1
|
Beltrán González AN, López Pazos MI, Del Vas M, Calvo DJ. Negative modulation of the GABA Aρ1 receptor function by histamine. Eur J Pharmacol 2023; 955:175880. [PMID: 37406850 DOI: 10.1016/j.ejphar.2023.175880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Besides its function as a local mediator of the immune response, histamine can play a role as a neurotransmitter and neuromodulator. Histamine actions are classically mediated through four different G protein-coupled receptor subtypes but non-classical actions were also described, including effects on many ligand-gated ion channels. Previous evidence indicated that histamine acts as a positive modulator on diverse GABAA receptor subtypes, such as GABAAα1β2γ2, GABAAα2β3γ2, GABAAα3β3γ2, GABAAα4β3γ2 and GABAAα5β3γ2. Meanwhile, its effects on GABAAρ1 receptors, known to stand for tonic currents in retinal neurons, had not been examined before. The effects of histamine on the function of human homomeric GABAAρ1 receptors were studied here, using heterologous expression in Xenopus laevis oocytes followed by the electrophysiological recording of GABA-evoked Cl- currents. Histamine inhibited GABAAρ1 receptor-mediated responses. Effects were reversible, independent of the membrane potential, and strongly dependent on both histamine and GABA concentration. A rightward parallel shift in the concentration-response curve for GABA was observed in the presence of histamine, without substantial change in the maximal response or the Hill coefficient. Results were compatible with a competitive antagonism of histamine on the GABAAρ1 receptors. This is the first report of inhibitory actions exerted by histamine on an ionotropic GABA receptor.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Manuel I López Pazos
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wadsworth HA, Anderson EQ, Williams BM, Ronström JW, Moen JK, Lee AM, McIntosh JM, Wu J, Yorgason JT, Steffensen SC. Role of α6-Nicotinic Receptors in Alcohol-Induced GABAergic Synaptic Transmission and Plasticity to Cholinergic Interneurons in the Nucleus Accumbens. Mol Neurobiol 2023; 60:3113-3129. [PMID: 36802012 PMCID: PMC10690621 DOI: 10.1007/s12035-023-03263-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system, consisting of DA neurons in the ventral tegmental area (VTA) that project to the nucleus accumbens (NAc), underlies the reward properties of ethanol (EtOH) and nicotine (NIC). We have shown previously that EtOH and NIC modulation of DA release in the NAc is mediated by α6-containing nicotinic acetylcholine receptors (α6*-nAChRs), that α6*-nAChRs mediate low-dose EtOH effects on VTA GABA neurons and EtOH preference, and that α6*-nAChRs may be a molecular target for low-dose EtOH. However, the most sensitive target for reward-relevant EtOH modulation of mesolimbic DA transmission and the involvement of α6*-nAChRs in the mesolimbic DA reward system remains to be elucidated. The aim of this study was to evaluate EtOH effects on GABAergic modulation of VTA GABA neurons and VTA GABAergic input to cholinergic interneurons (CINs) in the NAc. Low-dose EtOH enhanced GABAergic input to VTA GABA neurons that was blocked by knockdown of α6*-nAChRs. Knockdown was achieved either by α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice or by superfusion of the α-conotoxin MII[H9A;L15A] (MII). Superfusion of MII blocked EtOH inhibition of mIPSCs in NAc CINs. Concomitantly, EtOH enhanced CIN firing rate, which was blocked by knockdown of α6*-nAChRs with α6-miRNA injected into the VTA of VGAT-Cre/GAD67-GFP mice. The firing rate of CINs was not enhanced by EtOH in EtOH-dependent mice, and low-frequency stimulation (LFS; 1 Hz, 240 pulses) caused inhibitory long-term depression at this synapse (VTA-NAc CIN-iLTD) which was blocked by knockdown of α6*-nAChR and MII. Ethanol inhibition of CIN-mediated evoked DA release in the NAc was blocked by MII. Taken together, these findings suggest that α6*-nAChRs in the VTA-NAc pathway are sensitive to low-dose EtOH and play a role in plasticity associated with chronic EtOH.
