1
|
Farkas S, Szabó A, Török B, Sólyomvári C, Fazekas CL, Bánrévi K, Correia P, Chaves T, Zelena D. Ovariectomy-induced hormone deprivation aggravates Aβ 1-42 deposition in the basolateral amygdala and cholinergic fiber loss in the cortex but not cognitive behavioral symptoms in a triple transgenic mouse model of Alzheimer's disease. Front Endocrinol (Lausanne) 2022; 13:985424. [PMID: 36303870 PMCID: PMC9596151 DOI: 10.3389/fendo.2022.985424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease is the most common type of dementia, being highly prevalent in elderly women. The advanced progression may be due to decreased hormone synthesis during post-menopause as estradiol and progesterone both have neuroprotective potentials. We aimed to confirm that female hormone depletion aggravates the progression of dementia in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). As pathological hallmarks are known to appear in 6-month-old animals, we expected to see disease-like changes in the 4-month-old 3xTg-AD mice only after hormone depletion. Three-month-old female 3xTg-AD mice were compared with their age-matched controls. As a menopause model, ovaries were removed (OVX or Sham surgery). After 1-month recovery, the body composition of the animals was measured by an MRI scan. The cognitive and anxiety parameters were evaluated by different behavioral tests, modeling different aspects (Y-maze, Morris water maze, open-field, social discrimination, elevated plus maze, light-dark box, fox odor, operant conditioning, and conditioned fear test). At the end of the experiment, uterus was collected, amyloid-β accumulation, and the cholinergic system in the brain was examined by immunohistochemistry. The uterus weight decreased, and the body weight increased significantly in the OVX animals. The MRI data showed that the body weight change can be due to fat accumulation. Moreover, OVX increased anxiety in control, but decreased in 3xTg-AD animals, the later genotype being more anxious by default based on the anxiety z-score. In general, 3xTg-AD mice moved less. In relation to cognition, neither the 3xTg-AD genotype nor OVX surgery impaired learning and memory in general. Despite no progression of dementia-like behavior after OVX, at the histological level, OVX aggravated the amyloid-β plaque deposition in the basolateral amygdala and induced early cholinergic neuronal fiber loss in the somatosensory cortex of the transgenic animals. We confirmed that OVX induced menopausal symptoms. Removal of the sexual steroids aggravated the appearance of AD-related alterations in the brain without significantly affecting the behavior. Thus, the OVX in young, 3-month-old 3xTg-AD mice might be a suitable model for testing the effect of new treatment options on structural changes; however, to reveal any beneficial effect on behavior, a later time point might be needed.
Collapse
Affiliation(s)
- Szidónia Farkas
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Adrienn Szabó
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Csenge Sólyomvári
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tiago Chaves
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, University of Pécs, Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Dóra Zelena,
| |
Collapse
|
2
|
Han G, Choi J, Cha SY, Kim BI, Kho HK, Jang MJ, Kim MA, Maeng S, Hong H. Effects of Radix Polygalae on Cognitive Decline and Depression in Estradiol Depletion Mouse Model of Menopause. Curr Issues Mol Biol 2021; 43:1669-1684. [PMID: 34698102 PMCID: PMC8929121 DOI: 10.3390/cimb43030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal syndrome refers to symptoms caused by the gradual decrease in female hormones after mid-40 years. As a target organ of estrogen, decrease in estrogen causes various changes in brain function such as a decrease in choline acetyltransferase and brain-derived neurotrophic factor; thus, postmenopausal women experience cognitive decline and more depressive symptoms than age-matched men. Radix Polygalae has been used for memory boosting and as a mood stabilizer and its components have shown neuroprotective, antidepressant, and stress relief properties. In a mouse model of estrogen depletion induced by 4-vinylcyclohexene diepoxide, Radix Polygalae was orally administered for 3 weeks. In these animals, cognitive and depression-related behaviors and molecular changes related to these behaviors were measured in the prefrontal cortex and hippocampus. Radix Polygalae improved working memory and contextual memory and despair-related behaviors in 4-vinylcyclohexene diepoxide-treated mice without increasing serum estradiol levels in this model. In relation to these behaviors, choline acetyltransferase and brain-derived neurotrophic factor in the prefrontal cortex and hippocampus and bcl-2-associated athanogene expression increased in the hippocampus. These results implicate the possible benefit of Radix Polygalae in use as a supplement of estrogen to prevent conditions such as postmenopausal depression and cognitive decline.
