1
|
Labkovich M, Jacobs EB, Bhargava S, Pasquale LR, Ritch R. Ginkgo Biloba Extract in Ophthalmic and Systemic Disease, With a Focus on Normal-Tension Glaucoma. Asia Pac J Ophthalmol (Phila) 2020; 9:215-225. [PMID: 32282348 PMCID: PMC7299225 DOI: 10.1097/apo.0000000000000279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is a neurodegenerative eye disease that results in retinal ganglion cell loss and ultimately loss of vision. Elevated intraocular pressure (IOP) is the most common known risk factor for retinal ganglion cell damage and visual field loss, and the only modifiable risk factor proven to reduce the development and progression of glaucoma. This has greatly influenced our approach and assessment in terms of diagnosis and treatment. However, as many as ≥50% of patients with progressive vision loss from primary open angle glaucoma without IOP elevation (≤22 mm Hg) have been reported in the United States and Canada; 90% in Japan and 80% in Korea. Extensive research is currently underway to identify the etiology of risk factors for glaucoma other than or in addition to elevated IOP (so-called "normal-tension" glaucoma; NTG) and use this knowledge to expand available treatment options. Currently, Food and Drug Administration-approved medications for glaucoma exclusively target elevated IOP, suggesting the need for additional approaches to treatment options beyond the current scope as the definition of glaucoma changes to encompass cellular and molecular mechanisms. This review focuses on alternative medical approaches, specifically Ginkgo Biloba extract, as a potential treatment option for normal-tension glaucoma.
Collapse
Affiliation(s)
- Margarita Labkovich
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| | - Erica B. Jacobs
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| | - Siddharth Bhargava
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| | - Louis R. Pasquale
- Department of Ophthalmology, Eye and Vision Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY
| |
Collapse
|
2
|
The Role of Sartans in the Treatment of Stroke and Subarachnoid Hemorrhage: A Narrative Review of Preclinical and Clinical Studies. Brain Sci 2020; 10:brainsci10030153. [PMID: 32156050 PMCID: PMC7139942 DOI: 10.3390/brainsci10030153] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Delayed cerebral vasospasm (DCVS) due to aneurysmal subarachnoid hemorrhage (aSAH) and its sequela, delayed cerebral ischemia (DCI), are associated with poor functional outcome. Endothelin-1 (ET-1) is known to play a major role in mediating cerebral vasoconstriction. Angiotensin-II-type-1-receptor antagonists such as Sartans may have a beneficial effect after aSAH by reducing DCVS due to crosstalk with the endothelin system. In this review, we discuss the role of Sartans in the treatment of stroke and their potential impact in aSAH. Methods: We conducted a literature research of the MEDLINE PubMed database in accordance with PRISMA criteria on articles published between 1980 to 2019 reviewing: "Sartans AND ischemic stroke". Of 227 studies, 64 preclinical and 19 clinical trials fulfilled the eligibility criteria. Results: There was a positive effect of Sartans on ischemic stroke in both preclinical and clinical settings (attenuating ischemic brain damage, reducing cerebral inflammation and infarct size, increasing cerebral blood flow). In addition, Sartans reduced DCVS after aSAH in animal models by diminishing the effect of ET-1 mediated vasoconstriction (including cerebral inflammation and cerebral epileptogenic activity reduction, cerebral blood flow autoregulation restoration as well as pressure-dependent cerebral vasoconstriction). Conclusion: Thus, Sartans might play a key role in the treatment of patients with aSAH.
