1
|
Yoshimura K, Mengyan W, Kume S, Kurokawa T, Miyamoto S, Mizukami Y, Ono K. Detection and identification of factors in the atrium responsible for blood pressure regulation in patients with hypertension. Heart Vessels 2024; 39:464-474. [PMID: 38451262 PMCID: PMC11006736 DOI: 10.1007/s00380-024-02362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
Resection of the left atrial appendage reportedly improves blood pressure in patients with hypertension. This study aimed to validate the transcriptional profiles of atrial genes responsible for blood pressure regulation in patients with hypertension as well as to identify the molecular mechanisms in rat biological systems. RNA sequencing data of left atrial appendages from patients with (n = 6) and without (n = 6) hypertension were subjected to unsupervised principal component analysis (PCA). Reduction of blood pressure was reflected by third and ninth principal components PC3 and PC9, and that eighteen transcripts, including endothelin-1, were revealed by PCA-based pathway analysis. Resection of the left atrial appendage in hypertensive rats improved their blood pressure accompanied by a decrease in serum endothelin-1 concentration. Expression of the endothelin-1 gene in the atrium and atrial appendectomy could play roles in blood pressure regulation in humans and rats.
Collapse
Affiliation(s)
- Kenshi Yoshimura
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
- Department of Cardiovascular Surgery, Oita University School of Medicine, Oita University, Yufu, Oita, Japan
| | - Wei Mengyan
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Oita University School of Medicine, Oita University, Yufu, Oita, Japan
| | - Yoichi Mizukami
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube, Yamaguchi, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
2
|
Li Q, Feng P, Lin S, Xu Z, Zhao J, Chen Z, Luo Z, Tao Y, Chen S, Wang P. Crocetin confers neuroprotection and is anti-inflammatory in rats with induced glaucoma. Mol Biol Rep 2023; 50:1321-1331. [PMID: 36456771 DOI: 10.1007/s11033-022-08102-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber. METHODS AND RESULTS The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1β, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1β, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB. CONCLUSION The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.
Collapse
Affiliation(s)
- Qiaoqiao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, 334000, Shangrao, Jiangxi, People's Republic of China
| | - Jiajing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Zirui Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, Zhejiang, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18, Chaowang Road, 310014, Hangzhou, People's Republic of China.
| |
Collapse
|
3
|
Sakowicz A. The Targeting of Nuclear Factor Kappa B by Drugs Adopted for the Prevention and Treatment of Preeclampsia. Int J Mol Sci 2022; 23:2881. [PMID: 35270023 PMCID: PMC8911173 DOI: 10.3390/ijms23052881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) is characterised by high levels and activity of the transcription factor Nuclear Factor kappa B (NFĸB) in the maternal blood and placental cells. This factor is responsible for the regulation of over 400 genes known to influence processes related to inflammation, apoptosis and angiogenesis, and cellular responses to oxidative stress and hypoxia. Although high NFĸB activity induces hypoxia and inflammation, which are beneficial for the process of implantation, NFĸB level should be reduced in the later stages of physiological pregnancy to favour maternal immunosuppression and maintain gestation. It is believed that the downregulation of NFĸB activity by pharmacotherapy might be a promising way to treat preeclampsia. Interestingly, many of the drugs adopted for the prevention and treatment of preeclampsia have been found to regulate NFĸB activity. Despite this, further innovation is urgently needed to ensure treatment safety and efficacy. The present article summarizes the current state of knowledge about the drugs recommended by cardiology, obstetrics, and gynaecology societies for the prevention and treatment of preeclampsia with regard to their impact on the cellular regulation of NFĸB pathways.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
4
|
Borges JI, Carbone AM, Cora N, Sizova A, Lymperopoulos A. GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha 2B-Adrenoceptor Variants. Methods Mol Biol 2022; 2547:267-273. [PMID: 36068469 DOI: 10.1007/978-1-0716-2573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
5
|
Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia-Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling. J Immunol Res 2020; 2020:3230490. [PMID: 32377532 PMCID: PMC7183529 DOI: 10.1155/2020/3230490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 h after reperfusion, the IRI-induced damage and the renoprotection of DEX preconditioning were confirmed both biochemically and histologically. Changes in nuclear factor-kappa B (NF-κB), as well as its downstream anti-inflammatory factor A20 and proinflammatory factor tumor necrosis factor-α (TNF-α), were detected. Atipamezole, a nonselective antagonist, was then added 5 min before the administration of DEX to further analyze DEX's effects on NF-κB, and another anti-inflammatory medicine, methylprednisolone, was used in comparison with DEX, to further analyze DEX's effects on NF-κB. Different concentrations of DEX (0 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM) were applied to preincubated human renal tubular epithelial cell line (HK-2) cells in vitro. After anoxia and reoxygenation, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the levels of NF-κB downstream anti-inflammatory cytokines. The results showed that, unlike methylprednisolone, DEX preconditioning led to a time-dependent biphasic change (first activation then inhibition) of NF-κB in the rat renal IRI models that were given 25 μg/kg i.p. It was accompanied by a similarly biphasic change of TNF-α and an early and persistent upregulation of A20. In vitro, DEX's cellular protection showed a concentration-dependent biphasic change which was protective within the range of 0 to 100 nM but became opposite when concentrations are greater than 1 μM. The changes in the A20 and NF-κB messenger RNA (mRNA) levels were consistent with the renoprotective ability of DEX. In other words, DEX preconditioning protected the rats from renal IRI via regulation biphasic change of NF-κB signaling.