Collapse
Affiliation(s)
- Gaeul Han
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Junhyuk Choi
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Seung-Yun Cha
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Byung Il Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Hee Kyung Kho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Maeng-Jin Jang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Mi Ae Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| | - Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| |
Collapse
|
3
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
4
|
Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav 2015; 74:4-18. [PMID: 25960081 PMCID: PMC4573242 DOI: 10.1016/j.yhbeh.2015.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 11/18/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Since the publication of the 1998 special issue of Hormones and Behavior on estrogens and cognition, substantial progress has been made towards understanding the molecular mechanisms through which 17β-estradiol (E2) regulates hippocampal plasticity and memory. Recent research has demonstrated that rapid effects of E2 on hippocampal cell signaling, epigenetic processes, and local protein synthesis are necessary for E2 to facilitate the consolidation of object recognition and spatial memories in ovariectomized female rodents. These effects appear to be mediated by non-classical actions of the intracellular estrogen receptors ERα and ERβ, and possibly by membrane-bound ERs such as the G-protein-coupled estrogen receptor (GPER). New findings also suggest a key role of hippocampally-synthesized E2 in regulating hippocampal memory formation. The present review discusses these findings in detail and suggests avenues for future study.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA.
| |
Collapse
|
5
|
Abstract
A single 17β-oestradiol (E(2)) treatment reduces the loss in cholinergic fibre density in the cortex after NMDA lesion into the nucleus basalis magnocellularis (NBM) of the basal forebrain (BF) in young female mice. In the present study, we examined whether age influences this protective effect of E(2) on cholinergic neurones in male and female mice. Gonad-intact young and aged animals of both sexes were treated with E(2) after unilateral NMDA lesion into the NBM. NMDA lesion elicited ipsilateral cholinergic cell loss in the NBM and ipsilateral fibre loss in the somatosensory cortex to the same extent, irrespective of age or sex. A single E(2) injection performed 1 h post-lesion did not affect the cholinergic cell loss but reduced the loss of fibres in the ipsilateral cortex in young male and female mice. By contrast, E(2) did not have an effect on the NMDA-induced cholinergic cell and fibre loss in aged male or female mice. The oestrous stage of young female mice did not alter the number of cholinergic cells/fibres or the protective effect of E(2) on cholinergic fibres after NMDA injection. Our results show that E(2) has a protective action on BF cholinergic fibres in young males and females, although the treatment potential of E(2) declines with age.
