1
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Tkatch T, Pauza DH. Local stimulation of pyramidal neurons in deep cortical layers of anesthetized rats enhances cortical visual information processing. Sci Rep 2024; 14:22862. [PMID: 39354096 PMCID: PMC11445437 DOI: 10.1038/s41598-024-73995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In the primary visual cortex area V1 activation of inhibitory interneurons, which provide negative feedback for excitatory pyramidal neurons, can improve visual response reliability and orientation selectivity. Moreover, optogenetic activation of one class of interneurons, parvalbumin (PV) positive cells, reduces the receptive field (RF) width. These data suggest that in V1 the negative feedback improves visual information processing. However, according to information theory, noise can limit information content in a signal, and to the best of our knowledge, in V1 signal-to-noise ratio (SNR) has never been estimated following either pyramidal or inhibitory neuron activation. Therefore, we optogenetically activated pyramidal or PV neurons in the deep layers of cortical area V1 and measured the SNR and RF area in nearby pyramidal neurons. Activation of pyramidal or PV neurons increased the SNR by 267% and 318%, respectively, and reduced the RF area to 60.1% and 77.5%, respectively, of that of the control. A simple integrate-and-fire neuron model demonstrated that an improved SNR and a reduced RF area can increase the amount of information encoded by neurons. We conclude that in V1 activation of pyramidal neurons improves visual information processing since the location of the visual stimulus can be pinpointed more accurately (via a reduced RF area), and more information is encoded by neurons (due to increased SNR).
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tatiana Tkatch
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Rajendran Nair DS, Camarillo JCM, Lu G, Thomas BB. Measuring spatial visual loss in rats by retinotopic mapping of the superior colliculus using a novel multi-electrode array technique. J Neurosci Methods 2024; 405:110095. [PMID: 38403001 PMCID: PMC11363873 DOI: 10.1016/j.jneumeth.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The retinotopic map property of the superior colliculus (SC) is a reliable indicator of visual functional changes in rodents. Electrophysiological mapping of the SC using a single electrode has been employed for measuring visual function in rat and mouse disease models. Single electrode mapping is highly laborious requiring long-term exposure to the SC surface and prolonged anesthetic conditions that can adversely affect the mapping data. NEW METHOD To avoid the above-mentioned issues, we fabricated a fifty-six (56) electrode multi-electrode array (MEA) for rapid and reliable visual functional mapping of the SC. Since SC is a dome-shaped structure, the array was made of electrodes with dissimilar tip lengths to enable simultaneous and uniform penetration of the SC. RESULTS SC mapping using the new MEA was conducted in retinal degenerate (RD) Royal College of Surgeons (RCS) rats and rats with focal retinal damage induced by green diode laser. For SC mapping, the MEA was advanced into the SC surface and the visual activities were recorded during full-filed light stimulation of the eye. Based on the morphological examination, the MEA electrodes covered most of the exposed SC area and penetrated the SC surface at a relatively uniform depth. MEA mapping in RCS rats (n=9) demonstrated progressive development of a scotoma in the SC that corresponded to the degree of photoreceptor loss. MEA mapping in the laser damaged rats demonstrated the presence of a scotoma in the SC area that corresponded to the location of retinal laser injury. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The use of MEA for SC mapping is advantageous over single electrode recording by enabling faster recordings and reducing anesthesia time. This study establishes the feasibility of the MEA technique for rapid and efficient SC mapping, particularly advantageous for evaluating therapeutic effects in retinal degenerate rat disease models.
Collapse
Affiliation(s)
- Deepthi S Rajendran Nair
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States
| | - Juan Carlos-Martinez Camarillo
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, United States
| | - Gengxi Lu
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States
| | - Biju B Thomas
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, United States; USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, United States.