Collapse
Affiliation(s)
- Hillary A Wadsworth
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Elizabeth Q Anderson
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Benjamin M Williams
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Joakim W Ronström
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Janna K Moen
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - J Michael McIntosh
- School of Biological Sciences and Department of Psychiatry, University of Utah, Salt Lake City, UT, 84108, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jordan T Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, 1050 KMBL, Provo, UT, 84602, USA.
| |
Collapse
|
3
|
Hamaoka T, Fu X, Tomonaga S, Hashimoto O, Murakami M, Funaba M. Stimulation of uncoupling protein 1 expression by β-alanine in brown adipocytes. Arch Biochem Biophys 2022; 727:109341. [PMID: 35777522 DOI: 10.1016/j.abb.2022.109341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Carnosine, which is abundant in meat, is a dipeptide composed of β-alanine and histidine, known to afford various health benefits. It has been suggested that carnosine can elicit an anti-obesity effect via induction and activation of brown/beige adipocytes responsible for non-shivering thermogenesis. However, the relationship between carnosine and brown/beige adipocytes has not been comprehensively elucidated. We hypothesized that β-alanine directly modulates brown/beige adipogenesis and performed an in vitro assessment to test this hypothesis. HB2 brown preadipocytes were differentiated using insulin from day 0. Cells were treated with various concentrations of β-alanine (12.5-100 μM) during adipogenesis (days 0-8) and differentiation (days 8-10). Then, cells were further stimulated with or without forskolin, an activator of the cAMP-dependent protein kinase pathway, on day 8 or day 10 for 4 h before harvesting. We observed that HB2 cells expressed molecules related to the transport and signal transduction of β-alanine. Treatment with β-alanine during brown adipogenesis dose-dependently enhanced forskolin-induced Ucp1 expression; this was not observed in differentiated brown adipocytes. Consistent with these findings, treatment with β-alanine during days 0-8 increased phosphorylation levels of CREB in forskolin-treated HB2 cells. In addition, β-alanine treatment during brown adipogenesis increased the expression of Pparα, known to induce brown/beige adipogenesis, in a dose-dependent manner. These findings revealed that β-alanine could target HB2 adipogenic cells and enhance forskolin-induced Ucp1 expression during brown adipogenesis, possibly by accelerating phosphorylation and activation of CREB. Thus, β-alanine, a carnosine-constituting amino acid, might directly act on brown adipogenic cells to stimulate energy expenditure.
Collapse
Affiliation(s)
- Tsukasa Hamaoka
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Xiajie Fu
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Osamu Hashimoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Martínez-Campos Z, Pastor N, Pineda-Urbina K, Gómez-Sandoval Z, Fernández-Zertuche M, Razo-Hernández RS. In silico structure-based design of GABA B receptor agonists using a combination of docking and QSAR. Chem Biol Drug Des 2019; 94:1782-1798. [PMID: 31207116 DOI: 10.1111/cbdd.13580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/27/2022]
Abstract
The study of γ-aminobutyric acid B receptor (GABAB ) activation is of great interest for several brain disorders. The search of new GABAB receptor agonists has been carried out by many research groups. As a result, Baclofen has become the prototypical GABAB receptor agonist. However, several attempts have been made to modify its structure to generate derivatives with improved activity. In this work, we carried out a theoretical and computational study for a wide range of GABAB receptor agonists reported in the literature. Molecular docking and QSAR techniques were combined by using the interaction energies of the agonists with the key residues of GABAB receptor, as molecular descriptors for the QSAR construction. The resulting mathematical model suggests that the activity of GABAB receptor agonists is influenced by three factors: their shape and molecular size (PW5 and PJI2), their constitutional features (ELUMO and T(N…O)) and the energy interaction with GABAB receptor (ETRP278 ). This model was validated by the QUIK, REDUNDANCY and OVERFITTING rules, and its predicted ability was tasted by the QLOO , QASYM , R 0 2 and r m 2 rules. Finally, six new compounds are proposed (35-40) with high potential to be used as GABAB receptor agonists.
