|
8
|
Mangas A, Bodet D, Duleu S, Yajeya J, Geffard M, Coveñas R. Direct visualization of retinoic acid in the rat hypothalamus: an immunohistochemical study. Neurosci Lett 2012; 509:64-8. [PMID: 22230896 DOI: 10.1016/j.neulet.2011.12.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/26/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
In order to increase our knowledge about the distribution of vitamins in the mammalian brain, we have developed a highly specific antiserum directed against retinoic acid with good affinity (10(-8) M), as evaluated by ELISA tests. In the rat brain, no immunoreactive fibers containing retinoic acid were detected. Cell bodies containing retinoic acid were only found in the hypothalamus. This work reports the first visualization and the morphological characteristics of cell bodies containing retinoic acid in the mammalian paraventricular hypothalamic nucleus and in the dorsal perifornical region, using an indirect immunoperoxidase technique. The restricted distribution of retinoic acid in the rat brain suggests that this vitamin could be involved in very specific physiological mechanisms.
Collapse
Affiliation(s)
- A Mangas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory 14, Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Manzoori JL, Jouyban A, Amjadi M, Soleymani J. Spectrofluorimetric determination of folic acid in tablets and urine samples using 1,10-phenanthroline-terbium probe. LUMINESCENCE 2011; 26:106-11. [DOI: 10.1002/bio.1191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Willette AA, Gallagher C, Bendlin BB, McLaren DG, Kastman EK, Canu E, Kosmatka KJ, Field AS, Alexander AL, Colman RJ, Voytko MLL, Weindruch RH, Coe CL, Johnson SC. Homocysteine, neural atrophy, and the effect of caloric restriction in rhesus monkeys. Neurobiol Aging 2010; 33:670-80. [PMID: 20691506 DOI: 10.1016/j.neurobiolaging.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/08/2010] [Accepted: 06/05/2010] [Indexed: 11/28/2022]
Abstract
Higher serum homocysteine (Hcy) levels in humans are associated with vascular pathology and greater risk for dementia, as well as lower global and regional volumes in frontal lobe and hippocampus. Calorie restriction (CR) in rhesus monkeys (Macaca mulatta) may confer neural protection against age- or Hcy-related vascular pathology. Hcy was collected proximal to a magnetic resonance imaging (MRI) acquisition in aged rhesus monkeys and regressed against volumetric and diffusion tensor imaging indexes using voxel-wise analyses. Higher Hcy was associated with lower white matter volume in pons and corpus callosum. Hcy was correlated with lower gray matter volume and density in prefrontal cortices and striatum. CR did not influence Hcy levels. However, control monkeys exhibited a strong negative correlation between Hcy and global gray matter, whereas no relationship was evident for the CR monkeys. Similar group differences were also seen across modalities in the splenium of the corpus callosum, prefrontal cortices, hippocampus, and somatosensory areas. The data suggest that CR may ameliorate the influence of Hcy on several important age-related parameters of parenchymal health.
Collapse
Affiliation(s)
- Auriel A Willette
- Harlow Primate Laboratory, Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Romestand B, Rolland JL, Commeyras A, Coussot G, Desvignes I, Pascal R, Vandenabeele-Trambouze O. Dendrigraft Poly-l-lysine: A Non-Immunogenic Synthetic Carrier for Antibody Production. Biomacromolecules 2010; 11:1169-73. [DOI: 10.1021/bm9012056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bernard Romestand
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| | - Jean-Luc Rolland
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| | - Auguste Commeyras
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| | - Gaëlle Coussot
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| | - Isabelle Desvignes
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| | - Robert Pascal
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| | - Odile Vandenabeele-Trambouze
- IFREMER, Université Montpellier 2, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5119, Ecosystèmes Lagunaires, place E. Bataillon, CC80, 34095 Montpellier cedex 5, France, COLCOM, Cap-Alpha, Av. de l’Europe, Clapiers, 34940 Montpellier Cedex 9, and Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique, Université de Montpellier 1, Université de Montpellier 2, Unité Mixte de Recherche 5247, place E. Bataillon, CC17006, 34095 Montpellier cedex 5, France
| |
Collapse
|
12
|
Vitamins in the monkey brain: An immunocytochemical study. J Chem Neuroanat 2009; 38:1-8. [PMID: 19477264 DOI: 10.1016/j.jchemneu.2009.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/21/2022]
Abstract
Using highly specific antisera directed against vitamins, the distribution of pyridoxal-, pyridoxine-, vitamin C- and nicotinamide-immunoreactive structures in the monkey (Macaca fascicularis) brain was studied. Neither immunoreactive structures containing pyridoxine or nicotinamide, nor immunoreactive fibers containing vitamin C were found in the monkey brain. However, this work reports the first visualization and the morphological characteristics of pyridoxal- and vitamin C-immunoreactive cell bodies in the mammalian central nervous system using an indirect immunoperoxidase technique. A high density of pyridoxal-immunoreactive cell bodies was found in the paraventricular hypothalamic nucleus and in the supraoptic nucleus and a low density of the same was observed in the periventricular hypothalamic region, whereas a moderate density of vitamin C-immunoreactive cell bodies was observed in the somatosensorial cortex (precentral gyrus). Immunoreactive fibers containing pyridoxal were only visualized in the anterior commissure. The restricted distribution of pyridoxal and vitamin C in the monkey brain suggests that both vitamins could be involved in very specific physiological mechanisms.