| |
Collapse
|
3
|
Liu HC, Zeng Y, Gong C, Chen X, Kijanka P, Zhang J, Genyk Y, Tchelepi H, Wang C, Zhou Q, Zhao X. Wearable bioadhesive ultrasound shear wave elastography. SCIENCE ADVANCES 2024; 10:eadk8426. [PMID: 38335289 PMCID: PMC10857377 DOI: 10.1126/sciadv.adk8426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Acute liver failure (ALF) is a critical medical condition defined as the rapid development of hepatic dysfunction. Conventional ultrasound elastography cannot continuously monitor liver stiffness over the course of rapidly changing diseases for early detection due to the requirement of a handheld probe. In this study, we introduce wearable bioadhesive ultrasound elastography (BAUS-E), which can generate acoustic radiation force impulse (ARFI) to induce shear waves for the continuous monitoring of modulus changes. BAUS-E contains 128 channels with a compact design with only 24 mm in the azimuth direction for comfortable wearability. We further used BAUS-E to continuously monitor the stiffness of in vivo rat livers with ALF induced by d-galactosamine over 48 hours, and the stiffness change was observed within the first 6 hours. BAUS-E holds promise for clinical applications, particularly in patients after organ transplantation or postoperative care in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Chen Gong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Krakow, Krakow 30059, Poland
| | - Junhang Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuri Genyk
- Division of Hepatobiliary, Pancreatic and Abdominal Organ Transplant Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hisham Tchelepi
- Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chonghe Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Qifa Zhou
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| |
Collapse
|
4
|
Tyszkiewicz C, Hwang SK, Manickam B, Jakubczak B, Walters KM, Bolt MW, Santos R, Liu CN. Sex-related differences in retinal function in Wistar rats: implications for toxicity and safety studies. FRONTIERS IN TOXICOLOGY 2023; 5:1176665. [PMID: 37313214 PMCID: PMC10259507 DOI: 10.3389/ftox.2023.1176665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction: Wistar Han rats are a preferred strain of rodents for general toxicology and safety pharmacology studies in drug development. In some of these studies, visual functional tests that assess for retinal toxicity are included as an additional endpoint. Although the influence of gender on human retinal function has been documented for more than 6 decades, preclinically it is still uncertain if there are differences in retinal function between naïve male and female Wistar Han rats. Methods: In this study, sex-related differences in the retinal function were quantified by analyzing electroretinography (ERG) in 7-9-week-old (n = 52 males and 51 females) and 21-23-week-old Wistar Han rats (n = 48 males and 51 females). Optokinetic tracking response, brainstem auditory evoked potential, ultrasonic vocalization and histology were tested and evaluated in a subset of animals to investigate the potential compensation mechanisms of spontaneous blindness. Results/Discussion: Absence of scotopic and photopic ERG responses was found in 13% of 7-9-week-old (7/52) and 19% of 21-23-week-old males (9/48), but none of female rats (0/51). The averaged amplitudes of rod- and cone-mediated ERG b-wave responses obtained from males were significantly smaller than the amplitudes of the same responses from age-matched females (-43% and -26%, respectively) at 7-9 weeks of age. There was no difference in the retinal and brain morphology, brainstem auditory responses, or ultrasonic vocalizations between the animals with normal and abnormal ERGs at 21-23 weeks of age. In summary, male Wistar Han rats had altered retinal responses, including a complete lack of responses to test flash stimuli (i.e., blindness), when compared with female rats at 7-9 and 21-23 weeks of age. Therefore, sex differences should be considered when using Wistar Han rats in toxicity and safety pharmacology studies with regards to data interpretation of retinal functional assessments.
Collapse
Affiliation(s)
| | | | | | - Ben Jakubczak
- Comparative Medicine, Pfizer, Groton, CT, United States
| | - Karen M. Walters
- Drug Safety Research and Development, Pfizer, Groton, CT, United States
| | - Michael W. Bolt
- Drug Safety Research and Development, Pfizer, Cambridge, Massachusetts, United States
| | | | | |
Collapse
|
5
|
Gong C, Li R, Lu G, Ji J, Zeng Y, Chen J, Chang C, Zhang J, Xia L, Nair DSR, Thomas BB, Song BJ, Humayun MS, Zhou Q. Non-Invasive Hybrid Ultrasound Stimulation of Visual Cortex In Vivo. Bioengineering (Basel) 2023; 10:577. [PMID: 37237647 PMCID: PMC10215307 DOI: 10.3390/bioengineering10050577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The optic nerve is the second cranial nerve (CN II) that connects and transmits visual information between the retina and the brain. Severe damage to the optic nerve often leads to distorted vision, vision loss, and even blindness. Such damage can be caused by various types of degenerative diseases, such as glaucoma and traumatic optic neuropathy, and result in an impaired visual pathway. To date, researchers have not found a viable therapeutic method to restore the impaired visual pathway; however, in this paper, a newly synthesized model is proposed to bypass the damaged portion of the visual pathway and set up a direct connection between a stimulated visual input and the visual cortex (VC) using Low-frequency Ring-transducer Ultrasound Stimulation (LRUS). In this study, by utilizing and integrating various advanced ultrasonic and neurological technologies, the following advantages are achieved by the proposed LRUS model: 1. This is a non-invasive procedure that uses enhanced sound field intensity to overcome the loss of ultrasound signal due to the blockage of the skull. 2. The simulated visual signal generated by LRUS in the visual-cortex-elicited neuronal response in the visual cortex is comparable to light stimulation of the retina. The result was confirmed by a combination of real-time electrophysiology and fiber photometry. 3. VC showed a faster response rate under LRUS than light stimulation through the retina. These results suggest a potential non-invasive therapeutic method for restoring vision in optic-nerve-impaired patients using ultrasound stimulation (US).
Collapse
Affiliation(s)
- Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
| | - Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chifeng Chang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Lily Xia
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
| | - Deepthi S. Rajendran Nair
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Brian J. Song
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; (C.G.); (R.L.); (G.L.); (J.J.)