Collapse
|
3
|
Nash KM, Shah ZA. Current Perspectives on the Beneficial Role of Ginkgo biloba in Neurological and Cerebrovascular Disorders. INTEGRATIVE MEDICINE INSIGHTS 2015; 10:1-9. [PMID: 26604665 PMCID: PMC4640423 DOI: 10.4137/imi.s25054] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 02/05/2023]
Abstract
Ginkgo biloba extract is an alternative medicine available as a standardized formulation, EGb 761®, which consists of ginkgolides, bilobalide, and flavonoids. The individual constituents have varying therapeutic mechanisms that contribute to the pharmacological activity of the extract as a whole. Recent studies show anxiolytic properties of ginkgolide A, migraine with aura treatment by ginkgolide B, a reduction in ischemia-induced glutamate excitotoxicity by bilobalide, and an alternative antihypertensive property of quercetin, among others. These findings have been observed in EGb 761 as well and have led to clinical investigation into its use as a therapeutic for conditions such as cognition, dementia, cardiovascular, and cerebrovascular diseases. This review explores the therapeutic mechanisms of the individual EGb 761 constituents to explain the pharmacology as a whole and its clinical application to cardiovascular and neurological disorders, in particular ischemic stroke.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Zahoor A Shah
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA. ; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| |
Collapse
|
4
|
Wang WP, Liu N, Kang Q, Du PP, Lan Y, Zhao BC, Chen YY, Zhang Q, Li H, Zhang YW, Wu Q. Simultaneous determination by UPLC-MS/MS of seven bioactive compounds in rat plasma after oral administration of Ginkgo biloba tablets: application to a pharmacokinetic study. J Zhejiang Univ Sci B 2015; 15:929-39. [PMID: 25367786 DOI: 10.1631/jzus.b1400035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A rapid, reliable, and sensitive method was developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with an electrospray ionization (ESI) source for determination of seven bioactive compounds in rat plasma after oral administration of Ginkgo biloba tablets (GBTs). The method simultaneously detects bilobalide (BB), ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC), quercetin (QCT), kaempferol (KMF), and isorhamnetin (ISR) for pharmacokinetic study. The analytes and internal standard (IS) were extracted from rat plasma by acetidin. An MS/MS detection was conducted using multiple reaction monitoring (MRM) and operating in the negative ionization mode. The calibration curve ranges were 5-500, 5-500, 2.5-250, 1-100, 1-100, 1-100, and 1-100 ng/ml for BB, GA, GB, GC, QCT, KMF, and ISR, respectively. The mean recovery of the analytes ranged from 68.11% to 84.42%. The intra- and inter-day precisions were in the range of 2.33%-9.86% and the accuracies were between 87.67% and 108.37%. The method was used successfully in a pharmacokinetic study of GBTs. The pharmacokinetic parameters of seven compounds were analyzed using a non-compartment model. Plasma concentrations of the seven compounds were determined up to 48 h after administration, and their pharmacokinetic parameters were in agreement with previous studies.
Collapse
Affiliation(s)
- Wen-ping Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China; Beijing Handian Pharmaceutical Co., Ltd., Beijing 100004, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis. PLoS One 2015; 10:e0140055. [PMID: 26465611 PMCID: PMC4605641 DOI: 10.1371/journal.pone.0140055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/21/2015] [Indexed: 01/25/2023] Open
Abstract
Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.
Collapse
|
6
|
Mahran YF, El-Demerdash E, Nada AS, Ali AA, Abdel-Naim AB. Insights into the protective mechanisms of tamoxifen in radiotherapy-induced ovarian follicular loss: impact on insulin-like growth factor 1. Endocrinology 2013; 154:3888-99. [PMID: 23798597 DOI: 10.1210/en.2013-1214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radiotherapy is one of the most common and effective cancer treatments. However, it has a profound impact on ovarian function, leading to premature ovarian failure. With the hope of preserving fertility in cancer survivors, the need for an effective radioprotective therapy is evident. The present study investigated the mechanism of the potential radioprotective effect of tamoxifen (TAM) on γ-irradiation-induced ovarian failure on experimental rats and the impact of the IGF-1 in the underlying protective mechanisms. Female Sprague Dawley rats were either exposed to single whole-body irradiation (3.2 Gy; lethal dose [LD₂₀]) and/or treated with TAM (1 mg/kg). γ-Irradiation caused an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (proliferating cell nuclear antigen), and oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1 receptor axis expression was assessed using real-time RT-PCR and immunolocalization techniques. Furthermore, fertility assessment was performed. TAM significantly enhanced follicular development and restored the anti-Mullerian hormone level. Moreover, it ameliorated the deleterious effects of irradiation on oxidative stress, proliferating cell nuclear antigen expression, and apoptosis. Interestingly, TAM was shown to enhance the ovarian IGF-1 but not IGF-1 receptor, a property that contributed significantly to its radioprotective mechanisms. Finally, TAM regained the fertility that was lost after irradiation. In conclusion, TAM showed a radioprotective effect and saved the ovarian reserve and fertility through increasing anti-Mullerian hormone and the local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.
