1
|
Wang Y, Tan B, Shi S, Ye Y, Che X. Dopamine D2 receptor antagonist modulates rTMS-induced pain experiences and corticospinal excitability dependent on stimulation targets. Int J Clin Health Psychol 2024; 24:100413. [PMID: 37954401 PMCID: PMC10632113 DOI: 10.1016/j.ijchp.2023.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 11/14/2023] Open
Abstract
Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor cortex stimulation, although there were no clear changes in pain experiences. These novel findings together highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excitability dependent on stimulation targets.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Gurdiel-Álvarez F, González-Zamorano Y, Lerma-Lara S, Gómez-Soriano J, Sánchez-González JL, Fernández-Carnero J, Navarro-López V. Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis. Brain Sci 2023; 14:9. [PMID: 38275514 PMCID: PMC10813344 DOI: 10.3390/brainsci14010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The aim of this study is to determine the effect that different tDCS protocols have on pain processing in healthy people, assessed using quantitative sensory tests (QST) and evoked pain intensity. METHODS We systematically searched in EMBASE, CINAHL, PubMed, PEDro, PsycInfo, and Web of Science. Articles on tDCS on a healthy population and regarding QST, such as pressure pain thresholds (PPT), heat pain thresholds (HPT), cold pain threshold (CPT), or evoked pain intensity were selected. Quality was analyzed using the Cochrane Risk of Bias Tool and PEDro scale. RESULTS Twenty-six RCTs were included in the qualitative analysis and sixteen in the meta-analysis. There were no significant differences in PPTs between tDCS and sham, but differences were observed when applying tDCS over S1 in PPTs compared to sham. Significant differences in CPTs were observed between tDCS and sham over DLPFC and differences in pain intensity were observed between tDCS and sham over M1. Non-significant effects were found for the effects of tDCS on HPTs. CONCLUSION tDCS anodic over S1 stimulation increases PPTs, while a-tDCS over DLPFC affects CPTs. The HPTs with tDCS are worse. Finally, M1 a-tDCS seems to reduce evoked pain intensity in healthy subjects.
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
| | - Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Sergio Lerma-Lara
- Department of Physical Therapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, 45071 Toledo, Spain;
| | - Juan Luis Sánchez-González
- Faculty of Nursing and Physiotherapy, Department of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Josué Fernández-Carnero
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- La Paz Hospital Institute for Health Research, IdiPAZ, 28922 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- Movement Analysis, Biomechanics, Ergonomics, and Motor Control Laboratory, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
3
|
Cosentino G, Antoniazzi E, Cavigioli C, Tang V, Tammam G, Zaffina C, Tassorelli C, Todisco M. Repetitive Transcranial Magnetic Stimulation of the Human Motor Cortex Modulates Processing of Heat Pain Sensation as Assessed by the Offset Analgesia Paradigm. J Clin Med 2023; 12:7066. [PMID: 38002678 PMCID: PMC10672427 DOI: 10.3390/jcm12227066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Offset analgesia (OA), which is defined as a disproportionately large reduction in pain perception following a small decrease in a heat stimulus, quantifies temporal aspects of endogenous pain modulation. In this study on healthy subjects, we aimed to (i) determine the Heat Pain Threshold (HPT) and the response to constant and dynamic heat stimuli assessing sensitization, adaptation and OA phenomena at the thenar eminence; (ii) evaluate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) of the primary motor cortex (M1) on these measures. Twenty-four healthy subjects underwent quantitative sensory testing before and after active or sham 10 Hz rTMS (1200 stimuli) of the left M1, during separate sessions. We did not observe any rTMS-related changes in the HPT or visual analogue scale (VAS) values recorded during the constant trial. Of note, at baseline, we did not find OA at the thenar eminence. Only after active rTMS did we detect significantly reduced VAS values during dynamic heat stimuli, indicating a delayed and attenuated OA phenomenon. rTMS of the left M1 may activate remote brain areas that belong to the descending pain modulatory and reward systems involved in the OA phenomenon. Our findings provide insights into the mechanisms by which rTMS of M1 could exert its analgesic effects.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Elisa Antoniazzi
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Camilla Cavigioli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Vanessa Tang
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Tammam
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Zaffina
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
4
|
Li C, Zhang N, Han Q, Zhang L, Xu S, Tu S, Xie Y, Wang Z. Prolonged Continuous Theta Burst Stimulation Can Regulate Sensitivity on Aβ Fibers: An Functional Near-Infrared Spectroscopy Study. Front Mol Neurosci 2022; 15:887426. [PMID: 35493324 PMCID: PMC9039327 DOI: 10.3389/fnmol.2022.887426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Objective High-frequency repetitive transcranial magnetic stimulation (rTMS) induces analgesic effects in both experimental pain and clinical pain conditions. However, whether rTMS can modulate sensory and pain thresholds on sensory fibers is still unclear. Here, we compared the effects of three rTMS paradigms on sensory and pain thresholds conducted by different sensory fibers (Aβ, Aδ, and C fibers) with sham stimulation and investigate the potential brain activation using functional near-infrared spectroscopy (fNIRS). Methods Forty right-handed healthy subjects were randomly allocated into one of four groups. Each subject received one session rTMS [prolonged continuous theta-burst stimulation (pcTBS), intermittent theta-burst stimulation (iTBS), 10 Hz rTMS or sham]. Current perception threshold (CPT), pain tolerance threshold (PTT), and fNIRS were measured at baseline, immediately after stimulation, and 1 h after stimulation, respectively. Results Significant differences between treatments were observed for changes for CPT 2,000 Hz between baseline and 1 h after rTMS (F = 6.551, P < 0.001): pcTBS versus sham (P = 0.004) and pcTBS versus 10 Hz rTMS (P = 0.007). There were significant difference in average HbO μm in the right frontopolar cortex (FPC) [channel 23: P = 0.030 (pcTBS versus sham: P = 0.036)], left dorsolateral prefrontal cortex (DLPFC) [channel 7: P = 0.006 (pcTBS versus sham: P = 0.004)], left FPC [channel 17: P = 0.014 (pcTBS versus sham: P = 0.046), channel 22: P = 0.004 (pcTBS versus sham: P = 0.004)] comparing four group in 1 h after stimulation in PTT 2000 Hz (Aβ-fiber). Conclusion Prolonged continuous theta-burst stimulation can regulate sensitivity on Aβ fibers. In addition, single-session pcTBS placed on left M1 can increase the excitability of DLPFC and FPC, indicating the interaction between M1 and prefrontal cortex may be a potential mechanism of analgesic effect of rTMS. Studies in patients with central post-stroke pain are required to confirm the potential clinical applications of pcTBS.
Collapse
|
5
|
Ye Y, Wang J, Che X. Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS. Cereb Cortex 2022; 32:4436-4446. [DOI: 10.1093/cercor/bhab493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear. Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex. Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed neuroplastic changes associated with DLPFC analgesia.