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Adebogun GT, Bachmann AE, Callan AA, Khan U, Lewis AR, Pollock AC, Alfonso SA, Arango Sumano D, Bhatt DA, Cullen AB, Hajian CM, Huang W, Jaeger EL, Li E, Maske AK, Offenberg EG, Ta V, Whiting WW, McKinney JE, Butler J, O’Connell LA. Albino Xenopus laevis tadpoles prefer dark environments compared to wild type. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000750. [PMID: 36824381 PMCID: PMC9941856 DOI: 10.17912/micropub.biology.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Tadpoles display preferences for different environments but the sensory modalities that govern these choices are not well understood. Here, we examined light preferences and associated sensory mechanisms of albino and wild-type Xenopus laevis tadpoles. We found that albino tadpoles spent more time in darker environments compared to the wild type, although they showed no differences in overall activity. This preference persisted when the tadpoles had their optic nerve severed or pineal glands removed, suggesting these sensory systems alone are not necessary for phototaxis. These experiments were conducted by an undergraduate laboratory course, highlighting how X. laevis tadpole behavior assays in a classroom setting can reveal new insights into animal behavior.
Collapse
Affiliation(s)
- Grace T Adebogun
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Annabelle E Bachmann
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Ashlyn A Callan
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Ummara Khan
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Amaris R Lewis
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Alexa C Pollock
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Sebastian A Alfonso
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Daniel Arango Sumano
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Dhruv A Bhatt
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Aidan B Cullen
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Cyrus M Hajian
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Winnie Huang
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emma L Jaeger
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emily Li
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - A. Kaile Maske
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emma G Offenberg
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Vy Ta
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Waymon W Whiting
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Jordan E McKinney
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
,
Department of Biology, Stanford University, Stanford, California, United States
| | - Julie Butler
- Department of Biology, Stanford University, Stanford, California, United States
,
Correspondence to: Julie Butler (
)
| | - Lauren A O’Connell
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
,
Department of Biology, Stanford University, Stanford, California, United States
,
Correspondence to: Lauren A O’Connell (
)
| |
Collapse
|
7
|
Baranauskas G, Rysevaite-Kyguoliene K, Sabeckis I, Pauza DH. Saturation of visual responses explains size tuning in rat collicular neurons. Eur J Neurosci 2023; 57:285-309. [PMID: 36451583 DOI: 10.1111/ejn.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
The receptive field of many visual neurons is composed of a central responsive area, the classical receptive field, and a non-classical receptive field, also called the "suppressive surround." A visual stimulus placed in the suppressive surround does not induce any response but modulates visual responses to stimuli within the classical receptive field, usually by suppressing them. Therefore, visual responses become smaller when stimuli exceed the classical receptive field size. The stimulus size inducing the maximal response is called the preferred stimulus size. In cortex, there is good correspondence between the sizes of the classical receptive field and the preferred stimulus. In contrast, in the rodent superior colliculus, the preferred size is often several fold smaller than the classical receptive field size. Here, we show that in the rat superior colliculus, the preferred stimulus size changes as a square root of the contrast inverse and the classical receptive field size is independent of contrast. In addition, responses to annulus were largely independent of the inner hole size. To explain these data, three models were tested: the divisive modulation of the gain by the suppressive surround (the "normalization" model), the difference of the Gaussians, and a divisive model that incorporates saturation to light flux. Despite the same number of free parameters, the model incorporating saturation to light performed the best. Thus, our data indicate that in rats, the saturation to light can be a dominant phenomenon even at relatively low illumination levels defining visual responses in the collicular neurons.
Collapse
Affiliation(s)
- Gytis Baranauskas
- Neurophysiology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Ignas Sabeckis
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Anatomy Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
8
|
Qian X, Lu G, Thomas BB, Li R, Chen X, Shung KK, Humayun M, Zhou Q. Noninvasive Ultrasound Retinal Stimulation for Vision Restoration at High Spatiotemporal Resolution. BME FRONTIERS 2022; 2022:9829316. [PMID: 37850175 PMCID: PMC10521738 DOI: 10.34133/2022/9829316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. Retinal degeneration involving progressive deterioration and loss of function of photoreceptors is a major cause of permanent vision loss worldwide. Strategies to treat these incurable conditions incorporate retinal prostheses via electrically stimulating surviving retinal neurons with implanted devices in the eye, optogenetic therapy, and sonogenetic therapy. Existing challenges of these strategies include invasive manner, complex implantation surgeries, and risky gene therapy. Methods and Results. Here, we show that direct ultrasound stimulation on the retina can evoke neuron activities from the visual centers including the superior colliculus and the primary visual cortex (V1), in either normal-sighted or retinal degenerated blind rats in vivo. The neuron activities induced by the customized spherically focused 3.1 MHz ultrasound transducer have shown both good spatial resolution of 250 μm and temporal resolution of 5 Hz in the rat visual centers. An additional customized 4.4 MHz helical transducer was further implemented to generate a static stimulation pattern of letter forms. Conclusion. Our findings demonstrate that ultrasound stimulation of the retina in vivo is a safe and effective approach with high spatiotemporal resolution, indicating a promising future of ultrasound stimulation as a novel and noninvasive visual prosthesis for translational applications in blind patients.