Collapse
Affiliation(s)
- Z Kőszegi
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
6
|
Koszegi Z, Szego ÉM, Cheong RY, Tolod-Kemp E, Ábrahám IM. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo. Endocrinology 2011; 152:3471-82. [PMID: 21791565 DOI: 10.1210/en.2011-1017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
7
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
8
|
McLaughlin KJ, Wilson JO, Harman J, Wright RL, Wieczorek LA, Gomez J, Korol DL, Conrad CD. Chronic 17beta-estradiol or cholesterol prevents stress-induced hippocampal CA3 dendritic retraction in ovariectomized female rats: possible correspondence between CA1 spine properties and spatial acquisition. Hippocampus 2010; 20:768-86. [PMID: 19650122 PMCID: PMC2878912 DOI: 10.1002/hipo.20678] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic stress may have different effects on hippocampal CA3 and CA1 neuronal morphology and function depending upon hormonal status, but rarely are manipulations of stress and gonadal steroids combined. Experiment 1 investigated the effects of chronic restraint and 17beta-estradiol replacement on CA3 and CA1 dendritic morphology and spatial learning in ovariectomized (OVX) female Sprague-Dawley rats. OVX rats were implanted with 25% 17beta-estradiol, 100% cholesterol, or blank silastic capsules and then chronically restrained (6h/d/21d) or kept in home cages. 17beta-Estradiol or cholesterol prevented stress-induced CA3 dendritic retraction, increased CA1 apical spine density, and altered CA1 spine shape. The combination of chronic stress and 17beta-estradiol facilitated water maze acquisition compared to chronic stress + blank implants and nonstressed controls + 17beta-estradiol. To further investigate the interaction between 17beta-estradiol and stress on hippocampal morphology, experiment 2 was conducted on gonadally intact, cycling female rats that were chronically restrained (6h/d/21d), and then euthanized at proestrus (high ovarian hormones) or estrus (low ovarian hormones). Cycling female rats failed to show chronic stress-induced CA3 dendritic retraction at either estrous phase. Chronic stress enhanced the ratio of CA1 basal spine heads to headless spines as found in experiment 1. In addition, proestrous rats displayed increased CA1 spine density regardless of stress history. These results show that 17beta-estradiol or cholesterol protect against chronic stress-induced CA3 dendritic retraction in females. These stress- and 17beta-estradiol-induced morphological changes may provide insight into how dendritic complexity and spine properties contribute to spatial ability.
Collapse
Affiliation(s)
| | - Jessica O. Wilson
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - James Harman
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - Ryan L. Wright
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - Lindsay A. Wieczorek
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
- Department of Psychology, University of Illinois, Urbana-Champaign, IL 61801
| | - Juan Gomez
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - Donna L. Korol
- Department of Psychology, University of Illinois, Urbana-Champaign, IL 61801
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| |
Collapse
|
9
|
Accelerated postmenopausal cognitive decline is restricted to women with normal BMI: longitudinal evidence from the Betula project. Psychoneuroendocrinology 2010; 35:516-24. [PMID: 19811879 DOI: 10.1016/j.psyneuen.2009.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 08/18/2009] [Accepted: 08/28/2009] [Indexed: 11/22/2022]
Abstract
In order to determine whether cognitive performance is influenced by the menopausal transition, we tested cognitive performance at three time points, sampled women in earlier as well as later stages of the menopausal transition (40-65 years of age), and assessed the moderating influence of body mass index (BMI) on rate of change. Multilevel analyses were used to model change in cognitive performance as a function of number of years post menopause over and above chronological age. We investigated change in the menopausal transition for 10 cognitive outcomes in 193 women who were postmenopausal during the last test wave. The model, controlling for age and education, showed that postmenopausal women within the normal range of BMI (BMI 18.5-25) displayed more rapid decline than women with BMI above 25 for measures of visuospatial ability and episodic memory. In addition, there was an accelerated rate of change post menopause for all women on verbal fluency. The results support the notion that the diminished postmenopausal production of endogenous estrogen may have a slight negative influence on cognitive abilities, but mainly for women within a normal BMI range.
Collapse
|
10
|
Action of estrogen on survival of basal forebrain cholinergic neurons: promoting amelioration. Psychoneuroendocrinology 2009; 34 Suppl 1:S104-12. [PMID: 19560872 DOI: 10.1016/j.psyneuen.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/30/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
Abstract
Extensive studies during the past two decades provide compelling evidence that the gonadal steroid, estrogen, has the potential to affect the viability of basal forebrain cholinergic neurons. These observations reflect a unique ameliorative feature of estrogen as it restores and protects the cholinergic neurons against noxious stimuli or neurodegenerative processes. Hence, we first address the ameliorative function of estrogen on basal forebrain cholinergic neurons such as the actions of estrogen on neuronal plasticity of cholinergic neurons, estrogen-induced memory enhancement and the ameliorative role of estrogen on cholinergic neuron related neurodegenerative processes such as Alzheimer's disease. Second, we survey recent data as to possible mechanisms underlying the ameliorative actions of estrogen; influencing the amyloid precursor protein processing, enhancement in neurotrophin receptor signaling and estrogen-induced non-classical actions on second messenger systems. In addition, clinical relevance, pitfalls and future aspects of estrogen therapy on basal forebrain cholinergic neurons will be discussed.