Collapse
Affiliation(s)
- Zuleyma Martínez-Campos
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | - Mario Fernández-Zertuche
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
5
|
Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons. Neuroscience 2016; 330:191-204. [PMID: 27246441 DOI: 10.1016/j.neuroscience.2016.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
Collapse
|
6
|
Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM, Hanrahan JR, Johnston GAR, Chebib M, Harris RA. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 2014; 9:e85525. [PMID: 24454882 PMCID: PMC3894180 DOI: 10.1371/journal.pone.0085525] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022] Open
Abstract
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jillian M. Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Courtney R. Leiter
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - David Johnson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Cecilia M. Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jane R. Hanrahan
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | | | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Tanaka M, Tachibana M. Independent control of reciprocal and lateral inhibition at the axon terminal of retinal bipolar cells. J Physiol 2013; 591:3833-51. [PMID: 23690563 DOI: 10.1113/jphysiol.2013.253179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bipolar cells (BCs), the second order neurons in the vertebrate retina, receive two types of GABAergic feedback inhibition at their axon terminal: reciprocal and lateral inhibition. It has been suggested that two types of inhibition may be mediated by different pathways. However, how each inhibition is controlled by excitatory BC output remains to be clarified. Here, we applied single/dual whole cell recording techniques to the axon terminal of electrically coupled BCs in slice preparation of the goldfish retina, and found that each inhibition was regulated independently. Activation voltage of each inhibition was different: strong output from a single BC activated reciprocal inhibition, but could not activate lateral inhibition. Outputs from multiple BCs were essential for activation of lateral inhibition. Pharmacological examinations revealed that composition of transmitter receptors and localization of Na(+) channels were different between two inhibitory pathways, suggesting that different amacrine cells may mediate each inhibition. Depending on visual inputs, each inhibition could be driven independently. Model simulation showed that reciprocal and lateral inhibition cooperatively reduced BC outputs as well as background noise, thereby preserving high signal-to-noise ratio. Therefore, we conclude that excitatory BC output is efficiently regulated by the dual operating mechanisms of feedback inhibition without deteriorating the quality of visual signals.
Collapse
Affiliation(s)
- Masashi Tanaka
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
8
|
Jin X, Cui N, Zhong W, Jin XT, Jiang C. GABAergic synaptic inputs of locus coeruleus neurons in wild-type and Mecp2-null mice. Am J Physiol Cell Physiol 2013; 304:C844-57. [PMID: 23392116 DOI: 10.1152/ajpcell.00399.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rett syndrome is an autism spectrum disorder resulting from defects in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Deficiency of the Mecp2 gene causes abnormalities in several systems in the brain, especially the norepinephrinergic and GABAergic systems. The norepinephrinergic neurons in the locus coeruleus (LC) modulate a variety of neurons and play an important role in multiple functions in the central nervous system. In Mecp2(-/Y) mice, defects in the intrinsic membrane properties of LC neurons have been identified, while how their synaptic inputs are affected remains unclear. Therefore, we performed these brain slice studies to demonstrate how LC neurons are regulated by GABAergic inputs and how such synaptic inputs are affected by Mecp2 knockout. In whole cell current clamp, the firing activity of LC neurons was strongly inhibited by the GABAA receptor agonist muscimol, accompanied by hyperpolarization and a decrease in input resistance. Such a postsynaptic inhibition was significantly reduced (by ~30%) in Mecp2(-/Y) mice. Post- and presynaptic GABABergic inputs were found in LC neurons, which were likely mediated by the G protein-coupled, Ba(2+)-sensitive K(+) channels. The postsynaptic GABABergic inhibition was deficient by ~50% in Mecp2 knockout mice. Although the presynaptic GABABergic modulation appeared normal, both frequency and amplitude of the GABAAergic mIPSCs were drastically decreased (by 30-40%) in Mecp2-null mice. These results suggest that the Mecp2 disruption causes defects in both post- and presynaptic GABAergic systems in LC neurons, impairing GABAAergic and GABABergic postsynaptic inhibition and decreasing the GABA release from presynaptic terminals.
Collapse
Affiliation(s)
- Xin Jin
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The inhibitory neurotransmitter, GABA, is a low-molecular-weight molecule that can achieve many low-energy conformations, which are recognized by GABA receptors and transporters. In this article, we assess the structure–activity relationship profiles of GABA analogs at the ionotropic ρ GABAC receptor. Such studies have significantly contributed to the design and development of potent and selective agonists and antagonists for this subclass of GABA receptors. With these tools in hand, the role of ρ GABAC receptors is slowly being realized. Of particular interest is the development of selective phosphinic acid analogs of GABA and their potential use in sleep disorders, inhibiting the development of myopia, and in improving learning and memory.