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiaoyang Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Lu G, Qian X, Castillo J, Li R, Jiang L, Lu H, Kirk Shung K, Humayun MS, Thomas BB, Zhou Q. Transcranial Focused Ultrasound for Noninvasive Neuromodulation of the Visual Cortex. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:21-28. [PMID: 32746196 PMCID: PMC8153235 DOI: 10.1109/tuffc.2020.3005670] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Currently, blindness cannot be cured and patients' living quality can be compromised severely. Ultrasonic (US) neuromodulation is a promising technology for the development of noninvasive cortical visual prosthesis. We investigated the feasibility of transcranial focused ultrasound (tFUS) for noninvasive stimulation of the visual cortex (VC) to develop improved visual prosthesis. tFUS was used to successfully evoke neural activities in the VC of both normal and retinal degenerate (RD) blind rats. Our results showed that blind rats showed more robust responses to ultrasound stimulation when compared with normal rats. ( , two-sample t-test). Three different types of ultrasound waveforms were used in the three experimental groups. Different types of cortical activities were observed when different US waveforms were used. In all rats, when stimulated with continuous ultrasound waves, only short-duration responses were observed at "US on and off" time points. In comparison, pulsed waves (PWs) evoked longer low-frequency responses. Testing different parameters of PWs showed that a pulse repetition frequency higher than 100 Hz is required to obtain the low-frequency responses. Based on the observed cortical activities, we inferred that acoustic radiation force (ARF) is the predominant physical mechanism of ultrasound neuromodulation.
Collapse
|
10
|
McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Transplanted hESC-Derived Retina Organoid Sheets Differentiate, Integrate, and Improve Visual Function in Retinal Degenerate Rats. Invest Ophthalmol Vis Sci 2019; 59:2586-2603. [PMID: 29847666 PMCID: PMC5968836 DOI: 10.1167/iovs.17-23646] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30–65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.
Collapse
Affiliation(s)
- Bryce T McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Anuradha Mathur
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Robert B Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| | - Biju B Thomas
- University of Southern California Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical, Inc., Irvine, California, United States
| | | | - Magdalene J Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California Irvine, School of Medicine, Irvine, California, United States
| |
Collapse
|
11
|
Detailed Visual Cortical Responses Generated by Retinal Sheet Transplants in Rats with Severe Retinal Degeneration. J Neurosci 2018; 38:10709-10724. [PMID: 30396913 DOI: 10.1523/jneurosci.1279-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/21/2022] Open
Abstract
To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration.
Collapse
|
12
|
Thomas BB, Zhu D, Lin TC, Kim YC, Seiler MJ, Martinez-Camarillo JC, Lin B, Shad Y, Hinton DR, Humayun MS. A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells. Graefes Arch Clin Exp Ophthalmol 2018; 256:2113-2125. [PMID: 30215097 DOI: 10.1007/s00417-018-4134-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| | - Danhong Zhu
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tai-Chi Lin
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Young Chang Kim
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Juan Carlos Martinez-Camarillo
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Bin Lin
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Yousuf Shad
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - David R Hinton
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Ngan NH, Matsumoto J, Takamura Y, Tran AH, Ono T, Nishijo H. Neuronal correlates of attention and its disengagement in the superior colliculus of rat. Front Integr Neurosci 2015; 9:9. [PMID: 25741252 PMCID: PMC4332380 DOI: 10.3389/fnint.2015.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023] Open
Abstract
Orienting attention to a new target requires prior disengagement of attention from the current focus. Previous studies indicate that the superior colliculus (SC) plays an important role in attention. However, recordings of responses of SC neurons during attentional disengagement have not yet been reported. Here, we analyzed rat SC neuronal activity during performance of an attention-shift task with and without disengagement. In this task, conditioned stimuli (CSs; right and/or left light-flash or sound) were sequentially presented. To obtain an intracranial self-stimulation reward, rats were required to lick a spout when an infrequent conditioned stimulus appeared (reward trials). In the disengagement reward trials, configural stimuli consisting of an infrequent stimulus and frequent stimulus in the former trials were presented; in the non-disengagement reward trials, only an infrequent stimulus was presented. Of the 186 SC neurons responding to the CSs, 41 showed stronger responses to the CSs in the disengagement reward trials than in the non-disengagement reward trials (disengagement-related neurons). Furthermore, lick latencies in the disengagement reward trials were negatively correlated with response magnitudes to the CSs in half of the disengagement-related neurons. These disengagement-related neurons were located mainly in the deep layers of the SC. Another 70 SC neurons responded to the CSs in both disengagement and non-disengagement reward trials, suggesting that these neurons were involved in attention engagement. Our results suggest complementary mechanisms of attentional shift based on two subpopulations of neurons in the SC.
