1
|
Zhou F, Liu X, Gao L, Zhou X, Cao Q, Niu L, Wang J, Zuo D, Li X, Yang Y, Hu M, Yu Y, Tang R, Lee BH, Choi BW, Wang Y, Izumiya Y, Xue M, Zheng K, Gao D. HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. J Neuroinflammation 2019; 16:71. [PMID: 30947729 PMCID: PMC6449963 DOI: 10.1186/s12974-019-1466-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HANDs) afflict more than half of HIV-1-positive individuals. The transactivator of transcription (Tat) produced by HIV virus elicits inflammatory process and is a major neurotoxic mediator that induce neuron damage during HAND pathogenesis. Activated astrocytes are important cells involved in neuroinflammation and neuronal damage. Purinergic receptors expressed in astrocytes participate in a positive feedback loop in virus-induced neurotoxicity. Here, we investigated that whether P2Y4R, a P2Y receptor subtype, that expressed in astrocyte participates in Tat-induced neuronal death in vitro and in vivo. METHODS Soluble Tat protein was performed to determine the expression of P2Y4R and proinflammatory cytokines in astrocytes using siRNA technique via real-time PCR, Western blot, and immunofluorescence assays. Cytometric bead array was used to measure proinflammatory cytokine release. The TUNEL staining and MTT cell viability assay were analyzed for HT22 cell apoptosis and viability, and the ApopTag® peroxidase in situ apoptosis detection kit and cresyl violet staining for apoptosis and death of hippocampal neuron in vivo. RESULTS We found that Tat challenge increased the expression of P2Y4R in astrocytes. P2Y4R signaling in astrocytes was involved in Tat-induced inflammatory cytokine production via PI3K/Akt- and ERK1/2-dependent pathways. Knockdown of P2Y4R expression significantly reduced inflammatory cytokine production and relieved Tat-mediated neuronal apoptosis in vitro. Furthermore, in vivo challenged with Tat, P2Y4R knockdown mice showed decreased inflammation and neuronal damage, especially in hippocampal CA1 region. CONCLUSIONS Our data provide novel insights into astrocyte-mediated neuron damage during HIV-1 infection and suggest a potential therapeutic target for HANDs.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/pathology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/pathology
- Oncogene Protein v-akt
- Phosphatidylinositol 3-Kinases
- RNA, Messenger/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transduction, Genetic
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Feng Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Lin Gao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xinxin Zhou
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Qianwen Cao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Liping Niu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Jing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dongjiao Zuo
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Byoung Wook Choi
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, Sacramento, CA USA
| | - Min Xue
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
2
|
Wilkaniec A, Gąssowska M, Czapski GA, Cieślik M, Sulkowski G, Adamczyk A. P2X7 receptor-pannexin 1 interaction mediates extracellular alpha-synuclein-induced ATP release in neuroblastoma SH-SY5Y cells. Purinergic Signal 2017; 13:347-361. [PMID: 28516276 PMCID: PMC5563296 DOI: 10.1007/s11302-017-9567-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormalities of alpha-synuclein (ASN), the main component of protein deposits (Lewy bodies), were observed in Parkinson’s disease (PD), dementia with Lewy bodies, Alzheimer’s disease, and other neurodegenerative disorders. These alterations include increase in the levels of soluble ASN oligomers in the extracellular space. Numerous works have identified several mechanisms of their toxicity, including stimulation of the microglial P2X7 receptor leading to oxidative stress. While the significant role of purinergic signaling—particularly, P2 family receptors—in neurodegenerative disorders is well known, the interaction of extracellular soluble ASN with neuronal purinergic receptors is yet to be studied. Therefore, in this study, we have investigated the effect of ASN on P2 purinergic receptors and ATP-dependent signaling. We used neuroblastoma SH-SY5Y cell line and rat synaptoneurosomes treated with exogenous soluble ASN. The experiments were performed using spectrofluorometric, radiochemical, and immunochemical methods. We found the following: (i) ASN-induced intracellular free calcium mobilization in neuronal cells and nerve endings depends on the activation of purinergic P2X7 receptors; (ii) activation of P2X7 receptors leads to pannexin 1 recruitment to form an active complex responsible for ATP release; and (iii) ASN greatly decreases the activity of extracellular ecto-ATPase responsible for ATP degradation. Thus, it is concluded that purinergic receptors might be putative pharmacological targets in the molecular mechanism of extracellular ASN toxicity. Interference with P2X7 signaling seems to be a promising strategy for the prevention or therapy of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St., 02-106, Warsaw, Poland.