Collapse
|
6
|
Motor action changes pain perception: a sensory attenuation paradigm in the context of pain. Pain 2021; 162:2060-2069. [PMID: 33863857 DOI: 10.1097/j.pain.0000000000002206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023]
Abstract
ABSTRACT A large body of evidence indicates how pain affects motor control, yet the way the motor system influences pain perception remains unclear. We present 2 experiments that investigated sensory attenuation of pain implementing a 2-alternative forced choice paradigm. Particularly, healthy participants received painful stimuli on a moving and nonmoving hand during the execution or the preparation of reaching motor actions. At the end of each trial, they indicated on which hand they perceived the stimulus stronger. The point of subjective equality was obtained to measure sensory attenuation. The intensity (experiment 1) and the threat value (experiment 2) of the pain stimuli were manipulated between-subjects to examine their impact on sensory attenuation. Results of experiment 1 (N = 68) revealed that executing a motor action attenuates pain processing in the moving hand. Sensory attenuation during motor preparation alone occurred with stronger stimulus intensities. Sensory attenuation was not affected by the intensity of the pain stimuli. Results of experiment 2 (N = 79) replicated the phenomenon of sensory attenuation of pain during motor action execution. However, sensory attenuation was not affected by the threat value of pain. Together these findings indicate that executing, but not preparing, a motor action affects pain processing in that body part. No significant associations were found between sensory attenuation indices and inhibitory control abilities or pain catastrophizing, vigilance and rumination. These results provide insight into the inhibitory effects of motor actions on pain processing, suggesting that pain perception is a dynamic experience susceptible to individuals' actions in the environment.
Collapse
|
7
|
Klírová M, Hejzlar M, Kostýlková L, Mohr P, Rokyta R, Novák T. Prolonged Continuous Theta Burst Stimulation of the Motor Cortex Modulates Cortical Excitability But not Pain Perception. Front Syst Neurosci 2020; 14:27. [PMID: 32670027 PMCID: PMC7326109 DOI: 10.3389/fnsys.2020.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, theta-burst stimulation (TBS) has become a focus of interest in neurostimulatory research. Compared to conventional repetitive transcranial magnetic stimulation (rTMS), TBS produces more robust changes in cortical excitability (CE). There is also some evidence of an analgesic effect of the method. Previously published studies have suggested that different TBS parameters elicit opposite effects of TBS on CE. While intermittent TBS (iTBS) facilitates CE, continuous TBS (cTBS) attenuates it. However, prolonged TBS (pTBS) with twice the number of stimuli produces the opposite effect. In a double-blind, placebo-controlled, cross-over study with healthy subjects (n = 24), we investigated the effects of various pTBS (cTBS, iTBS, and placebo TBS) over the right motor cortex on CE and pain perception. Changes in resting motor thresholds (RMTs) and absolute motor-evoked potential (MEP) amplitudes were assessed before and at two time-points (0–5 min; 40–45 min) after pTBS. Tactile and thermal pain thresholds were measured before and 5 min after application. Compared to the placebo, prolonged cTBS (pcTBS) transiently increased MEP amplitudes, while no significant changes were found after prolonged iTBS. However, the facilitation of CE after pcTBS did not induce a parallel analgesic effect. We confirmed that pcTBS with twice the duration converts the conventional inhibitory effect into a facilitatory one. Despite the short-term boost of CE following pcTBS, a corresponding analgesic effect was not demonstrated. Therefore, the results indicate a more complex regulation of pain, which cannot be explained entirely by the modulation of excitability.
Collapse
Affiliation(s)
- Monika Klírová
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Hejzlar
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Lenka Kostýlková
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Mohr
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Richard Rokyta
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Novák
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Leung A, Shirvalkar P, Chen R, Kuluva J, Vaninetti M, Bermudes R, Poree L, Wassermann EM, Kopell B, Levy R. Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation. Neuromodulation 2020; 23:267-290. [PMID: 32212288 DOI: 10.1111/ner.13094] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND While transcranial magnetic stimulation (TMS) has been studied for the treatment of psychiatric disorders, emerging evidence supports its use for pain and headache by stimulating either motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). However, its clinical implementation is hindered due to a lack of consensus in the quality of clinical evidence and treatment recommendation/guideline(s). Thus, working collaboratively, this multinational multidisciplinary expert panel aims to: 1) assess and rate the existing outcome evidence of TMS in various pain/headache conditions; 2) provide TMS treatment recommendation/guidelines for the evaluated conditions and comorbid depression; and 3) assess the cost-effectiveness and technical issues relevant to the long-term clinical implementation of TMS for pain and headache. METHODS Seven task groups were formed under the guidance of a 5-member steering committee with four task groups assessing the utilization of TMS in the treatment of Neuropathic Pain (NP), Acute Pain, Primary Headache Disorders, and Posttraumatic Brain Injury related Headaches (PTBI-HA), and remaining three assessing the treatment for both pain and comorbid depression, and the cost-effectiveness and technological issues relevant to the treatment. RESULTS The panel rated the overall level of evidence and recommendability for clinical implementation of TMS as: 1) high and extremely/strongly for both NP and PTBI-HA respectively; 2) moderate for postoperative pain and migraine prevention, and recommendable for migraine prevention. While the use of TMS for treating both pain and depression in one setting is clinically and financially sound, more studies are required to fully assess the long-term benefit of the treatment for the two highly comorbid conditions, especially with neuronavigation. CONCLUSIONS After extensive literature review, the panel provided recommendations and treatment guidelines for TMS in managing neuropathic pain and headaches. In addition, the panel also recommended more outcome and cost-effectiveness studies to assess the feasibility of the long-term clinical implementation of the treatment.
Collapse
Affiliation(s)
- Albert Leung
- Professor of Anesthesiology and Pain Medicine, Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA.,Director, Center for Pain and Headache Research, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Prasad Shirvalkar
- Assistant Professor, Departments of Anesthesiology (Pain Management), Neurology, and Neurosurgery, UCSF School of Medicine, USA
| | - Robert Chen
- Catherine Manson Chair in Movement Disorders, Professor of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Joshua Kuluva
- Neurologist and Psychiatrist, TMS Health Solution, San Francisco, CA, USA
| | - Michael Vaninetti
- Assistant Clinical Professor, Anesthesiology and Pain Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Richard Bermudes
- Chief Medical Officer, TMS Health Solutions, Assistant Clinical Professor- Volunteer, Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence Poree
- Professor of Anesthesiology, Director, Neuromodulation Service, Division of Pain Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Eric M Wassermann
- Director, Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brian Kopell
- Professor of Neurosurgery, Mount Sinai Center for Neuromodulation, New York, NY, USA
| | - Robert Levy
- President of International Neuromodulation Society, Editor-in-Chief, Neuromodulation, Boca Raton, FL, USA
| | -
- See Appendix for Complete List of Task Group Members
| |
Collapse
|
9
|
Albuquerque PL, Campêlo M, Mendonça T, Fontes LAM, Brito RDM, Monte-Silva K. Effects of repetitive transcranial magnetic stimulation and trans-spinal direct current stimulation associated with treadmill exercise in spinal cord and cortical excitability of healthy subjects: A triple-blind, randomized and sham-controlled study. PLoS One 2018; 13:e0195276. [PMID: 29596524 PMCID: PMC5875883 DOI: 10.1371/journal.pone.0195276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/18/2018] [Indexed: 11/18/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.