Collapse
Affiliation(s)
- Nguyen H Ngan
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Anh H Tran
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
14
|
Seelke AMH, Dooley JC, Krubitzer LA. Photic preference of the short-tailed opossum (Monodelphis domestica). Neuroscience 2014; 269:273-80. [PMID: 24709041 DOI: 10.1016/j.neuroscience.2014.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
The gray short-tailed opossum (Monodelphis domestica) is a nocturnal South American marsupial that has been gaining popularity as a laboratory animal. However, compared to traditional laboratory animals like rats, very little is known about its behavior, either in the wild or in a laboratory setting. Here we investigated the photic preference of the short-tailed opossum. Opossums were placed in a circular testing arena and allowed to move freely between dark (0 lux) and light (∼1.4, 40, or 400 lux) sides of the arena. In each of these conditions opossums spent significantly more time in the dark than in the illuminated side and a greater proportion of time in the dark than would be expected by chance. In the high-contrast (∼400 lux) illumination condition, the mean bout length (i.e., duration of one trip on the light or dark side) was significantly longer on the dark side than on the light side. When we examined the number of bouts greater than 30 and 60s in duration, we found a significant difference between the light and dark sides in all light contrast conditions. These data indicate that the short-tailed opossum prefers the dark to the light, and can also detect very slight differences in light intensity. We conclude that although rats and opossums share many similar characteristics, including ecological niche, their divergent evolutionary heritage results in vastly different behavioral capabilities. Only by observing the behavioral capabilities and preferences of opossums will we be able to manipulate the experimental environment to best elicit and elucidate their behavior and alterations in behavior that can arise from experimental manipulations.
Collapse
Affiliation(s)
- A M H Seelke
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States
| | - J C Dooley
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States
| | - L A Krubitzer
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States; Department of Psychology, University of California, Davis, 1544 Newton Court, Davis, CA 95618, United States.
| |
Collapse
|
15
|
Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 2012; 31:661-87. [PMID: 22771454 PMCID: PMC3472113 DOI: 10.1016/j.preteyeres.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/23/2012] [Indexed: 12/18/2022]
Abstract
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Anatomy & Neurobiology, Reeve-Irvine Research Center, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, 1101 Gross Hall, 845 Health Science Rd., Irvine, CA 92697-4265, USA.
| | | |
Collapse
|
16
|
Seiler MJ, Jones BW, Aramant RB, Yang PB, Keirstead HS, Marc RE. Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration. Eur J Neurosci 2012; 35:1692-704. [PMID: 22594836 DOI: 10.1111/j.1460-9568.2012.08078.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Retinal progenitor sheet transplants have been shown to extend neuronal processes into a degenerating host retina and to restore visual responses in the brain. The aim of this study was to identify cells involved in transplant signals to retinal degenerate hosts using computational molecular phenotyping (CMP). S334ter line 3 rats received fetal retinal sheet transplants at the age of 24-40 days. Donor tissues were incubated with slow-releasing microspheres containing brain-derived neurotrophic factor or glial cell-derived neurotrophic factor. Up to 265 days after surgery, eyes of selected rats were vibratome-sectioned through the transplant area (some slices stained for donor marker human placental alkaline phosphatase), dehydrated and embedded in Eponate, sectioned into serial ultrathin datasets and probed for rhodopsin, cone opsin, CRALBP (cellular retinaldehyde binding protein), l-glutamate, l-glutamine, glutathione, glycine, taurine, γ-aminobutyric acid (GABA) and DAPI (4',6-diamidino-2-phenylindole). In large transplant areas, photoreceptor outer segments in contact with host retinal pigment epithelium revealed rod and cone opsin immunoreactivity whereas no such staining was found in the degenerate host retina. Transplant photoreceptor layers contained high taurine levels. Glutamate levels in the transplants were higher than in the host retina whereas GABA levels were similar. The transplant inner nuclear layer showed some loss of neurons, but amacrine cells and horizontal cells were not reduced. In many areas, glial hypertrophy between the host and transplant was absent and host and transplant neuropil appeared to intermingle. CMP data indicate that horizontal cells and both glycinergic and GABAergic amacrine cells are involved in a novel circuit between transplant and host, generating alternative signal pathways between transplant and degenerating host retina.
Collapse
Affiliation(s)
- M J Seiler
- Anatomy & Neurobiol/Reeve-Irvine Research Center, UC Irvine, Irvine, CA 92697-4265, USA
| | | | | | | | | | | |
Collapse
|
17
|
Swanton DN, Matell MS. Stimulus compounding in interval timing: the modality-duration relationship of the anchor durations results in qualitatively different response patterns to the compound cue. ACTA ACUST UNITED AC 2011; 37:94-107. [PMID: 20718546 DOI: 10.1037/a0020200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that rats trained on a two-duration peak procedure in which two modal signals (i.e., tone and houselight) predicted probabilistic reinforcement availability at two times (10 s and 20 s) would respond in a scalar manner at a time between the trained durations in response to the simultaneous compound cue (tone + houselight). In these experiments, we evaluated whether this scalar response pattern would remain with greater relative separation between the anchor durations. Results revealed an effect of the modality-duration relationship, such that scalar responding was seen on compound trials in rats trained that the auditory stimulus signaled the shorter duration, whereas the visual stimulus signaled the longer duration, but not in the reverse condition. In rats showing scalar responding on compound trials, post hoc analyses demonstrated that the peak time of compound responding was most accurately predicted by the reinforcement probability weighted average of anchor peak times. In contrast, rats trained that the visual stimulus signaled the shorter duration, whereas the auditory stimulus signaled the longer duration, responded in a highly rightward skewed manner. In these rats, initiation of responding to the compound stimulus appeared to be controlled by the visual stimulus only, whereas response terminations reflected control by both modal stimuli. These latter data provide evidence of separate determinants of response initiation and termination.