Collapse
|
10
|
Reyes-Ruiz JM, Ochoa-de la Paz LD, Martínez-Torres A, Miledi R. Functional impact of serial deletions at the C-terminus of the human GABArho1 receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:1002-7. [PMID: 20056107 DOI: 10.1016/j.bbamem.2009.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/23/2022]
Abstract
GABArho1 receptors are formed by homopentameric assemblies that gate a chloride ion-channel upon activation by the neurotransmitter. Very little is known about the structural and functional roles played by the different domains that form each subunit; but one of them, the fourth transmembrane segment (TM4), is known to form a hydrophobic bundle together with three other TM segments that are necessary to stabilize the structure of the receptor. In this study we progressively removed amino acid residues from the C-terminus of the human GABArho1 and studied the functional properties of the receptor mutants expressed in X. laevis oocytes. We found that deletions of up to the last four residues gave rise to receptors that were still functional, generating currents of 3.92 microA for the wt, 5.75 microA for S479X, 1.82 microA for F478X, 0.52 microA for I477X and 0.27 microA for S476X when exposed to 5 microM GABA; surprisingly, the mutant with one residue removed resulted more sensitive to the agonists. Further deletions, up to residue W475, resulted in receptors that did not gate an ion-channel. In addition, deleting the signal sequence, from R2-A15, in the N-terminus produced non-functional receptors. This study reveals that GABArho1 can tolerate removal of several residues that form the fourth transmembrane segment up to a critical point, signaled by W475, beyond which the mutant protein is translated but does not form functional receptors. A comparative study is presented of some electrophysiological and pharmacological properties of the deletion mutants that were able to generate GABA currents.
Collapse
Affiliation(s)
- Jorge Mauricio Reyes-Ruiz
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, McGaugh Hall 1109, University of California Irvine, Irvine, CA 92697-4550, USA.
| | | | | | | |
Collapse
|
11
|
Jones SM, Palmer MJ. Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release. J Neurophysiol 2009; 102:691-9. [PMID: 19494193 DOI: 10.1152/jn.00285.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Within the second synaptic layer of the retina, bipolar cell (BC) output to ganglion cells is regulated by inhibitory input to BC axon terminals. GABA(A) receptors (GABA(A)Rs) mediate rapid synaptic currents in BC terminals, whereas GABA(C) receptors (GABA(C)Rs) mediate slow evoked currents and a tonic current, which is strongly regulated by GAT-1 GABA transporters. We have used voltage-clamp recordings from BC terminals in goldfish retinal slices to determine the source of GABA for activation of these currents. Inhibition of vesicular release with concanamycin A or tetanus toxin significantly inhibited GABA(A)R inhibitory postsynaptic currents and glutamate-evoked GABA(A)R and GABA(C)R currents but did not reduce the tonic GABA(C)R current, which was also not dependent on extracellular Ca(2+). The tonic current was strongly potentiated by inhibition of GABA transaminase, under both normal and Ca(2+)-free conditions, and was activated by exogenous taurine; however inhibition of taurine transport had little effect. The tonic current was unaffected by GAT-2/3 inhibition and was potentiated by GAT-1 inhibition even in the absence of vesicular release, indicating that it is unlikely to be evoked by reversal of GABA transporters or by ambient GABA. In addition, GABA release does not appear to occur via hemichannels or P2X(7) receptors. BC terminals therefore exhibit two forms of GABA(C)R-mediated inhibition, activated by vesicular and by nonvesicular GABA release, which are likely to have distinct functions in visual signal processing. The tonic GABA(C)R current in BC terminals exhibits similar properties to tonic GABA(A)R and glutamate receptor currents in the brain.