Collapse
Affiliation(s)
- Plínio Luna Albuquerque
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Department of Physical Therapy, Centro Universitário Tabosa de Almeida, Caruaru, Pernambuco, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Mayara Campêlo
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thyciane Mendonça
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Luís Augusto Mendes Fontes
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rodrigo de Mattos Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Katia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Ambriz-Tututi M, Alvarado-Reynoso B, Drucker-Colín R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics 2016; 37:527-535. [DOI: 10.1002/bem.22001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/06/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Mónica Ambriz-Tututi
- Hospital General Ajusco Medio “Dra. Obdulia Rodriguez Rodriguez”; Unidad de Trastornos de Movimiento y Sueño; Ciudad de México Mexico
| | - Beatriz Alvarado-Reynoso
- Hospital General Ajusco Medio “Dra. Obdulia Rodriguez Rodriguez”; Unidad de Trastornos de Movimiento y Sueño; Ciudad de México Mexico
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| |
Collapse
|
11
|
Cha HG, Ji SG, Kim MK. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients. J Phys Ther Sci 2016; 28:2002-4. [PMID: 27512251 PMCID: PMC4968493 DOI: 10.1589/jpts.28.2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients.
Collapse
Affiliation(s)
- Hyun Gyu Cha
- Department of Physical Therapy, Kyungbuk College, Republic of Korea
| | - Sang-Goo Ji
- Department of Physical Therapy, Eulji University Hospital, Republic of Korea
| | - Myoung-Kwon Kim
- Department of Physical Therapy, College of Rehabilitation Sciences, Daegu University, Republic of Korea
| |
Collapse
|
12
|
Uglem M, Omland P, Engstrøm M, Gravdahl G, Linde M, Hagen K, Sand T. Non-invasive cortical modulation of experimental pain in migraine. Clin Neurophysiol 2016; 127:2362-9. [DOI: 10.1016/j.clinph.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 11/29/2022]
|
13
|
Not an Aspirin: No Evidence for Acute Anti-Nociception to Laser-Evoked Pain After Motor Cortex rTMS in Healthy Humans. Brain Stimul 2016; 9:48-57. [DOI: 10.1016/j.brs.2015.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023] Open
|
14
|
Moisset X, de Andrade D, Bouhassira D. From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects. Eur J Pain 2015; 20:689-700. [DOI: 10.1002/ejp.811] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Affiliation(s)
- X. Moisset
- Inserm U-987; Centre d'Evaluation et de Traitement de la Douleur; CHU Ambroise Paré; Assistance Publique Hôpitaux de Paris; Boulogne Billancourt France
- Clermont Université; Université d'Auvergne; Neuro-Dol; Inserm U-1107; Clermont-Ferrand France
- Service de Neurologie; CHU Gabriel Montpied; Clermont Université; Université d'Auvergne; Clermont-Ferrand France
| | - D.C. de Andrade
- Department of Neurology; Pain Center; University of São Paulo; Brazil
- Transcranial Magnetic Stimulation Laboratory; Instituto de Psiquiatria; University of São Paulo; Brazil
- Instituto do Câncer Octavio Frias de Oliveira; University of São Paulo; Brazil
| | - D. Bouhassira
- Inserm U-987; Centre d'Evaluation et de Traitement de la Douleur; CHU Ambroise Paré; Assistance Publique Hôpitaux de Paris; Boulogne Billancourt France
- Université Versailles-Saint-Quentin; Versailles France
| |
Collapse
|
15
|
Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur J Neurosci 2015; 42:2426-37. [DOI: 10.1111/ejn.13043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- B. Vaseghi
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| | - M. Zoghi
- Department of Medicine; Royal Melbourne Hospital; The University of Melbourne; Parkville Vic. Australia
| | - S. Jaberzadeh
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| |
Collapse
|
16
|
Vaseghi B, Zoghi M, Jaberzadeh S. A meta-analysis of site-specific effects of cathodal transcranial direct current stimulation on sensory perception and pain. PLoS One 2015; 10:e0123873. [PMID: 25978673 PMCID: PMC4433259 DOI: 10.1371/journal.pone.0123873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
The primary aim of our meta-analysis was to evaluate the effects of cathodal transcranial direct current stimulation (c-tDCS) on sensory and pain thresholds (STh and PTh) in healthy individuals and pain level (PL) in patients with chronic pain. Electronic databases were searched for c-tDCS studies. Methodological quality was evaluated using the PEDro and Downs and Black (D&B) assessment tools. C-tDCS of the primary motor cortex (S1) increases both STh (P<0.001, effect size of 26.84%) and PTh (P<0.001, effect size of 11.62%). In addition, c-tDCS over M1 led to STh increase (P<0.005, effect size of 30.44%). Likewise, PL decreased significantly in the patient group following application of c-tDCS. The small number of studies precluded subgroup analysis. Nevertheless, meta-analysis showed that in all groups (except c-tDCS of S1) active c-tDCS and sham stimulation produced significant differences in STh/PTh in healthy and PL in patient group. This review provides evidence for the site-specific effectiveness of c-tDCS in increasing STh/PTh in healthy individuals and decreasing PL in patients with chronic pain. However, due to small sample sizes in the included studies, our results should be interpreted with caution. Given that the level of blinding was not considered in the inclusion criteria, the results of the current study should be interpreted with caution.
