1
|
Osaki H, Kanaya M, Ueta Y, Miyata M. Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex. Nat Commun 2022; 13:3622. [PMID: 35768422 PMCID: PMC9243138 DOI: 10.1038/s41467-022-31272-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception, a somatic discriminative aspect of pain, is, like touch, represented in the primary somatosensory cortex (S1), but the separation and interaction of the two modalities within S1 remain unclear. Here, we show spatially distinct tactile and nociceptive processing in the granular barrel field (BF) and adjacent dysgranular region (Dys) in mouse S1. Simultaneous recordings of the multiunit activity across subregions revealed that Dys neurons are more responsive to noxious input, whereas BF neurons prefer tactile input. At the single neuron level, nociceptive information is represented separately from the tactile information in Dys layer 2/3. In contrast, both modalities seem to converge on individual layer 5 neurons of each region, but to a different extent. Overall, these findings show layer-specific processing of nociceptive and tactile information between Dys and BF. We further demonstrated that Dys activity, but not BF activity, is critically involved in pain-like behavior. These findings provide new insights into the role of pain processing in S1. The processing of nociception in the somatosensory cortex (S1) has yet to be fully understood. Here, the authors demonstrate that the dysgranular region in S1 has an affinity for nociception and is critically involved in pain-like behavior.
Collapse
Affiliation(s)
- Hironobu Osaki
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan. .,Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Moeko Kanaya
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
2
|
Voltage-Sensitive Dye versus Intrinsic Signal Optical Imaging: Comparison of Tactile Responses in Primary and Secondary Somatosensory Cortices of Rats. Brain Sci 2021; 11:brainsci11101294. [PMID: 34679359 PMCID: PMC8533871 DOI: 10.3390/brainsci11101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Studies using functional magnetic resonance imaging assume that hemodynamic responses have roughly linear relationships with underlying neural activity. However, to accurately investigate the neurovascular transfer function and compare its variability across brain regions, it is necessary to obtain full-field imaging of both electrophysiological and hemodynamic responses under various stimulus conditions with superior spatiotemporal resolution. Optical imaging combined with voltage-sensitive dye (VSD) and intrinsic signals (IS) is a powerful tool to address this issue. We performed VSD and IS imaging in the primary (S1) and secondary (S2) somatosensory cortices of rats to obtain optical maps of whisker-evoked responses. There were characteristic differences in sensory responses between the S1 and S2 cortices: VSD imaging revealed more localized excitatory and stronger inhibitory neural activity in S1 than in S2. IS imaging revealed stronger metabolic responses in S1 than in S2. We calculated the degree of response to compare the sensory responses between cortical regions and found that the ratio of the degree of response of S2 to S1 was similar, irrespective of whether the ratio was determined by VSD or IS imaging. These results suggest that neurovascular coupling does not vary between the S1 and S2 cortices.
Collapse
|
3
|
Dezawa S, Nagasaka K, Watanabe Y, Takashima I. Lesions of the nucleus basalis magnocellularis (Meynert) induce enhanced somatosensory responses and tactile hypersensitivity in rats. Exp Neurol 2020; 335:113493. [PMID: 33011194 DOI: 10.1016/j.expneurol.2020.113493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
We used the immunotoxin 192 immunoglobulin G-saporin to produce a selective cholinergic lesion in the nucleus basalis of Meynert (NBM) of rats and investigated whether the NBM lesion led to tactile hypersensitivity in the forepaw. The paw mechanical threshold test showed that the lesioned rats had a decreased threshold compared to the control. Surprisingly, there was a significant positive correlation between mechanical threshold and survival rate of NBM cholinergic neurons. Furthermore, using local field potential (LFP) recordings and voltage-sensitive dye (VSD) imaging, we found that the forepaw-evoked response in the primary somatosensory cortex (S1) was significantly enhanced in both amplitude and spatial extent in the NBM-lesioned rats. The neurophysiological measures of S1 response, such as LFP amplitude and maximal activated cortical area depicted by VSD, were also correlated with withdrawal behavior. Additional pharmacological experiments demonstrated that forepaw-evoked responses were increased in naive rats by blocking S1 cholinergic receptors with mecamylamine and scopolamine, while the response decreased in NBM-lesioned rats with the cholinergic agonist carbachol. In addition, NBM burst stimulation, which facilitates acetylcholine release in the S1, suppressed subsequent sensory responses to forepaw stimulation. Taken together, these results suggest that neuronal loss in the NBM diminishes acetylcholine actions in the S1, thereby enhancing the cortical representation of sensory stimuli, which may in turn lead to behavioral hypersensitivity.