Collapse
Affiliation(s)
- S M Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | | |
Collapse
|
12
|
Chebib M, Gavande N, Wong KY, Park A, Premoli I, Mewett KN, Allan RD, Duke RK, Johnston GAR, Hanrahan JR. Guanidino Acids Act as ρ1 GABAC Receptor Antagonists. Neurochem Res 2009; 34:1704-11. [DOI: 10.1007/s11064-009-9968-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/30/2009] [Indexed: 11/24/2022]
|
13
|
Modulation of human GABAρ1 receptors by taurine. Neurosci Res 2008; 61:302-8. [DOI: 10.1016/j.neures.2008.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/21/2022]
|
14
|
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells. Vis Neurosci 2008; 25:139-53. [PMID: 18442437 DOI: 10.1017/s0952523808080322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To refine inhibitory circuitry models for ON and OFF pathways in zebrafish retina, GABAergic properties of zebrafish bipolar cells were studied with two techniques: whole cell patch responses to GABA puffs in retinal slice, and voltage probe responses in isolated cells. Retinal slices documented predominantly axon terminal responses; isolated cells revealed mainly soma-dendritic responses. In the slice, GABA elicited a conductance increase, GABA responses were more robust at axon terminals than dendrites, and Erev varied with [Cl(-)]in. Axon terminals of ON- and OFF-type cells were similarly sensitive to GABA (30-40 pA peak current); axotomized cells were unresponsive. Bicuculline-sensitive, picrotoxin-sensitive, and picrotoxin-insensitive components were identified. Muscimol was as effective as GABA; baclofen was ineffective. Isolated bipolar cells were either intact or axotomized. Even in cells without an axon, GABA or muscimol (but not baclofen) hyperpolarized dendritic and somatic regions, suggesting significant distal expression. Median fluorescence change for GABA was -0.22 log units (approximately -16 mV); median half-amplitude dose was 0.4 microM. Reduced [Cl(-)]out blocked GABA responses. GABA hyperpolarized isolated ON-bipolar cells; OFF-cells were either unresponsive or depolarized. Hyperpolarizing GABA responses in isolated cells were bicuculline and TPMPA insensitive, but blocked or partially blocked by picrotoxin or zinc. In summary, axon terminals contain bicuculline-sensitive GABAA receptors and both picrotoxin-sensitive and insensitive GABAC receptors. Dendritic processes express zinc- and picrotoxin-sensitive GABAC receptors.
Collapse
|
15
|
Schnackerz KD, Dobritzsch D. Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:431-44. [PMID: 18261476 DOI: 10.1016/j.bbapap.2008.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/26/2022]
Abstract
In the reductive pyrimidine catabolic pathway uracil and thymine are converted to beta-alanine and beta-aminoisobutyrate. The amidohydrolases of this pathway are responsible for both the ring opening of dihydrouracil and dihydrothymine (dihydropyrimidine amidohydrolase) and the hydrolysis of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyrate (beta-alanine synthase). The review summarizes what is known about the properties, kinetic parameters, three-dimensional structures and reaction mechanisms of these proteins. The two amidohydrolases of the reductive pyrimidine catabolic pathway have unrelated folds, with dihydropyrimidine amidohydrolase belonging to the amidohydrolase superfamily while the beta-alanine synthase from higher eukaryotes belongs to the nitrilase superfamily. beta-Alanine synthase from Saccharomyces kluyveri is an exception to the rule and belongs to the Acyl/M20 family.
Collapse
|
16
|
Zhu Y, Ripps H, Qian H. A single amino acid in the second transmembrane domain of GABA rho receptors regulates channel conductance. Neurosci Lett 2007; 418:205-9. [PMID: 17398006 PMCID: PMC1942122 DOI: 10.1016/j.neulet.2007.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 10/23/2022]
Abstract
GABAC receptors, expressed predominately in vertebrate retina, are thought to be formed mainly by GABA rho subunits, each of which exhibits distinct physiological and pharmacological properties. In this study, the receptors formed by perch GABA rho subunits were expressed in HEK cells, and their single channel conductances were determined using noise analysis techniques. The receptors formed by the perch rho1A subunit gate a channel with a conductance of 0.2 pS, whereas the receptors formed by GABA rho2 subunits exhibit much higher channel conductances, i.e., 3.2 and 3.5 pS for perch rho2A and rho2B receptors, respectively. A comparison of the amino acid sequences of the channel-forming TMII regions of the various subunits suggested that a single amino acid at position 2' was a potential site for the large differential in conductance. We found that switching the serine residue at that site in the GABA rho2 subunit to the proline residue present in the rho1 subunit reduced the channel conductance to a level similar to that of the wild type rho1 receptor. Conversely, mutating proline to serine in the amino acid sequence of the rho1 receptor significantly increased its unitary conductance. These results indicate that a single amino acid in the TMII region plays an important role in determining the single channel conductance of the GABAC receptors.