Collapse
Affiliation(s)
- Dale N Swanton
- Department of Psychology, Villanova University, Villanova, PA 19085, USA
| | | |
Collapse
|
18
|
Nehrenberg DL, Wang S, Buus RJ, Perkins J, de Villena FPM, Pomp D. Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression. BMC Genet 2010; 11:113. [PMID: 21194443 PMCID: PMC3022667 DOI: 10.1186/1471-2156-11-113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/31/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid response to selection was previously observed in mice selected for high levels of inter-male aggression based on number of attacks displayed in a novel social interaction test after isolation housing. Attack levels in this high aggression line (NC900) increased significantly within just four generations of selective breeding, suggesting the presence of a locus with large effect. We conducted an experiment using a small (n ≈ 100) F2 cross between the ICR-derived, non-inbred NC900 strain and the low aggression inbred strain C57BL/6J, genotyped for 154 fully informative SNPs, to determine if a locus with large effect controls the high-aggression selection trait. A second goal was to use high density SNP genotyping (n = 549,000) in the parental strains to characterize residual patterns of heterozygosity within NC900, and evaluate regions that are identical by descent (IBD) between NC900 and C57BL/6J, to determine what impacts these may have on accuracy and resolution of quantitative trait locus (QTL) mapping in the F2 cross. RESULTS No evidence for a locus with major effect on aggressive behavior in mice was identified. However, several QTL with genomewide significance were mapped for aggression on chromosomes 7 and 19 and other social behavior traits on chromosomes 4, 7, 14, and 19. High density genotyping revealed that 28% of the genome is still segregating among the six NC900 females used to originate the F2 cross, and that segregating regions are present on every chromosome but are of widely different sizes. Regions of IBD between NC900 and C57BL/6J are found on every chromosome but are most prominent on chromosomes 10, 16 and X. No significant differences were found for amounts of heterozygosity or prevalence of IBD in QTL regions relative to global analysis. CONCLUSIONS While no major gene was identified to explain the rapid selection response in the NC900 line, transgressive variation (i.e. where the allele from the C57BL/6J increased attack levels) and a significant role for dominant gene action were hallmarks of the genetic architecture for aggressive behavior uncovered in this study. The high levels of heterozygosity and the distribution of minor allele frequency observed in the NC900 population suggest that maintenance of heterozygosity may have been under selection in this line.
Collapse
Affiliation(s)
- Derrick L Nehrenberg
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yang PB, Seiler MJ, Aramant RB, Yan F, Mahoney MJ, Kitzes LM, Keirstead HS. Trophic factors GDNF and BDNF improve function of retinal sheet transplants. Exp Eye Res 2010; 91:727-38. [PMID: 20804751 DOI: 10.1016/j.exer.2010.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/17/2010] [Accepted: 08/22/2010] [Indexed: 02/02/2023]
Abstract
The aim of this study was to compare glial-derived neurotrophic factor (GDNF) treatment with brain-derived neurotrophic factor (BDNF) treatment of retinal transplants on restoration of visual responses in the superior colliculus (SC) of the S334ter line 3 rat model of rapid retinal degeneration (RD). RD rats (age 4-6 weeks) received subretinal transplants of intact sheets of fetal retina expressing the marker human placental alkaline phosphatase (hPAP). Experimental groups included: (1) untreated retinal sheet transplants, (2) GDNF-treated transplants, (3) BDNF-treated transplants, (4) none surgical, age-matched RD rats, (5) sham surgery RD controls, (6) progenitor cortex transplant RD controls, and (7) normal pigmented rat controls. At 2-8 months after transplantation, multi-unit visual responses were recorded from the SC using a 40 ms full-field stimulus (-5.9 to +1 log cd/m(2)) after overnight dark-adaptation. Responses were analyzed for light thresholds, spike counts, response latencies, and location within the SC. Transplants were grouped into laminated or rosetted (more disorganized) transplants based on histological analysis. Visual stimulation of control RD rats evoked no responses. In RD rats with retinal transplants, a small area of the SC corresponding to the position of the transplant in the host retina, responded to light stimulation between -4.5 and -0.08 log cd/m(2), whereas the light threshold of normal rats was at or below -5 log cd/m(2) all over the SC. Overall, responses in the SC in rats with laminated transplants had lower response thresholds and were distributed over a wider area than rats with rosetted transplants. BDNF treatment improved responses (spike counts, light thresholds and responsive areas) of rats with laminated transplants whereas GDNF treatment improved responses from rats with both laminated and rosetted (more disorganized) transplants. In conclusion, treatment of retinal transplants with GDNF and BDNF improved the restoration of visual responses in RD rats; and GDNF appears to exert greater overall restoration than BDNF.