Collapse
|
13
|
Mangas A, Coveñas R, Geffard K, Geffard M, Marcos P, Insausti R, Dabadie MP. Thiamine-like fibers in the monkey brain: an immunocytochemical study. Life Sci 2006; 79:1121-8. [PMID: 16624330 DOI: 10.1016/j.lfs.2006.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/22/2005] [Accepted: 03/10/2006] [Indexed: 11/15/2022]
Abstract
The distribution of thiamine-immunoreactive structures was studied in the brain of the monkey using an indirect immunoperoxidase technique. Fibers containing thiamine, but no thiamine-immunoreactive cell bodies, were found. The highest density of fibers containing thiamine was observed in the pulvinar nucleus and in the region extending from the pulvinar nucleus to the caudate nucleus. In the mesencephalon, immunoreactive fibers containing thiamine were only found at rostral level close to the medial lemniscus (at the mesencephalic-diencephalic junction). In the thalamus, the distribution of thiamine-immunoreactive structures was more widespread. Thus, immunoreactive fibers were found in nuclei close to the midline (centrum medianum/parafascicular complex), in the ventrolateral thalamus (medial geniculate nucleus, inferior pulvinar nucleus), and in the dorsolateral thalamus (lateral posterior nucleus, pulvinar nucleus). Finally, in the anterior commissure and in the cerebral cortex a low density immunoreactive fibers was visualized. Thus, in the brainstem, no immunoreactive structures were visualized in the medulla oblongata, pons, or in the medial-caudal mesencephalon, and no immunoreactive fibers were observed in the cerebellum, hypothalamus and in the basal ganglia. The present report describes the first visualization and the morphological characteristics (thick, smooth and short, medium or long in length) of the thiamine-immunoreactive fibers in the primate central nervous system using an antiserum directed against this vitamin. The distribution of thiamine-immunoreactive structures in the monkey brain suggests that this vitamin could be involved in several physiological mechanisms.
Collapse
Affiliation(s)
- A Mangas
- Gemacbio S.A., Immunochemistry Department, Cenon, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mangas A, Coveñas R, Geffard K, Geffard M, Marcos P, Insausti R, Glaize G, Dabadie MP. Riboflavin-like inmunoreactive fibers in the monkey brain. ACTA ACUST UNITED AC 2006; 211:267-72. [PMID: 16456676 DOI: 10.1007/s00429-006-0080-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2006] [Indexed: 11/28/2022]
Abstract
Using an antiserum directed against the vitamin riboflavin, we studied the distribution of riboflavin-like immunoreactive structures in the monkey brain. In the mesencephalon, at the level of the mesencephalic-diencephalic junction, single riboflavin-like immunoreactive fibers were observed in its dorsal part, whereas a low density of immunoreactive fibers was found below the surface of the section and close to substantia nigra, and a high density was observed above the substantia nigra and close to the medial geniculate nucleus. In the thalamus, single riboflavin-like immunoreactive fibers were found in the ventral regions of the lateral posterior and the medial geniculate nuclei; a low density in the region located above the medial and lateral geniculate nuclei and a high density in the ventral part of the pulvinar nucleus and in the region extending from this latter to the caudate nucleus. Immunoreactive fibers were not observed in the medulla oblongata, pons, cerebellum, hypothalamus, basal ganglia and cerebral cortex. Moreover, no riboflavin-like immunoreactive cell bodies were observed in the monkey brain. The distribution of riboflavin-like immunoreactive fibers in the monkey suggests that this vitamin could be involved in several physiological mechanisms.
Collapse
Affiliation(s)
- A Mangas
- Immunochemistry Department, Gemacbio S.A., Cenon, France.
| | | | | | | | | | | | | | | |
Collapse
|