Collapse
Affiliation(s)
- Bita Vaseghi
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- * E-mail:
| | - Maryam Zoghi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Granovsky Y, Liem K, Weissman-Fogel I, Yarnitsky D, Chistyakov A, Sinai A. ‘Virtual lesion’ in pain research; a study on magnetic stimulation of the primary motor cortex. Eur J Pain 2015; 20:241-9. [DOI: 10.1002/ejp.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Granovsky
- Department of Neurology; Rambam Medical Center; Haifa Israel
- Clinical Neurophysiology Laboratory; Technion Faculty of Medicine; Haifa Israel
| | - K.S. Liem
- Faculty of Medicine; University Utrecht; The Netherlands
| | - I. Weissman-Fogel
- Faculty of Social Welfare and Health Sciences; University of Haifa; Haifa Israel
| | - D. Yarnitsky
- Department of Neurology; Rambam Medical Center; Haifa Israel
- Clinical Neurophysiology Laboratory; Technion Faculty of Medicine; Haifa Israel
| | - A. Chistyakov
- Neurosurgery Laboratory; Rambam Medical Center; Haifa Israel
| | - A. Sinai
- Department of Neurology; Rambam Medical Center; Haifa Israel
- Neurosurgery Laboratory; Rambam Medical Center; Haifa Israel
| |
Collapse
|
18
|
Moisset X, Goudeau S, Poindessous-Jazat F, Baudic S, Clavelou P, Bouhassira D. Prolonged Continuous Theta-burst Stimulation is More Analgesic Than ‘Classical’ High Frequency Repetitive Transcranial Magnetic Stimulation. Brain Stimul 2015; 8:135-41. [DOI: 10.1016/j.brs.2014.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/30/2014] [Accepted: 10/11/2014] [Indexed: 01/24/2023] Open
|
19
|
Sacco P, Prior M, Poole H, Nurmikko T. Repetitive transcranial magnetic stimulation over primary motor vs non-motor cortical targets; effects on experimental hyperalgesia in healthy subjects. BMC Neurol 2014; 14:166. [PMID: 25182028 PMCID: PMC4163168 DOI: 10.1186/s12883-014-0166-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/15/2014] [Indexed: 01/16/2023] Open
Abstract
Background High frequency repetitive transcranial magnetic stimulation (rTMS) targetted to different cortical regions (primary motor/sensory, prefrontal) are known to alter somatosensory responses. The mechanism(s) for these effects are unclear. We compared the analgesic effects of rTMS at different cortical sites on hyperalgesia induced using topical capsaicin cream. Methods Fourteen healthy subjects had capsaicin cream applied to a 16 cm2 area of the medial aspect of the right wrist (60 min) on 4 separate occasions over 6 weeks. rTMS (10Hz for 10s/min = 2000 stimuli @ 90% resting motor threshold of first dorsal interosseus muscle) was applied to the optimum site for right hand (M1), left dorsolateral prefrontal (DLFPC) and occipital midline (OCC) in a pseudo-randomised order. Thermal and mechanical perception and pain thresholds were determined using standardised quantitative sensory testing (QST) methods at the capsaicin site. Subjective responses to thermal stimuli (pain score on a numerical rating scale) from −2.5°C to +2.5°C of the individualised heat pain threshold (HPT) resulted in a hyperalgesia curve. Sensory testing took place prior to capsaicin application (PRE-CAP), after 30 min of capsaicin (POST-CAP) and following rTMS (30 min = POST-TMS). Results Capsaicin application resulted in substantial changes in thermal (but not mechanical) sensitivity to both heat and cold (eg. HPT PRE-CAP = 43.6°C to POST-CAP = 36.7°C (p < 0.001)) with no differences between groups pre-rTMS. POST-TMS HPT showed no changes for any of the treatment groups, however the pain scores for the hyperalgesia curve were significantly lower for M1 vs OCC (−24.7%, p < 0.001) and for M1 vs DLFPC (−18.3%, p < 0.02). Conclusion rTMS over the primary motor cortex results in a significant analgesic effect compared to other cortical areas. Electronic supplementary material The online version of this article (doi:10.1186/s12883-014-0166-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul Sacco
- Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L9 7AL, UK.
| | | | | | | |
Collapse
|
20
|
Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol 2014; 125:1847-58. [DOI: 10.1016/j.clinph.2014.01.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/01/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
|
21
|
Choi YH, Jung SJ, Lee CH, Lee SU. Additional effects of transcranial direct-current stimulation and trigger-point injection for treatment of myofascial pain syndrome: a pilot study with randomized, single-blinded trial. J Altern Complement Med 2014; 20:698-704. [PMID: 25083759 DOI: 10.1089/acm.2013.0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic pain caused by myofascial pain syndrome (MPS) results in generalized and debilitating conditions. Trigger-point injection (TPI) is the mainstay of MPS management to reduce acute and localized pain. Other adjunctive intervention to modulate the central pain pathway might be helpful if they are combined with TPI. Transcranial direct-current stimulation (tDCS), which is a form of neurostimulation, has been reported to be safe and effective in treating chronic pain by changing cortical excitability. OBJECTIVES To determine whether there is an additional effect of tDCS and TPI to reduce pain in patients with MPS. PATIENTS Twenty-one patients with newly diagnosed MPS of shoulder girdle muscles. INTERVENTIONS Patients were randomly assigned into 1 of 3 groups (2 active and 1 sham stimulation groups) and received TPI. Immediately after TPI, tDCS (2 mA for 20 minutes on 5 consecutive days) was administered. For the active stimulation groups, tDCS was applied over 2 different locations (primary motor cortex and dorsolateral prefrontal cortex [DLPFC]). OUTCOME MEASURES Visual analogue scale (VAS), Pain Threshold Test, and short form of the McGill Pain Questionnaire were measured before and immediately after stimulation for 5 consecutive days. RESULTS The mean VAS values were decreased in all three groups after 5 days. There was a significant change between before and after stimulation only in the DLPFC group. The significant change in the mean VAS value was shown from after the second stimulation session (p=0.031), and this remained significant until the last stimulation session (p=0.027). CONCLUSION This study suggests that tDCS over DLPFC may have additional effects with TPI to reduce pain in patients with MPS. tDCS over DLPFC can be used to reverse central pain pathway by modulating cortical plasticity.
Collapse
Affiliation(s)
- Yoon-Hee Choi
- 1 Department of Rehabilitation Medicine, Seoul National University Hospital , Seoul, South Korea
| | | | | | | |
Collapse
|
22
|
DosSantos MF, Martikainen IK, Nascimento TD, Love TM, DeBoer MD, Schambra HM, Bikson M, Zubieta JK, DaSilva AF. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report. PLoS One 2014; 9:e102350. [PMID: 25029273 PMCID: PMC4100885 DOI: 10.1371/journal.pone.0102350] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/18/2014] [Indexed: 01/24/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET) scans with [11C]carfentanil, a selective μ-opioid receptor (MOR) radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND)--one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA) tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG), precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Michigan Center for Oral Health Research (MCOHR), School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ilkka K. Martikainen
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Michigan Center for Oral Health Research (MCOHR), School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Translational Neuroimaging Laboratory, Molecular and Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thiago D. Nascimento
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Michigan Center for Oral Health Research (MCOHR), School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tiffany M. Love
- Translational Neuroimaging Laboratory, Molecular and Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, United States of America
| | - Misty D. DeBoer
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Michigan Center for Oral Health Research (MCOHR), School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Heidi M. Schambra
- Departments of Neurology and Rehabilitation & Regenerative Medicine, Columbia University, New York, New York, United States of America
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | - Jon-Kar Zubieta
- Translational Neuroimaging Laboratory, Molecular and Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Michigan Center for Oral Health Research (MCOHR), School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Translational Neuroimaging Laboratory, Molecular and Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
23
|
Hasan M, Whiteley J, Bresnahan R, MacIver K, Sacco P, Das K, Nurmikko T. Somatosensory Change and Pain Relief Induced by Repetitive Transcranial Magnetic Stimulation in Patients With Central Poststroke Pain. Neuromodulation 2014; 17:731-6; discussion 736. [DOI: 10.1111/ner.12198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/14/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Hasan
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
| | | | - Rebecca Bresnahan
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Kate MacIver
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Paul Sacco
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - Kumar Das
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
| | - Turo Nurmikko
- Pain Research Institute; Clinical Sciences Centre; Liverpool UK
- Radiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| |
Collapse
|
24
|
Moloney TM, Witney AG. Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation. PLoS One 2014; 9:e92540. [PMID: 24658333 PMCID: PMC3962424 DOI: 10.1371/journal.pone.0092540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The primary motor cortex (M1) is an effective target of non-invasive cortical stimulation (NICS) for pain threshold modulation. It has been suggested that the initial level of cortical excitability of M1 plays a key role in the plastic effects of NICS. OBJECTIVE Here we investigate whether transcranial direct current stimulation (tDCS) primed 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pressure pain thresholds and if this is related to observed alterations in cortical excitability. METHOD 15 healthy, male participants received 10 min 1 mA anodal, cathodal and sham tDCS to the left M1 before 15 min 1 Hz rTMS in separate sessions over a period of 3 weeks. Motor cortical excitability was recorded at baseline, post-tDCS priming and post-rTMS through recording motor evoked potentials (MEPs) from right FDI muscle. Pressure pain thresholds were determined by quantitative sensory testing (QST) through a computerized algometer, on the palmar thenar of the right hand pre- and post-stimulation. RESULTS Cathodal tDCS-primed 1 Hz-rTMS was found to reverse the expected suppressive effect of 1 Hz rTMS on cortical excitability; leading to an overall increase in activity (p<0.001) with a parallel increase in pressure pain thresholds (p<0.01). In contrast, anodal tDCS-primed 1 Hz-rTMS resulted in a corresponding decrease in cortical excitability (p<0.05), with no significant effect on pressure pain. CONCLUSION This study demonstrates that priming the M1 before stimulation of 1 Hz-rTMS modulates experimental pressure pain thresholds in a safe and controlled manner, producing a form of analgesia.