Collapse
Affiliation(s)
- Yasmen F Mahran
- Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt. or
| | | | | | | | | |
Collapse
|
7
|
Li H, Yoo KY, Lee CH, Choi JH, Hwang IK, Kim JD, Kim YM, Kang IJ, Won MH. Neuroprotective effects of Alpinia katsumadai against neuronal damage in the gerbil hippocampus induced by transient cerebral ischemia. Int J Neurosci 2011; 121:490-6. [PMID: 21819294 DOI: 10.3109/00207454.2011.573111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alpinia katsumadai, one of the family Zingiberaceae, contains chalcone, flavonoids, diarylheptanoids, monoterpenes, sesquiterpenoids, stilbenes, and labdanes. It has been reported that the extract of Alpinia katsumadai seed (EAKS) has antiinflammatory effects, and enhances antioxidant activities. We observed the neuroprotective effects of EAKS against ischemic damage in gerbils received oral administrations of EAKS (50 mg/kg) once a day for 7 days before transient cerebral ischemia. In the EAKS-treated ischemia group, neuronal nuclei (NeuN, a marker for neurons)-immunoreactive pyramidal neurons were abundant (68.3% of the sham group) in the hippocampal CA1 region (CA1) 4 days after ischemia/reperfusion (I/R) compared to those in the vehicle-treated ischemia group (13.18%). We also observed that EAKS treatment significantly decreased the activation of astrocytes and microglia in the CA1 compared with the vehicle-treated ischemia group 4 days postischemia. In addition, protein levels of GFAP and Iba-1 in the EAKS-treated ischemia group were much lower than those in the vehicle-treated ischemia group 4 days after I/P. Our findings indicate that the repeated supplements of EAKS could protect neurons from an ischemic damage, showing that glial activation is markedly decreased in the ischemic area.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mahdy HM, Tadros MG, Mohamed MR, Karim AM, Khalifa AE. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 2011; 59:770-8. [DOI: 10.1016/j.neuint.2011.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/15/2011] [Accepted: 07/24/2011] [Indexed: 01/15/2023]
|
9
|
Loh KP, Huang SH, Tan BKH, Zhu YZ. Cerebral protection of purified Herba Leonuri extract on middle cerebral artery occluded rats. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:337-343. [PMID: 19497358 DOI: 10.1016/j.jep.2009.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 05/21/2009] [Accepted: 05/24/2009] [Indexed: 05/27/2023]
Abstract
AIM OF STUDY Oxidative stress is involved in stroke. In particular, Chinese Herbal Medicine with antioxidant properties is believed to have potential therapeutic effect. In this study, neuroprotective effects of purified Herba Leonuri (pHL) were evaluated in Wistar rats undergone middle cerebral artery occlusion (MCAO). MATERIALS AND METHODS The rats were treated with their respective treatments for 2 weeks prior to the MCAO, continually treated for another 7 days after MCAO. During the post-surgery treatment period, neurological deficit score was measured. At the end of treatment, animals were sacrificed and samples were collected for analysis of infarct volume, apoptosis and antioxidant analysis. RESULTS Under the treatment of pHL, the infarct volume was reduced significantly from 20.75+/-0.03% to 15.19+/-0.02% (p<0.05). The neurological impairment was alleviated to 1.82 as compared to vehicle (2.43). Plasma antioxidant concentration was increased from 0.31+/-0.03 mM to 0.42+/-0.05 mM (p<0.05). DNA oxidative damage was reduced to 1.19+/-0.03 in stroke pHL treated group (p<0.05 as compared to vehicle group, 1.78+/-0.03). pHL could reduce the level of apoptosis and also the pro-apoptotic proteins, but increase the level of anti-apoptotic proteins. CONCLUSION pHL is believed to have promising therapeutic effect for stroke treatment through antioxidant mechanisms.
Collapse
Affiliation(s)
- Kok Poh Loh
- Department of Pharmacology, Yong Loo Lin School of Medicine, Clinical Research Centre MD11, Singapore
| | | | | | | |
Collapse
|
10
|
Husna B, On T, Zhu YZ. Effects of Purified Salvia miltiorrhiza Extract on Cardiac Vascular Smooth Muscle Hypoxic Cells. J Pharmacol Sci 2007; 104:202-11. [PMID: 17652908 DOI: 10.1254/jphs.fp0061344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recently, we have reported that purified Salvia miltiorrhiza extract (PSME) could prevent myocardial infarction in vivo and myocardial ischemia/reperfusion injury in isolated rat hearts (ex vivo). The aim of this project is to determine whether PSME exerts any cardioprotective effects in vitro. The vascular smooth muscle cell line was used and the effects of the drugs were determined after inducing hypoxia. Gene expression levels of the pro-apoptotic genes Asp53, Bax, and Fas were significantly down-regulated by 0.78-, 0.82-, and 0.87-fold, respectively, and Bcl-2 was up-regulated by 0.82-fold in the PSME-treated groups as compared to the hypoxic group (P<0.05). Significant reduction in immunoreactivity of the protein products of these genes as well as least nuclear green fluorescence observed in TUNEL staining indicate the therapeutic potential of this drug. Furthermore, cardiac antioxidant enzymes assay confirmed this deduction as PSME had slight preserving effects on superoxide dismutase and catalase (0.25 +/- 0.01 vs 0.488 +/- 0.02 units/mg protein and 0.026 +/- 0.012 vs 0.076 +/- 0.01 mumol per min per mg protein, respectively; each P<0.05). No significant results were obtained with glutathione S-transferase and GSH peroxidase antioxidant tests. Our results demonstrated that PSME exerts antioxidant effects in vitro, indicating the therapeutic potential of this drug.
Collapse
Affiliation(s)
- Begum Husna
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, 119260, Singapore
| | | | | |
Collapse
|