Collapse
Affiliation(s)
- Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
4
|
Kunori N, Takashima I. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways. Eur J Neurosci 2016; 44:2925-2934. [PMID: 27717064 DOI: 10.1111/ejn.13427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates.
Collapse
Affiliation(s)
- Nobuo Kunori
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,RIKEN Brain Science Institute, Wako, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Kunori N, Takashima I. A transparent epidural electrode array for use in conjunction with optical imaging. J Neurosci Methods 2015; 251:130-7. [DOI: 10.1016/j.jneumeth.2015.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
|
6
|
Effects of FK506 on long-term potentiation observed by optical imaging in organotypic hippocampal slice culture. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-013-1110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Lee KH, Kim UJ, Park YG, Won R, Lee H, Lee BH. Optical Imaging of Somatosensory Evoked Potentials in the Rat Cerebral Cortex after Spinal Cord Injury. J Neurotrauma 2011; 28:797-807. [DOI: 10.1089/neu.2010.1492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, Korea
| | - Un Jeng Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Gou Park
- Department of Neurosurgery, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ran Won
- Department of Biomedical Laboratory Science, Division of Health Science, Dongseo University, Busan, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea
| | - Bae Hwan Lee
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc Natl Acad Sci U S A 2011; 108:4188-93. [PMID: 21368112 DOI: 10.1073/pnas.1100647108] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cortical output layer 5 contains two excitatory cell types, slender- and thick-tufted neurons. In rat vibrissal cortex, slender-tufted neurons carry motion and phase information during active whisking, but remain inactive after passive whisker touch. In contrast, thick-tufted neurons reliably increase spiking preferably after passive touch. By reconstructing the 3D patterns of intracortical axon projections from individual slender- and thick-tufted neurons, filled in vivo with biocytin, we were able to identify cell type-specific intracortical circuits that may encode whisker motion and touch. Individual slender-tufted neurons showed elaborate and dense innervation of supragranular layers of large portions of the vibrissal area (total length, 86.8 ± 5.5 mm). During active whisking, these long-range projections may modulate and phase-lock the membrane potential of dendrites in layers 2 and 3 to the whisking cycle. Thick-tufted neurons with soma locations intermingling with those of slender-tufted ones display less dense intracortical axon projections (total length, 31.6 ± 14.3 mm) that are primarily confined to infragranular layers. Based on anatomical reconstructions and previous measurements of spiking, we put forward the hypothesis that thick-tufted neurons in rat vibrissal cortex receive input of whisker motion from slender-tufted neurons onto their apical tuft dendrites and input of whisker touch from thalamic neurons onto their basal dendrites. During tactile-driven behavior, such as object location, near-coincident input from these two pathways may result in increased spiking activity of thick-tufted neurons and thus enhanced signaling to their subcortical targets.
Collapse
|
9
|
Cha MH, Kim DS, Cho ZH, Sohn JH, Chung MA, Lee HJ, Nam TS, Lee BH. Modification of cortical excitability in neuropathic rats: A voltage-sensitive dye study. Neurosci Lett 2009; 464:117-21. [DOI: 10.1016/j.neulet.2009.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 01/14/2023]
|
10
|
Optical imaging of rat prefrontal neuronal activity evoked by stimulation of the ventral tegmental area. Neuroreport 2009; 20:875-80. [PMID: 19417692 DOI: 10.1097/wnr.0b013e32832c5e98] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a voltage-sensitive dye, the spatiotemporal dynamics of prefrontal neuronal activity evoked by electrical stimulation of the ventral tegmental area were visualized through optical imaging in anaesthetized rats. Even single-pulse stimulation of the ventral tegmental area elicited a widespread wave of depolarization followed by hyperpolarization in the dorsomedial shoulder region of the prefrontal cortex. We also examined the contribution of dopaminergic transmission to the optical signals by comparing normal and 6-hydroxydopamine-lesioned rats. The 6-hydroxydopamine lesions of ventral tegmental area resulted in a complete absence of depolarization in the prefrontal cortex, although hyperpolarization was preserved. These results indicate that dopaminergic neurons are needed to generate excitatory responses in the prefrontal cortex.