Collapse
Affiliation(s)
- Pamela B Yang
- Anatomy and Neurobiology, Univ. of California, Irvine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 2010; 31:508-20. [PMID: 20105230 PMCID: PMC2875871 DOI: 10.1111/j.1460-9568.2010.07085.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine whether retinal progenitor layer transplants form synaptic connections with the host and restore vision. Donor retinal sheets, isolated from embryonic day 19 rat fetuses expressing human placental alkaline phosphatase (hPAP), were transplanted to the subretinal space of 18 S334ter-3 rats with fast retinal degeneration at the age of 0.8-1.3 months. Recipients were killed at the age of 1.6-11.8 months. Frozen sections were analysed by confocal immunohistochemistry for the donor cell label hPAP and synaptic markers. Vibratome slices were stained for hPAP, and processed for electron microscopy. Visual responses were recorded by electrophysiology from the superior colliculus (SC) in 12 rats at the age of 5.3-11.8 months. All recorded transplanted rats had restored or preserved visual responses in the SC corresponding to the transplant location in the retina, with thresholds between -2.8 and -3.4 log cd/m(2). No such responses were found in age-matched S334ter-3 rats without transplants, or in those with sham surgery. Donor cells and processes were identified in the host by light and electron microscopy. Transplant processes penetrated the inner host retina in spite of occasional glial barriers between transplant and host. Labeled neuronal processes were found in the host inner plexiform layer, and formed apparent synapses with unlabeled cells, presumably of host origin. In conclusion, synaptic connections between graft and host cells, together with visual responses from corresponding locations in the brain, support the hypothesis that functional connections develop following transplantation of retinal layers into rodent models of retinal degeneration.
Collapse
Affiliation(s)
- M J Seiler
- Reeve-Irvine Research Center, Gillespie Neuroscience Research Facility, School of Medicine, University of California at Irvine, Irvine, CA 92697-4292, USA
| | | | | | | | | | | |
Collapse
|
21
|
Peng Q, Thomas BB, Aramant RB, Chen Z, Sadda SR, Seiler MJ. Structure and Function of Embryonic Rat Retinal Sheet Transplants. Curr Eye Res 2009; 32:781-9. [PMID: 17882711 DOI: 10.1080/02713680701530597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate retinal sheet transplants in S334ter-line-3 retinal degenerate rats by comparing visual responses recorded electrophysiologically with morphology based on light and electron microscopy. METHODS S334ter-line-3 retinal degenerate rats (n = 7) received retinal sheet transplants between postnatal days 28 and 31. The donor tissue was derived from transgenic embryonic day 19 (E19) rat retinae expressing human placental alkaline phosphatase (hPAP). Fresh retinal sheets were gently transplanted into the subretinal space of the left eye with the help of a custom-made implantation tool. Selected rats (n = 5) were subjected to electrophysiologic evaluation of visual responses from the superior colliculus about 84-121 days after surgery. Transplanted eyes were processed for light microscopy (LM) and electron microscopy (EM) evaluations. RESULTS All the transplanted rats that were evaluated for visual responses in the brain showed responses to very low light stimulation (-3.42 to -2.8 log cd/m(2)) of the eye in a small area of the superior colliculus corresponding with the placement of the transplant in the host retina. Histologic evaluation showed that most of the transplants contained well-laminated areas with correct polarity in the subretinal space. Inside the transplant areas, rosettes of photoreceptors with inner and outer segments were found. In the laminated areas, the outer segments of photoreceptors were facing the host retinal pigment epithelium (RPE). Immunohistochemical evaluation of hPAP donor cells revealed areas with specific staining of the transplants in the subretinal space. Electron microscopic evaluation showed a glial demarcation membrane between the host and the transplant, however, processes originating from the transplant were observed inside the host retina. CONCLUSIONS Sheets of E19 rat retina transplanted into the subretinal space of S334ter-line-3 rats survived without immune rejection and continued to show visual function when tested after 3 months. Well-developed photoreceptors and many synapse types were seen within the transplants. hPAP staining showed a certain degree of integration between the host retina and the transplant suggesting that transplanted photoreceptors contributed to the restored light sensitivity.