Collapse
|
11
|
Heron PM, Turchan-Cholewo J, Bruce-Keller AJ, Wilson ME. Estrogen receptor alpha inhibits the estrogen-mediated suppression of HIV transcription in astrocytes: implications for estrogen neuroprotection in HIV dementia. AIDS Res Hum Retroviruses 2009; 25:1071-81. [PMID: 19886840 PMCID: PMC2828252 DOI: 10.1089/aid.2009.0065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many human immunodeficiency virus (HIV) proteins including Tat are produced by HIV-infected astrocytes and secreted into the brain resulting in extensive neuronal damage that contributes to the pathogenesis of HIV dementia. The neuroprotective hormone 17beta-estradiol (E2) is known to negatively regulate the HIV transcriptional promoter in human fetal astrocytes (SVGA cell line) in a Tat-dependent manner. In the present study we extended our investigation in HIV-infected SVGA cells and found a reduction in HIV p24 levels following E2 treatment in comparison to control. Although many E2-mediated events occur through estrogen receptor alpha (ERalpha), we found low levels of ERalpha mRNA and failed to detect ERalpha protein in SVGA cells. Paradoxically, when ERalpha was overexpressed the E2-mediated decrease in Tat transactivation of the promotor was prevented. To determine whether ERalpha expression is altered in the human brain following HIV infection, postmortum hippocampal tissue was obtained from cognitively normal HIV- and HIV+ patients, patients diagnosed with either mild cognitive/motor disorder (MCMD) or HIV-associated dementia (HAD). Immunohistochemistry and quantitative real-time PCR (qRT-PCR) for ERalpha and glial fibrillary acidic protein (GFAP) showed that ERalpha mRNA levels were not significantly different between groups, while GFAP increased in the hippocampus in the HIV+ compared to the HIV- group and was decreased in the MCMD and HAD subgroups compared to HIV+ controls. Notably the ratio of ERalpha-positive reactive astrocytes to total reactive astrocytes increased and significantly correlated with the severity of cognitive impairment following HIV infection. The data suggest that E2 would have the most dramatic effect in reducing HIV transcription early in the disease process when the subpopulation of astrocytes expressing ERalpha is low.
Collapse
Affiliation(s)
- Paula M. Heron
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298
| | - Jadwiga Turchan-Cholewo
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298
| | - Annadora J. Bruce-Keller
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298
- Current address: Pennington Biomedical Research Center/Louisiana State University, Baton Rouge, Louisiana 70808
| | - Melinda E. Wilson
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky 40536-0298
| |
Collapse
|
12
|
Martinez L, de Lacalle S. Astrocytic reaction to a lesion, under hormonal deprivation. Neurosci Lett 2007; 415:190-3. [PMID: 17267125 PMCID: PMC1876749 DOI: 10.1016/j.neulet.2007.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/19/2006] [Accepted: 01/09/2007] [Indexed: 11/27/2022]
Abstract
Gonadal hormones can influence the morphology and function of glial cells, particularly astrocytes. Here we explore the hypothesis that 17beta-estradiol (E2) exerts a positive effect on astrocytes within the region of the cholinergic neurons of the basal forebrain, an area heavily implicated in memory and attentional processes. Female rats were ovariectomized at 3 months of age and lesioned with the immunotoxin 192 IgG-saporin before receiving a subcutaneous pellet containing 0.25mg of estrogen or placebo, released over 60 days. The control, non-ovariectomized group was treated identically. At the end of the treatment, we used image analysis procedures to evaluate changes in the levels of glial fibrillary acidic protein (GFAP) expression in the area of the lesion. Infusion of the immunotoxin induced a slight increase in GFAP expression in some subjects, compared to the contralateral side. However, when differences within animals where factored in, GFAP expression in ovariectomized animals treated with E2 was undistinguishable from intact controls. By contrast, in ovariectomized animals treated with placebo, GFAP expression was significantly higher. These results suggest that E2 deprivation may exacerbate the effects of an immunotoxic lesion, and, more importantly, that E2 administration may contribute to structural recovery of lesioned cholinergic neurons by blocking GFAP expression in the area. These results are particularly relevant in the context of female aging and postmenopausal dementia, and further highlight other potential levels at which to design interventions to preserve an intact cholinergic system, which may be crucial to prevent Alzheimer's disease.