Collapse
|
11
|
Tsytsarev V, Fukuyama H, Pope D, Pumbo E, Kimura M. Optical imaging of interaural time difference representation in rat auditory cortex. FRONTIERS IN NEUROENGINEERING 2009; 2:2. [PMID: 19277218 PMCID: PMC2654020 DOI: 10.3389/neuro.16.002.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/31/2009] [Indexed: 11/30/2022]
Abstract
We used in vivo voltage-sensitive dye optical imaging to examine the cortical representation of interaural time difference (ITD), which is believed to be involved in sound source localization. We found that acoustic stimuli with dissimilar ITD activate various localized domains in the auditory cortex. The main loci of the activation pattern shift up to 1 mm during the first 40 ms of the response period. We suppose that some of the neurons in each pool are sensitive to the definite ITD and involved in the transduction of information about sound source localization, based on the ITD. This assumption gives a reasonable fit to the Jeffress model in which the neural network calculates the ITD to define the direction of the sound source. Such calculation forms the basis for the cortex's ability to detect the azimuth of the sound source.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Washington University, Department of Biomedical Engineering St Louis, MO, USA
| | | | | | | | | |
Collapse
|
12
|
Drew PJ, Feldman DE. Intrinsic signal imaging of deprivation-induced contraction of whisker representations in rat somatosensory cortex. ACTA ACUST UNITED AC 2008; 19:331-48. [PMID: 18515797 DOI: 10.1093/cercor/bhn085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In classical sensory cortical map plasticity, the representation of deprived or underused inputs contracts within cortical sensory maps, whereas spared inputs expand. Expansion of spared inputs occurs preferentially into nearby cortical columns representing temporally correlated spared inputs, suggesting that expansion involves correlation-based learning rules at cross-columnar synapses. It is unknown whether deprived representations contract in a similar anisotropic manner, which would implicate similar learning rules and sites of plasticity. We briefly deprived D-row whiskers in 20-day-old rats, so that each deprived whisker had deprived (D-row) and spared (C- and E-row) neighbors. Intrinsic signal optical imaging revealed that D-row deprivation weakened and contracted the functional representation of deprived D-row whiskers in L2/3 of somatosensory (S1) cortex. Spared whisker representations did not strengthen or expand, indicating that D-row deprivation selectively engages the depression component of map plasticity. Contraction of deprived whisker representations was spatially uniform, with equal withdrawal from spared and deprived neighbors. Single-unit electrophysiological recordings confirmed these results, and showed substantial weakening of responses to deprived whiskers in layer 2/3 of S1, and modest weakening in L4. The observed isotropic contraction of deprived whisker representations during D-row deprivation is consistent with plasticity at intracolumnar, rather than cross-columnar, synapses.
Collapse
Affiliation(s)
- Patrick J Drew
- Section of Neurobiology, Division of Biological Science, University of California, San Diego, La Jolla, CA 92093-0357, USA
| | | |
Collapse
|
13
|
Potts JT, Paton JFR. Optical imaging of medullary ventral respiratory network during eupnea and gaspingIn situ. Eur J Neurosci 2006; 23:3025-33. [PMID: 16819991 DOI: 10.1111/j.1460-9568.2006.04809.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In severe hypoxia, respiratory rhythm is shifted from an eupneic, ramp-like motor pattern to gasping characterized by a decrementing pattern of phrenic motor activity. However, it is not known whether hypoxia reconfigures the spatiotemporal organization of the central respiratory rhythm generator. Using the in situ arterially perfused juvenile rat preparation, we investigated whether the shift from eupnea to gasping was associated with a reconfiguration of the spatiotemporal pattern of respiratory neuronal activity in the ventral medullary respiratory network. Optical images of medullary respiratory network activity were obtained from male rats (4-6 weeks of age). Part of the medullary network was stained with a voltage-sensitive dye (di-2 ANEPEQ) centred both within, and adjacent to, the pre-Bötzinger complex (Pre-BötC). During eupnea, optical signals initially increased prior to the onset of phrenic activity and progressively intensified during the inspiratory phase peaking at the end of inspiration. During early expiration, fluorescence was also detected and slowly declined throughout this phase. In contrast, hypoxia shifted the respiratory motor pattern from eupnea to gasping and optical signals were restricted to inspiration only. Areas active during gasping showed fluorescence that was more intensive and covered a larger region of the rostral ventrolateral medulla compared to eupnea. Regions exhibiting peak inspiratory fluorescence did not coincide spatially during eupnea and gasping. Moreover, there was a recruitment of additional medullary regions during gasping that were not active during eupnea. These results provide novel evidence that the shift in respiratory motor pattern from eupnea to gasping appears to be associated with a reconfiguration of the central respiratory rhythm generator characterized by changes in its spatiotemporal organization.
Collapse
Affiliation(s)
- Jeffrey T Potts
- Department of Biomedical Science, College of Veterinary Medicine, Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr, Columbia, 65211, USA.
| | | |
Collapse
|