Collapse
Affiliation(s)
- Tonya M. Moloney
- Department of Physiology, Trinity College Institute of Neuroscience and Trinity Centre for BioEngineering, Trinity College, Dublin, Ireland
| | - Alice G. Witney
- Department of Physiology, Trinity College Institute of Neuroscience and Trinity Centre for BioEngineering, Trinity College, Dublin, Ireland
| |
Collapse
|
25
|
Johnson LA, Wander JD, Sarma D, Su DK, Fetz EE, Ojemann JG. Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J Neural Eng 2013; 10:036021. [PMID: 23665776 DOI: 10.1088/1741-2560/10/3/036021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recently, electrocorticography-based brain-computer interfaces have been successfully used to translate cortical activity into control signals for external devices. However, the utility of such devices would be greatly enhanced by somatosensory feedback. Direct stimulation of somatosensory cortex evokes sensory perceptions, and is thus a promising option for closing the loop. Before this can be implemented in humans it is necessary to evaluate how changes in stimulus parameters are perceived and the extent to which they can be discriminated. APPROACH Electrical stimulation was delivered to the somatosensory cortex of human subjects implanted with electrocorticography grids. Subjects were asked to discriminate between stimuli of different frequency and amplitude as well as to report the qualitative sensations elicited by the stimulation. MAIN RESULTS In this study we show that in humans implanted with electrocorticography grids, variations in the amplitude or frequency of cortical electrical stimulation produce graded variations in percepts. Subjects were able to reliably distinguish between different stimuli. SIGNIFICANCE These results indicate that direct cortical stimulation is a feasible option for sensory feedback with brain-computer interface devices.
Collapse
Affiliation(s)
- L A Johnson
- Department of Neurological Surgery, The University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Transcranial direct current stimulation (tDCS) priming of 1Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pain thresholds. Neurosci Lett 2013; 534:289-94. [DOI: 10.1016/j.neulet.2012.11.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/22/2022]
|
27
|
Baudic S, Attal N, Mhalla A, Ciampi de Andrade D, Perrot S, Bouhassira D. Unilateral repetitive transcranial magnetic stimulation of the motor cortex does not affect cognition in patients with fibromyalgia. J Psychiatr Res 2013; 47:72-7. [PMID: 23079535 DOI: 10.1016/j.jpsychires.2012.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 11/17/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces changes in neuronal activity that may affect cognition. We assessed cognitive functions, in patients with fibromyalgia participating in a sham-controlled randomized trial of rTMS for pain management. We randomly assigned 38 non depressed fibromyalgia patients (American College of Rheumatology criteria) to the active (n = 20) and sham (n = 18) rTMS treatment groups, in a double-blind manner. rTMS was applied to the left primary motor cortex (10 Hz at 80% of rest motor threshold). Neuropsychological tests were performed immediately before stimulation, to evaluate episodic memory, selective and divided attention and executive functions at baseline, week 3 (after 7 rTMS sessions) and week 11 (after 11 rTMS sessions). The actively treated and sham-treated groups were similar in terms of clinical and neuropsychological variables at baseline. No difference in overall neuropsychological performance with respect to baseline was found between these two groups, but a significant improvement over time was observed in the rTMS group, for several measurements of attention/executive function (the Symbol Digit Modalities Test and the Stroop Color Word Test). Unilateral rTMS of the motor cortex over a three-month period did not modify cognitive functions in patients with chronic pain. rTMS may have mild beneficial cognitive effects, but confirmation is required in larger groups of patients.
Collapse
Affiliation(s)
- Sophie Baudic
- Inserm U-987, CHU Ambroise Paré, Assistance Publique Hôpitaux de Paris, 92100 Boulogne Billancourt, France.
| | | | | | | | | | | |
Collapse
|
28
|
Fibromyalgia syndrome: etiology, pathogenesis, diagnosis, and treatment. PAIN RESEARCH AND TREATMENT 2012; 2012:426130. [PMID: 23213512 PMCID: PMC3503476 DOI: 10.1155/2012/426130] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/09/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
Fibromyalgia syndrome is mainly characterized by pain, fatigue, and sleep disruption. The etiology of fibromyalgia is still unclear: if central sensitization is considered to be the main mechanism involved, then many other factors, genetic, immunological, and hormonal, may play an important role. The diagnosis is typically clinical (there are no laboratory abnormalities) and the physician must concentrate on pain and on its features. Additional symptoms (e.g., Raynaud's phenomenon, irritable bowel disease, and heat and cold intolerance) can be associated with this condition. A careful differential diagnosis is mandatory: fibromyalgia is not a diagnosis of exclusion. Since 1990, diagnosis has been principally based on the two major diagnostic criteria defined by the ACR. Recently, new criteria have been proposed. The main goals of the treatment are to alleviate pain, increase restorative sleep, and improve physical function. A multidisciplinary approach is optimal. While most nonsteroidal anti-inflammatory drugs and opioids have limited benefit, an important role is played by antidepressants and neuromodulating antiepileptics: currently duloxetine (NNT for a 30% pain reduction 7.2), milnacipran (NNT 19), and pregabalin (NNT 8.6) are the only drugs approved by the US Food and Drug Administration for the treatment of fibromyalgia. In addition, nonpharmacological treatments should be associated with drug therapy.