Collapse
Affiliation(s)
- Yujie Zhu
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | |
Collapse
|
17
|
Qian H, Pan Y, Choi B, Ripps H. High pH accelerates GABA deactivation on perch-rho1B receptors. Neuroscience 2006; 142:1221-30. [PMID: 16920274 DOI: 10.1016/j.neuroscience.2006.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/01/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The ionotropic GABA(C) receptor, formed by GABA rho subunits, is known to be modulated by a variety of endogenous compounds, as well as by changes in pH. In this study, we explore the proton sensitivity of the GABA rho subunits cloned from the perch retina, and report a novel action of high pH on the homomeric receptor formed by one of the GABA rho subunits, the perch-rho(1B) subunit. Raising extracellular pH to 9.5 significantly accelerated GABA deactivation responses elicited from oocytes expressing the perch-rho(1B) subunit, and reduced its sensitivity to GABA. The change in the kinetics of the GABA-offset response occurred without altering the maximum response amplitude, and the reduced GABA sensitivity was independent of membrane potential. Although acidification of the extracellular solution also accelerated GABA deactivation for all other GABA rho receptors examined in this study, the effects of high pH were unique to the homomeric receptor formed by the perch-rho(1B) subunit. In addition, we found that, unlike the effects on the response to the naturally occurring full agonist GABA, the responses elicited by partial agonists (imidazole-4-acetic acid (I4AA) and beta-alanine) in the presence of the high pH solution showed a significant reduction in the maximum response amplitude. When considered in terms of a model describing the activation of GABA(C) receptors, in which pH can potentially affect either the binding affinity or the rate of channel closure, the results were consistent with the view that external alkalization reduces the gating efficiency of the receptor. To identify the proton sensitive domain(s) of the perch-rho(1B) receptor, chimeras were constructed by domain swapping with other perch-rho subunits. Analysis of the pH sensitivities of the various chimeric receptors revealed that the alkaline-sensitive residues are located in the N-terminal region of the perch-rho(1B) subunit.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Female
- GABA Agonists/pharmacology
- Hydrogen-Ion Concentration
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ligands
- Neural Inhibition/physiology
- Neurons/metabolism
- Oocytes
- Perches
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/physiology
- Protons
- Receptors, GABA/chemistry
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, GABA-B/chemistry
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/metabolism
- Synaptic Transmission/physiology
- Time Factors
- Xenopus
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- H Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
18
|
Harvey VL, Duguid IC, Krasel C, Stephens GJ. Evidence that GABA rho subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J Physiol 2006; 577:127-39. [PMID: 16945976 PMCID: PMC2000691 DOI: 10.1113/jphysiol.2006.112482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.
Collapse
Affiliation(s)
- Victoria L Harvey
- School of Pharmacy, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK
| | | | | | | |
Collapse
|
19
|
Pan Y, Ripps H, Qian H. Random assembly of GABA rho1 and rho2 subunits in the formation of heteromeric GABA(C) receptors. Cell Mol Neurobiol 2006; 26:289-305. [PMID: 16767514 DOI: 10.1007/s10571-006-9001-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
1. Various combinations of the rho subunits (rho(1A), rho(1B), rho(2A), rho(2B)) of GABA(C) receptors cloned from white perch retina were expressed in Xenopus oocytes, and electrophysiological and pharmacological methods were used to test their ability to co-assemble into heteromeric receptors. Simultaneous injection of the two subunits, irrespective of their relative proportions, led invariably to the formation of a preponderance of heteromeric receptors. 2. The GABA deactivation responses elicited from these cells could be described by a single exponential decay, and their pharmacological responses deviated significantly from those expected of a simple mixture of two homomeric rho(1) and rho(2) receptors. In contrast, a double exponential function comprising fast and slow components was required to fit the GABA deactivation responses elicited from oocytes sequentially expressing rho(1) and rho(2) subunits, a condition that favors the formation of a mixture of homomeric rho(1) and rho(2) receptors. 3. Both the GABA-response kinetics and the sensitivity to picrotoxin of the heteromeric perch rho(1B)rho(2A) receptor varied with the proportion of the subunit RNA injected, indicating there is no fixed stoichiometry for their co-assembly into heteromeric rho(1)rho(2) receptors. 4. If native GABA(C) receptors in retinal neurons behave in a similar manner as in the oocyte expression system, these finding suggest that the properties of their GABA(C) receptors are likely to be influenced by the transcription/translation efficiency of GABA rho subunit genes.
Collapse
Affiliation(s)
- Yi Pan
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, USA
| | | | | |
Collapse
|