| | - Magdalena Gąssowska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St., 02-106, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St., 02-106, Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St., 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Department of Neurochemistry, Laboratory of Pathoneurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St., 02-106, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St., 02-106, Warsaw, Poland
| |
Collapse
|
3
|
Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology 2015; 104:4-17. [PMID: 26056033 DOI: 10.1016/j.neuropharm.2015.05.031] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022]
Abstract
Purinergic signalling appears to play important roles in neurodegeneration, neuroprotection and neuroregeneration. Initially there is a brief summary of the background of purinergic signalling, including release of purines and pyrimidines from neural and non-neural cells and their ectoenzymatic degradation, and the current characterisation of P1 (adenosine), and P2X (ion channel) and P2Y (G protein-coupled) nucleotide receptor subtypes. There is also coverage of the localization and roles of purinoceptors in the healthy central nervous system. The focus is then on the roles of purinergic signalling in trauma, ischaemia, stroke and in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, as well as multiple sclerosis and amyotrophic lateral sclerosis. Neuroprotective mechanisms involving purinergic signalling are considered and its involvement in neuroregeneration, including the role of adult neural stem/progenitor cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; Department of Pharmacology and Therapeutics, The University of Melbourne, Australia.
| |
Collapse
|
4
|
Dakshinamurti S, Dakshinamurti K. Antihypertensive and neuroprotective actions of pyridoxine and its derivatives. Can J Physiol Pharmacol 2015; 93:1083-90. [PMID: 26281007 DOI: 10.1139/cjpp-2015-0098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamin B6 plays a crucial role in the nervous system as the amino acid decarboxylases involved in the synthesis of all putative neurotransmitters requires the coenzyme pyridoxal phosphate. Vitamin B6 in its various forms has antioxidant properties. Pyridoxal phosphate has a role in regulating cellular calcium transport through both the voltage-mediated and ATP-mediated purinergic mechanisms of cellular calcium influx and, hence, has a role in the control of hypertension. Pharmacological doses of vitamin B6 appear to decrease the high blood pressure associated with both genetic and nongenetic models of hypertension. Vitamin B6 has a crucial role in the normal function of the central and peripheral nervous systems. It also protects against ischemia and glutamate-induced neurotoxicity.
Collapse
Affiliation(s)
- Shyamala Dakshinamurti
- a Departments of Pediatrics and Physiology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Krishnamurti Dakshinamurti
- b St. Boniface Hospital Research Centre, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Hara S, Kobayashi M, Kuriiwa F, Mukai T, Mizukami H. Different mechanisms of hydroxyl radical production susceptible to purine P2 receptor antagonists between carbon monoxide poisoning and exogenous ATP in rat striatum. Free Radic Res 2014; 48:1322-33. [PMID: 25096805 DOI: 10.3109/10715762.2014.951842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have suggested that carbon monoxide (CO) poisoning stimulates cAMP production via purine P2Y11-like receptors in the rat striatum, activating cAMP signaling pathways, resulting in hydroxyl radical ((•)OH) production. Extracellular ATP was thought likely to trigger the cascade, but the present study has failed to demonstrate a clear increase in the extracellular ATP due to CO poisoning. The CO-induced (•)OH production was attenuated by the P2Y11 receptor antagonist NF157, in parallel with its abilities to suppress the CO-induced cAMP production. The (•)OH production was more strongly suppressed by a non-selective P2 receptor antagonist, PPADS, which had no effect on cAMP production. More selective antagonists toward the respective P2 receptors susceptible to PPADS, including NF279, had little or no effect on the CO-induced (•)OH production. The intrastriatal administration of exogenous ATP dose-dependently stimulated (•)OH production, which was dose-dependently antagonized by PPADS and NF279 but not by NF157. Exogenous GTP and CTP dose-dependently stimulated (•)OH production, though less potently. The GTP-induced (•)OH production was susceptible to both of NF279 and PPADS, but the CTP-induced (•)OH production was resistant to PPADS. The mechanism of (•)OH production may differ between CO poisoning and exogenous ATP, while multiple P2 receptors could participate in (•)OH production. The CO-induced (•)OH production was susceptible to the inhibition of NADPH oxidase, but not xanthine oxidase. Also, the NADPH oxidase inhibition suppressed (•)OH production induced by forskolin, a stimulator of intracellular cAMP formation. It is likely that (•)OH is produced by NADPH oxidase activation via cAMP signaling pathways during CO poisoning.