Collapse
Affiliation(s)
- Qing Peng
- Department of Ophthalmology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Auclair AL, Besnard J, Newman-Tancredi A, Depoortère R. The five choice serial reaction time task: comparison between Sprague-Dawley and Long-Evans rats on acquisition of task, and sensitivity to phencyclidine. Pharmacol Biochem Behav 2009; 92:363-9. [PMID: 19353758 DOI: 10.1016/j.pbb.2009.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 5-choice serial reaction time task (5-CSRTT) allows examination of multiple aspects of cognition/executive functions (attention/impulsivity/ perseveration). Most 5-CSRTT studies are performed with pigmented (i.e. Long-Evans: LE) rats; however, albino strains (i.e. Sprague-Dawley: SD) are more commonly used in behavioural pharmacology experiments. Hence, we compared 5-CSRTT performances of SD and LE rats and their sensitivity to acute phencyclidine (PCP, 1-2.5 mg/kg). SD required significantly fewer sessions(35 versus 50) than LE rats for task acquisition, especially at shortest stimulus light duration (1 s). However,once trained, under vehicle conditions, both strains performed similarly. In contrast, PCP treatment differentially affected the two strains. Thus, whilst percentage of accuracy was decreased for both strains, in SD rats number of premature responses was more markedly decreased, whereas omissions and latency time to correct responses were more notably increased. In addition, PCP monotonically diminished in SD, but augmented (1-1.5 mg/kg) in LE rats compulsive responding. To summarize, under our experimental conditions, the SD offer advantages over LE strain for speed of acquisition of 5-CSRTT. Once trained, basal performances of both strains were equivalent and stable enough for challenge with pharmacological compounds. However, PCP differentially affected the strains on several parameters considered.
Collapse
Affiliation(s)
- Agnès L Auclair
- Division of Neurobiology 2, Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin, 81106 Castres, France.
| | | | | | | |
Collapse
|
23
|
Heiduschka P, Schraermeyer U. Comparison of visual function in pigmented and albino rats by electroretinography and visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 2008; 246:1559-73. [DOI: 10.1007/s00417-008-0895-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 11/25/2022] Open
|
24
|
Seiler MJ, Thomas BB, Chen Z, Wu R, Sadda SR, Aramant RB. Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons. Eur J Neurosci 2008; 28:208-20. [DOI: 10.1111/j.1460-9568.2008.06279.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Weber M, Swerdlow NR. Rat strain differences in startle gating-disruptive effects of apomorphine occur with both acoustic and visual prepulses. Pharmacol Biochem Behav 2008; 88:306-11. [PMID: 17900675 PMCID: PMC2266874 DOI: 10.1016/j.pbb.2007.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/25/2007] [Accepted: 08/31/2007] [Indexed: 11/23/2022]
Abstract
Prepulse inhibition of startle (PPI) is an operational measure of sensorimotor gating that is impaired in schizophrenia and is disrupted in rats by dopamine (DA) agonists like apomorphine (APO). Using acoustic prepulses and acoustic startle pulses, previous studies have demonstrated heritable strain differences between Sprague Dawley (SD) and Long Evans (LE) rats in the sensitivity to the PPI-disruptive effects of APO. As PPI deficits in schizophrenia are evident with both uni- and cross-modal stimuli, we tested whether strain differences in the gating-disruptive effects of APO occur with a cross-modal visual and acoustic stimulus combination. APO caused a dose-dependent disruption of both acoustic and visual PPI in SD rats. Compared to LE rats, SD rats were more sensitive to the PPI-disruptive effects of APO with both acoustic and visual PPI. These findings suggest that SD vs. LE strain differences in PPI APO sensitivity are mediated outside of the auditory system, within higher circuitry that regulates or processes multi-modal information. The present findings provide further validation for this heritable model of impaired sensorimotor gating in schizophrenia, which can be detected across multiple sensory modalities.
Collapse
Affiliation(s)
- M Weber
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA 92037-0804, USA
| | | |
Collapse
|
26
|
Thomas BB, Samant DM, Seiler MJ, Aramant RB, Sheikholeslami S, Zhang K, Chen Z, Sadda SR. Behavioral evaluation of visual function of rats using a visual discrimination apparatus. J Neurosci Methods 2007; 162:84-90. [PMID: 17289151 PMCID: PMC3074943 DOI: 10.1016/j.jneumeth.2006.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 09/30/2022]
Abstract
A visual discrimination apparatus was developed to evaluate the visual sensitivity of normal pigmented rats (n=13) and S334ter-line-3 retinal degenerate (RD) rats (n=15). The apparatus is a modified Y maze consisting of two chambers leading to the rats' home cage. Rats were trained to find a one-way exit door leading into their home cage, based on distinguishing between two different visual alternatives (either a dark background or black and white stripes at varying luminance levels) which were randomly displayed on the back of each chamber. Within 2 weeks of training, all rats were able to distinguish between these two visual patterns. The discrimination threshold of normal pigmented rats was a luminance level of -5.37+/-0.05 log cd/m(2); whereas the threshold level of 100-day-old RD rats was -1.14+/-0.09 log cd/m(2) with considerable variability in performance. When tested at a later age (about 150 days), the threshold level of RD rats was significantly increased (-0.82+/-0.09 log cd/m(2), p<0.03, paired t-test). This apparatus could be useful to train rats at a very early age to distinguish between two different visual stimuli and may be effective for visual functional evaluations following therapeutic interventions.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, Doheny Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|