Collapse
|
29
|
Noninvasive cortical modulation of experimental pain. Pain 2012; 153:1350-1363. [DOI: 10.1016/j.pain.2012.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 01/09/2023]
|
30
|
Grundmann L, Rolke R, Nitsche MA, Pavlakovic G, Happe S, Treede RD, Paulus W, Bachmann CG. Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul 2011; 4:253-60. [DOI: 10.1016/j.brs.2010.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 11/18/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022] Open
|
31
|
Mhalla A, Baudic S, de Andrade DC, Gautron M, Perrot S, Teixeira MJ, Attal N, Bouhassira D. Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain 2011; 152:1478-1485. [PMID: 21397400 DOI: 10.1016/j.pain.2011.01.034] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/10/2011] [Accepted: 01/18/2011] [Indexed: 12/18/2022]
Abstract
We assessed for the first time the long-term maintenance of repetitive transcranial magnetic stimulation (rTMS)-induced analgesia in patients with chronic widespread pain due to fibromyalgia. Forty consecutive patients were randomly assigned, in a double-blind fashion, to 2 groups: one receiving active rTMS (n=20) and the other, sham stimulation (n=20), applied to the left primary motor cortex. The stimulation protocol consisted of 14 sessions: an "induction phase" of 5 daily sessions followed by a "maintenance phase" of 3 sessions a week apart, 3 sessions a fortnight apart, and 3 sessions a month apart. The primary outcome was average pain intensity over the last 24 hours, measured before each stimulation from day 1 to week 21 and at week 25 (1 month after the last stimulation). Other outcomes measured included quality of life, mood and anxiety, and several parameters of motor cortical excitability. Thirty patients completed the study (14 in the sham stimulation group and 16 in the active stimulation group). Active rTMS significantly reduced pain intensity from day 5 to week 25. These analgesic effects were associated with a long-term improvement in items related to quality of life (including fatigue, morning tiredness, general activity, walking, and sleep) and were directly correlated with changes in intracortical inhibition. In conclusion, these results suggest that TMS may be a valuable and safe new therapeutic option in patients with fibromyalgia.
Collapse
Affiliation(s)
- Alaa Mhalla
- INSERM U-987, CHU Ambroise Paré, Assistance Publique Hôpitaux de Paris, Boulogne-Billancourt F-92100, France Department of Neurology, Hospital das Clinicas, University of São Paulo, Brazil CHU Hôtel Dieu, Assistance Publique Hôpitaux de Paris, Paris F-75001, France Université Paris Descartes, Paris F-75005, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Brighina F, De Tommaso M, Giglia F, Scalia S, Cosentino G, Puma A, Panetta M, Giglia G, Fierro B. Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex. J Headache Pain 2011; 12:185-91. [PMID: 21350791 PMCID: PMC3072504 DOI: 10.1007/s10194-011-0322-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/30/2010] [Indexed: 02/08/2023] Open
Abstract
Evidence by functional imaging studies suggests the role of left dorsolateral prefrontal cortex (DLPFC) in the inhibitory control of nociceptive transmission system. Repetitive transcranial magnetic stimulation (rTMS) is able to modulate pain response to capsaicin. In the present study, we evaluated the effect of DLPFC activation (through rTMS) on nociceptive control in a model of capsaicin-induced pain. The study was performed on healthy subjects that underwent capsaicin application on right or left hand. Subjects judged the pain induced by capsaicin through a 0–100 VAS scale before and after 5 Hz rTMS over left and right DLPFC at 10 or 20 min after capsaicin application in two separate groups (8 subjects each). Left DLPFC-rTMS delivered either at 10 and 20 min after capsaicin application significantly decreased spontaneous pain in both hands. Right DLPFC rTMS showed no significant effect on pain measures. According to these results, stimulation of left DLPFC seems able to exert a bilateral control on pain system, supporting the critical antinociceptive role of such area. This could open new perspectives to non-invasive brain stimulation protocols of alternative target area for pain treatment.
Collapse
Affiliation(s)
- Filippo Brighina
- Dip di Biomedicine Sperimentali e Neuroscienze Cliniche (BioNeC), University of Palermo, Via G. La Loggia, 1, 90129 Palermo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zunhammer M, Busch V, Griesbach F, Landgrebe M, Hajak G, Langguth B. rTMS over the cerebellum modulates temperature detection and pain thresholds through peripheral mechanisms. Brain Stimul 2010; 4:210-7.e1. [PMID: 22032736 DOI: 10.1016/j.brs.2010.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/06/2010] [Accepted: 11/16/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of motor and prefrontal cortex has been shown to modulate pain perception. Even though evidence suggests an involvement of cerebellar structures in pain processing, the effect of rTMS over the cerebellum on pain perception has not yet been investigated. OBJECTIVE/HYPOTHESIS This study aimed to test the effects of rTMS over the cerebellum on sensory perception, particularly controlling for peripheral stimulation effects. METHODS Sensory perception was determined as temperature detection and temperature pain thresholds. Experiment one explored the effects of four different rTMS protocols (flat figure-of-eight coil; 120% motor resting threshold; 1000 stimuli; 1 Hz and 10 Hz; medial and right lateral cerebellum) on sensory thresholds in 10 healthy volunteers using pairwise comparisons. The most efficient protocol of experiment one was compared in a second experiment with two control conditions (rTMS with a sham coil over the cerebellum [sham] and repetitive magnetic stimulation [rMS] of the neck) by using robust statistics (MANOVA). RESULTS The first experiment demonstrated pronounced effects on sensory perception for 1Hz rTMS over the lateral cerebellum. The second experiment confirmed this result in comparison to sham. However, rMS over the neck had a similar effect like rTMS over the cerebellum. CONCLUSIONS Our findings suggest that changes in sensory perception after rTMS over the cerebellum are largely due to stimulation effects on peripheral structures and support recent reports of analgesic effects of neck rMS. They advocate the critical review of the proposed analgesic effects of rTMS and encourage the future use of proper control conditions in rTMS research.
Collapse
Affiliation(s)
- Matthias Zunhammer
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
de Andrade DC, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids. Pain 2010; 152:320-326. [PMID: 21146300 DOI: 10.1016/j.pain.2010.10.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023]
Abstract
We investigated the role of endogenous opioid systems in the analgesic effects induced by repetitive transcranial magnetic stimulation (rTMS). We compared the analgesic effects of motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) stimulation before and after naloxone or placebo treatment, in a randomized, double-blind crossover design, in healthy volunteers. Three groups of 12 volunteers were selected at random and given active stimulation (frequency 10Hz, at 80% motor threshold intensity, 1500 pulses per session) of the right M1, active stimulation of the right DLPFC, or sham stimulation, during two experimental sessions 2 weeks apart. Cold pain thresholds and the intensity of pain induced by a series of fixed-temperature cold stimuli (5, 10, and 15°C) were used to evaluate the analgesic effects of rTMS. Measurements were made at the left thenar eminence, before and 1 hour after the intravenous injection of naloxone (bolus of 0.1mg/kg followed by a continuous infusion of 0.1mg/kg/h until the end of rTMS) or placebo (saline). Naloxone injection significantly decreased the analgesic effects of M1 stimulation, but did not change the effects of rTMS of the DLPFC or sham rTMS. This study demonstrates, for the first time, the involvement of endogenous opioid systems in rTMS-induced analgesia. The differential effects of naloxone on M1 and DLPFC stimulation suggest that the analgesic effects induced by the stimulation of these 2 cortical sites are mediated by different mechanisms. Endogenous opioids are shown to be involved in the analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, Ambroise Paré, Boulogne-Billancourt, France Department of Neurology, Hospital das Clinicas, University of São Paulo, Brazil
| | | | | | | | | |
Collapse
|
35
|
de Tommaso M, Brighina F, Fierro B, Francesco VD, Santostasi R, Sciruicchio V, Vecchio E, Serpino C, Lamberti P, Livrea P. Effects of high-frequency repetitive transcranial magnetic stimulation of primary motor cortex on laser-evoked potentials in migraine. J Headache Pain 2010; 11:505-12. [PMID: 20714776 PMCID: PMC3476225 DOI: 10.1007/s10194-010-0247-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/27/2010] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to examine the effects of high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) of the left primary motor cortex (M1) on subjective pain and evoked responses induced by laser stimulation (LEPs) of the contralateral hand and supraorbital zone in a cohort of migraine patients without aura during the inter-critical phase, and to compare the effects with those of non-migraine healthy controls. Thirteen migraine patients and 12 sex- and age-matched controls were evaluated. Each rTMS session consisted of 1,800 stimuli at a frequency of 5 Hz and 90% motor threshold intensity. Sham (control) rTMS was performed at the same stimulation position. The vertex LEP amplitude was reduced at the trigeminal and hand levels in the sham-placebo condition and after rTMS to a greater extent in the migraine patients than in healthy controls, while the laser pain rating was unaffected. These results suggest that HF rTMS of motor cortex and the sham procedure can both modulate pain-related evoked responses in migraine patients.