Collapse
Affiliation(s)
- S Hara
- Department of Forensic Medicine, Tokyo Medical University , Tokyo , Japan
| | | | | | | | | |
Collapse
|
6
|
Jiang SX, Zheng RY, Zeng JQ, Li XL, Han Z, Hou ST. Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I2 receptor antagonists. Eur J Pharmacol 2010; 629:12-9. [DOI: 10.1016/j.ejphar.2009.11.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/12/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
|
7
|
Nishii N, Nejime N, Yamauchi C, Yanai N, Shinozuka K, Nakabayashi T. Effects of ATP on the intracellular calcium level in the osteoblastic TBR31-2 cell line. Biol Pharm Bull 2009; 32:18-23. [PMID: 19122274 DOI: 10.1248/bpb.32.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of extracellular ATP on TBR31-2 cells established from the bone marrow of transgenic mice harboring the temperature-sensitive simian virus (SV) 40 T-antigen gene. These cells showed the capacity to differentiate toward osteoblasts and could be enhanced by bone morphogenetic protein (BMP)-2, an inducer of osteoblasts. The intracellular calcium ion level ([Ca(2+)](i)) in differentiating TBR31-2 cells was measured by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe, Calcium Green 1/AM. P2 receptor agonists, such as ATP (1 microM), uridine 5'-triphosphate (1 microM), and ADP (1 microM), significantly increased the [Ca(2+)](i) of TBR31-2 cells in 2-d and 5-d cultures, but a potent P2X receptor agonist, alpha,beta-methylene ATP (10 microM), did not increase [Ca(2+)](i). The increase in [Ca(2+)](i) induced by ATP in the 2-d culture tended to be higher than in the 5-d culture. The increase in [Ca(2+)](i) of both cultures was inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, a P2 receptor antagonist. However, in an external Ca(2+)-free condition ATP-induced increase in [Ca(2+)](i) was unchanged at either stage. U73122, phospholipase C inhibitor and Thapsigargin, a calcium-pump inhibitor, significantly inhibited the increase in [Ca(2+)](i) at both stages. Reverse transcription-polymerase chain reaction analysis showed that the expression of P2Y receptor mRNA was higher in the 2-d culture than in the 5-d culture. These results indicate that ATP induces the increase in [Ca(2+)](i) from the calcium store through activating P2Y receptors in TBR31-2 cells and that the 2-d culture can respond to ATP more than the 5-d culture due to the higher expression of P2Y receptors. This suggests that the physiological role of ATP in osteoblasts is altered during differentiation.
Collapse
Affiliation(s)
- Naomi Nishii
- First Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 2008; 7:575-90. [PMID: 18591979 DOI: 10.1038/nrd2605] [Citation(s) in RCA: 460] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purines have key roles in neurotransmission and neuromodulation, with their effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. Recently, purinergic mechanisms and specific receptor subtypes have been shown to be involved in various pathological conditions including brain trauma and ischaemia, neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions, as well as in neuropsychiatric diseases, including depression and schizophrenia. This article reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic receptor subtypes, most notably A(2A), P2X(4) and P2X(7), that might be therapeutically targeted for the treatment of these conditions.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
9
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
10
|
Hou ST, Jiang SX, Desbois A, Huang D, Kelly J, Tessier L, Karchewski L, Kappler J. Calpain-cleaved collapsin response mediator protein-3 induces neuronal death after glutamate toxicity and cerebral ischemia. J Neurosci 2006; 26:2241-9. [PMID: 16495451 PMCID: PMC6674801 DOI: 10.1523/jneurosci.4485-05.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) mediate growth cone collapse during development, but their roles in adult brains are not clear. Here we report the findings that the full-length CRMP-3 (p63) is a direct target of calpain that cleaves CRMP-3 at the N terminus (+76 amino acid). Interestingly, activated calpain in response to excitotoxicity in vitro and cerebral ischemia in vivo also cleaved CRMP-3, and the cleavage product of CRMP-3 (p54) underwent nuclear translocation during neuronal death. The expression of p54 was colocalized with the terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive nuclei in glutamate-treated cerebellar granule neurons (CGNs) and in ischemic neurons located in the infarct core after focal cerebral ischemia, suggesting that p54 might be involved in neuronal death. Overexpression studies showed that p54, but not p63, caused death of human embryonic kidney cells and CGNs, whereas knock-down CRMP-3 expression by selective small interfering RNA protected neurons against glutamate toxicity. Collectively, these results reveal a novel role of CRMP-3 in that calpain cleavage of CRMP-3 and the subsequent nuclear translocation of the truncated CRMP-3 evokes neuronal death in response to excitotoxicity and cerebral ischemia. Our findings also establish a novel route of how calpain signals neuron death.
Collapse
Affiliation(s)
- Sheng T Hou
- Experimental NeuroTherapeutics Laboratory, National Research Council Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|