Collapse
Affiliation(s)
- Lizeth Martinez
- Department of Biomedical Sciences, Charles R. Drew University of Medicine and Sciences, 1731 East 120th Street, Los Angeles, CA 90059, USA
| | - Sonsoles de Lacalle
- Department of Biomedical Sciences, Charles R. Drew University of Medicine and Sciences, 1731 East 120th Street, Los Angeles, CA 90059, USA
| |
Collapse
|
13
|
Wallace M, Luine V, Arellanos A, Frankfurt M. Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res 2006; 1126:176-82. [PMID: 16934233 DOI: 10.1016/j.brainres.2006.07.064] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/11/2006] [Accepted: 07/18/2006] [Indexed: 11/18/2022]
Abstract
Effects of ovariectomy (OVX) on performance of the memory tasks, Object Recognition (OR) and Object Placement (OP), and on dendritic spine density in pyramidal neurons in layer II/III of the prefrontal cortex and the CA1 and CA3 regions of the hippocampus were determined. OVX was associated with a significant decline in performance of the memory tasks as compared to intact rats beginning at 1 week post OVX for OR and 4 weeks post OVX for OP. Golgi impregnation at 7 weeks post OVX showed significantly lower spine densities (17-53%) in the pyramidal neurons of the medial prefrontal cortex and the CA1, but not the CA3, region of the hippocampus in OVX compared to intact rats. These results suggest that cognitive impairments observed in OVX rats may be associated with morphological changes in brain areas mediating memory.
Collapse
Affiliation(s)
- M Wallace
- Graduate Center, CUNY, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
14
|
de Lacalle S. Estrogen effects on neuronal morphology. Endocrine 2006; 29:185-90. [PMID: 16785594 DOI: 10.1385/endo:29:2:185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/30/1999] [Accepted: 10/25/2005] [Indexed: 11/11/2022]
Abstract
This review focuses on the effects of estrogen on neuronal morphology. Over the last decade neuroscientists have accumulated a wealth of information confirming the trophic effects of 17beta-estradiol on a variety of brain regions, including changes of hippocampal spine density and axonal outgrowth and retraction in hypothalamic nuclei, as well as other measures of structural reorganization that could underlie some of the cognitive benefits attributed to this hormone. Overall, results from a variety of investigators suggest that 17beta-estradiol is a potent structural signal that can drive developmental as well as adult plastic events in a variety of brain regions, not only those implicated in reproduction, but also in a diversity of functions. Most notably, these structural modifications that subserve cyclic physiological processes, can also be activated in other brain regions to protect and even reverse structural neurodegenerative processes. The data presented here are not exhaustive, but rather meant to provide a few examples of these structural effects of 17beta-estradiol that could have important implications for clinical practice.
Collapse
Affiliation(s)
- Sonsoles de Lacalle
- Department of Biomedical Sciences, Charles R. Drew University of Medicine and Sciences, Los Angeles, CA 90059, USA.
| |
Collapse
|