Collapse
Affiliation(s)
- Marina de Tommaso
- Neurophysiopathology of Pain Unit, Neurological and Psychiatric Sciences Department, Neurological Clinic, Policlinico, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Borckardt JJ, Walker J, Branham RK, Rydin-Gray S, Hunter C, Beeson H, Reeves ST, Madan A, Sackeim H, George MS. Development and evaluation of a portable sham transcranial magnetic stimulation system. Brain Stimul 2010; 1:52-9. [PMID: 19424444 DOI: 10.1016/j.brs.2007.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a relatively noninvasive brain stimulation technology that can focally stimulate the human cortex. One significant limitation of much of the TMS research to date concerns the nature of the placebo or sham conditions used. When TMS pulses are delivered repetitively (especially prefrontal TMS), it is often experienced as painful. Most sham TMS techniques produce identical sounds to active TMS, but they do not cause much, if any, scalp or facial sensation or discomfort. This is a serious problem when investigators are attempting to evaluate the effects of TMS by using traditional sham techniques because of unintended systematic differences between real and sham TMS groups (ie, confounds). As long as traditional approaches to sham TMS are used, the validity of the inferences regarding the efficacy of TMS will be limited. Although some other sophisticated systems have been developed to address these concerns, they tend to be expensive and lack portability. Portability will likely become more and more important as TMS applications expand into different clinical areas (eg, TMS in the postanesthesia care unit after surgery). METHODS This study describes a portable electrical TMS sham system (eSham system) modeled after the James Long System that was designed to produce similar scalp sensations as real TMS. Preliminary results are presented on 9 healthy adults who received both real and eSham 10 Hz repetitive TMS (rTMS) (at 80%, 100%, and 120% of resting motor threshold) over the prefrontal cortex and rated the sensation quality (pain, tingling, sharpness, piercing, electric, tugging, pinching), tolerability, and location. RESULTS Real TMS and eSham TMS were rated similarly across all seven sensory dimensions examined. Real and eSham TMS were also rated similarly with respect to tolerability and perceived location of the TMS-induced sensations. CONCLUSIONS The eSham system may be a simple, affordable, and portable approach to providing convincing sham TMS for future clinical trials. This study provides preliminary evidence supporting the use of the eSham system. Future larger-scale studies are warranted.
Collapse
Affiliation(s)
- Jeffrey J Borckardt
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lefaucheur JP, Jarry G, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS reduces acute pain provoked by laser stimulation in patients with chronic neuropathic pain. Clin Neurophysiol 2010; 121:895-901. [DOI: 10.1016/j.clinph.2009.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
|
38
|
Mylius V. Pain relieving effects of repetitive transcranial magnetic stimulation of the motor cortex: What can we learn from experimentally-induced pain? Clin Neurophysiol 2010; 121:807-8. [DOI: 10.1016/j.clinph.2010.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/15/2010] [Accepted: 02/20/2010] [Indexed: 12/01/2022]
|
39
|
|
40
|
Alteration of cortical excitability in patients with fibromyalgia. Pain 2010; 149:495-500. [PMID: 20356675 DOI: 10.1016/j.pain.2010.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/04/2010] [Accepted: 03/10/2010] [Indexed: 01/07/2023]
Abstract
We assessed cortical excitability and intracortical modulation systematically, by transcranial magnetic stimulation (TMS) of the motor cortex, in patients with fibromyalgia. In total 46 female patients with fibromyalgia and 21 normal female subjects, matched for age, were included in this study. TMS was applied to the hand motor area of both hemispheres and motor evoked potentials (MEPs) were recorded for the first interosseous muscle of the contralateral hand. Single-pulse stimulation was used for measurements of the rest motor threshold (RMT) and suprathreshold MEP. Paired-pulse stimulation was used to assess short intracortical inhibition (SICI) and intracortical facilitation (ICF). Putative correlations were sought between changes in electrophysiological parameters and major clinical features of fibromyalgia, such as pain, fatigue, anxiety, depression and catastrophizing. The RMT on both sides was significantly increased in patients with fibromyalgia and suprathreshold MEP was significantly decreased bilaterally. However, these alterations, suggesting a global decrease in corticospinal excitability, were not correlated with clinical features. Patients with fibromyalgia also had lower ICF and SICI on both sides, than controls, these lower values being correlated with fatigue, catastrophizing and depression. These neurophysiological alterations were not linked to medication, as similar changes were observed in patients with or without psychotropic treatment. In conclusion, fibromyalgia is associated with deficits in intracortical modulation involving both GABAergic and glutamatergic mechanisms, possibly related to certain aspects of the pathophysiology of this chronic pain syndrome. Our data add to the growing body of evidence for objective and quantifiable changes in brain function in fibromyalgia.
Collapse
|
41
|
|
42
|
Nahmias F, Debes C, de Andrade DC, Mhalla A, Bouhassira D. Diffuse analgesic effects of unilateral repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers. Pain 2009; 147:224-32. [DOI: 10.1016/j.pain.2009.09.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/11/2009] [Accepted: 09/16/2009] [Indexed: 11/26/2022]
|
43
|
Viisanen H, Pertovaara A. Antinociception by motor cortex stimulation in the neuropathic rat: does the locus coeruleus play a role? Exp Brain Res 2009; 201:283-96. [PMID: 19826796 DOI: 10.1007/s00221-009-2038-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/24/2009] [Indexed: 11/29/2022]
Abstract
We studied whether stimulation of the primary motor cortex (M1) attenuates pain-related spinal withdrawal responses of neuropathic and healthy control rats, and whether the descending antinociceptive effect is relayed through the noradrenergic locus coeruleus (LC). The assessments of the noxious heat-evoked limb withdrawals reflecting spinal nociception and recordings of single LC units were performed in spinal nerve-ligated neuropathic and sham-operated control rats under light pentobarbital anesthesia. Electric stimulation of M1 produced equally strong spinal antinociception in neuropathic and control rats. Following microinjection into M1, a group I metabotropic glutamate receptor agonist (DHPG; 10 nmol) and a high (25 nmol) but not low (2.5 nmol) dose of glutamate slightly increased on-going discharge rates of LC neurons in neuropathic but not in control animals. Influence of electric stimulation of M1 on LC neurons was studied only in the neuropathic group, in which discharge rates of LC neurons were increased by electric M1 stimulation. Lidocaine block of the LC or block of descending noradrenergic influence by intrathecal administration of a alpha(2)-adrenoceptor antagonist failed to produce a significant attenuation of the spinal antinociceptive effect induced by electric M1 stimulation in the neuropathic or the sham group. The results indicate that stimulation of the rat M1 induces spinal antinociception in neuropathic as well as control conditions. While M1 stimulation may activate the LC, particularly in the neuropathic group, the contribution of coeruleospinal noradrenergic pathways may not be critical for the spinal antinociceptive effect induced by M1 stimulation.
Collapse
Affiliation(s)
- Hanna Viisanen
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, POB 63, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
44
|
Borckardt JJ, Smith AR, Reeves ST, Madan A, Shelley N, Branham R, Nahas Z, George MS. A pilot study investigating the effects of fast left prefrontal rTMS on chronic neuropathic pain. PAIN MEDICINE 2009; 10:840-9. [PMID: 19594842 DOI: 10.1111/j.1526-4637.2009.00657.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Stimulating the human cortex using transcranial magnetic stimulation (TMS) temporarily reduces clinical and experimental pain; however, it is unclear which cortical targets are the most effective. The motor cortex has been a popular target for managing neuropathic pain, while the prefrontal cortex has been investigated for an array of nociceptive pain conditions. It is unclear whether the motor cortex is the only effective cortical target for managing neuropathic pain, and no published studies to date have investigated the effects of prefrontal stimulation on neuropathic pain. DESIGN This preliminary pilot trial employed a sham-controlled, within-subject, crossover design to evaluate clinical pain as well as laboratory pain thresholds among four patients with chronic neuropathic pain. Each participant underwent three real and three sham 20-minute sessions of 10 Hz left prefrontal repetitive TMS. Daily pain diaries were collected for 3 weeks before and after each treatment phase along with a battery of self-report pain and mood questionnaires. RESULTS Time-series analysis at the individual patient level indicated that real TMS was associated with significant improvements in average daily pain in 3 of the 4 participants. These effects were independent of changes in mood in two of the participants. At the group level, a decrease of 19% in daily pain on average, pain at its worst, and pain at its least was observed while controlling for changes in mood, activity level and sleep. The effects of real TMS were significantly greater than sham. Real TMS was associated with increases in thermal and mechanical pain thresholds, whereas sham was not. No statistically significant effects were observed across the questionnaire data. CONCLUSIONS The prefrontal cortex may be an important TMS cortical target for managing certain types of pain, including certain neuropathic pain syndromes.
Collapse
Affiliation(s)
- Jeffrey J Borckardt
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Varró P, Szemerszky R, Bárdos G, Világi I. Changes in synaptic efficacy and seizure susceptibility in rat brain slices following extremely low-frequency electromagnetic field exposure. Bioelectromagnetics 2009; 30:631-40. [DOI: 10.1002/bem.20517] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Pulsed Electromagnetic Fields to Reduce Diabetic Neuropathic Pain and Stimulate Neuronal Repair: A Randomized Controlled Trial. Arch Phys Med Rehabil 2009; 90:1102-9. [DOI: 10.1016/j.apmr.2009.01.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/16/2008] [Accepted: 01/11/2009] [Indexed: 01/13/2023]
|
47
|
Short-term restoration of facial sensory loss by motor cortex stimulation in peripheral post-traumatic neuropathic pain. J Headache Pain 2009; 10:203-6. [PMID: 19350361 PMCID: PMC3451995 DOI: 10.1007/s10194-009-0115-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 03/06/2009] [Indexed: 11/23/2022] Open
Abstract
We report a case in which motor cortex stimulation (MCS) improved neuropathic facial pain due to peripheral nerve injury and restored tactile and thermal sensory loss. A 66-year-old man developed intractable trigeminal neuropathic pain after trauma of the supraorbital branch of the Vth nerve, associated with tactile and thermal sensory loss in the painful area. MCS was performed using neuronavigation and transdural electric stimulation to localize the upper facial area on the motor cortex. One month after surgery, pain was decreased from 80/100 to 20/100 on visual analogic scale, and sensory discrimination improved in the painful area. Two months after surgery, quantitative sensory testing confirmed the normalization of thermal detection thresholds. This case showed that MCS could restore tactile and thermal sensory loss, resulting from peripheral nerve injury. Although the mechanisms leading to this effect remain unclear, this observation enhanced the hypothesis that MCS acts through modulation of the sensory processing.
Collapse
|
48
|
Valmunen T, Pertovaara A, Taiminen T, Virtanen A, Parkkola R, Jääskeläinen SK. Modulation of facial sensitivity by navigated rTMS in healthy subjects. Pain 2009; 142:149-58. [DOI: 10.1016/j.pain.2008.12.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 12/03/2008] [Accepted: 12/23/2008] [Indexed: 11/28/2022]
|
49
|
The use of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) to relieve pain. Brain Stimul 2008; 1:337-44. [DOI: 10.1016/j.brs.2008.07.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 12/17/2022] Open
|
50
|
Fifteen minutes of left prefrontal repetitive transcranial magnetic stimulation acutely increases thermal pain thresholds in healthy adults. Pain Res Manag 2008; 12:287-90. [PMID: 18080048 DOI: 10.1155/2007/741897] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) of the motor cortex appears to alter pain perception in healthy adults and in patients with chronic neuropathic pain. There is, however, emerging brain imaging evidence that the left prefrontal cortex is involved in pain inhibition in humans. OBJECTIVE Because the prefrontal cortex may be involved in descending pain inhibitory systems, the present pilot study was conducted to investigate whether stimulation of the left prefrontal cortex via TMS might affect pain perception in healthy adults. METHODS Twenty healthy adults with no history of depression or chronic pain conditions volunteered to participate in a pilot laboratory study in which thermal pain thresholds were assessed before and after 15 min of repetitive TMS (rTMS) over the left prefrontal cortex (10 Hz, 100% resting motor threshold, 2 s on, 60 s off, 300 pulses total). Subjects were randomly assigned to receive either real or sham rTMS and were blind to condition. RESULTS Subjects who received real rTMS demonstrated a significant increase in thermal pain thresholds following TMS. Subjects receiving sham TMS experienced no change in pain threshold. CONCLUSIONS rTMS over the left prefrontal cortex increases thermal pain thresholds in healthy adults. Results from the present study support the idea that the left prefrontal cortex may be a promising TMS cortical target for the management of pain. More research is needed to establish the reliability of these findings, maximize the effect, determine the length of effect and elucidate possible mechanisms of action.
Collapse
|