Collapse
|
6
|
Karkoulias G, McCrink KA, Maning J, Pollard CM, Desimine VL, Patsouras N, Psallidopoulos M, Taraviras S, Lymperopoulos A, Flordellis C. Sustained GRK2-dependent CREB activation is essential for α 2-adrenergic receptor-induced PC12 neuronal differentiation. Cell Signal 2020; 66:109446. [PMID: 31678682 DOI: 10.1016/j.cellsig.2019.109446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Many aspects of neuronal development, such as neuronal survival and differentiation, are regulated by the transcription factor cAMP-response element-binding protein (CREB). We have previously reported that α2-adrenergic receptors (ARs), members of the G protein-coupled receptor (GPCR) superfamily, induce neuronal differentiation of rat pheochromocytoma (PC)-12 cells in a subtype-specific manner, i.e. α2A<α2B<α2C. Herein, we sought to investigate CREB`s involvement in this α2AR-dependent neurogenic process. We used a combination of gene reporter assays and immunoblotting analysis, coupled with co-immunoprecipitation and morphological analysis, in transfected PC12 cell lines. Chronic α2B- or α2C-AR activation results in sustained CREB activation, which is both necessary and sufficient for neuronal differentiation of PC12 cells expressing these two α2ARs. In contrast, chronic α2A activation only leads to transient CREB activation, insufficient for PC12 neuronal differentiation. However, upon CREB overexpression, α2A-AR triggers neuronal differentiation similarly to α2B- or α2C-ARs. Importantly, NGF (Nerve Growth Factor)`s TrkA receptor transactivation is essential for the sustained activation of CREB by all three α2 subtypes in PC12 cells, whereas protein kinase A (PKA), the prototypic kinase that phosphorylates CREB, is not. Instead, TrkA-activated GPCR-kinase (GRK)-2 mediates the sustained CREB activation during α2AR-induced neuronal differentiation of PC12 cells. In conclusion, catecholaminergic-induced neuronal differentiation of PC12 cells through α2ARs uses a non-canonical pathway involving TrkA transactivation and subsequent GRK2-dependent, sustained phosphorylation/activation of CREB. These findings provide novel insights into catecholaminergic neurogenesis and suggest that α2AR agonists, combined with NGF analogs or GRK2 stimulators, may exert neurogenic/neuroprotective effects.
Collapse
Affiliation(s)
- George Karkoulias
- Department of Pharmacology School of Medicine, University of Patras, Patras, Greece
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Nicholas Patsouras
- Department of Pharmacology School of Medicine, University of Patras, Patras, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| | | |
Collapse
|
7
|
Mastrogianni O, Crassous PA, Karkoulias G, Lykouras D, Schaak S, Patsouras N, Panayiotakopoulos G, Sivolapenko G, Paris H, Manolis AS, Flordellis C. The polymorphic deleted-form of the human α 2B-adrenergic receptor and its wild-type counterpart display post-receptor signaling pathway differences in LLC-PK1 cells. Hellenic J Cardiol 2016; 57:S1109-9666(16)30156-7. [PMID: 27729182 DOI: 10.1016/j.hjc.2016.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Affiliation(s)
- Orthodoxia Mastrogianni
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | | | - Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | - Dimosthenis Lykouras
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | - Stéphane Schaak
- INSERM Unit 388, Institut Louis Bugnard, IFR31, CHU Rangueil, 31400 Toulouse, France
| | - Nicholas Patsouras
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | | | - Gregory Sivolapenko
- Laboratory of Pharmacokinetics, Department of Pharmacy, University of Patras, Patras, Greece
| | - Hervé Paris
- INSERM Unit 388, Institut Louis Bugnard, IFR31, CHU Rangueil, 31400 Toulouse, France
| | - Antonis S Manolis
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece.
| | | |
Collapse
|
8
|
Lymperopoulos A, Brill A, McCrink KA. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. Int J Biochem Cell Biol 2016; 77:213-219. [PMID: 26851510 DOI: 10.1016/j.biocel.2016.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as "presynaptic autoreceptors" in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and β-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and β-arrestins in these processes and particular points of focus for future research will be highlighted, as well.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA.
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
9
|
Jafferjee M, Reyes Valero T, Marrero C, McCrink KA, Brill A, Lymperopoulos A. GRK2 Up-Regulation Creates a Positive Feedback Loop for Catecholamine Production in Chromaffin Cells. Mol Endocrinol 2016; 30:372-381. [PMID: 26849467 PMCID: PMC5414648 DOI: 10.1210/me.2015-1305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/03/2016] [Indexed: 12/15/2022] Open
Abstract
Elevated sympathetic nervous system (SNS) activity aggravates several diseases, including heart failure. The molecular cause(s) underlying this SNS hyperactivity are not known. We have previously uncovered a neurohormonal mechanism, operating in adrenomedullary chromaffin cells, by which circulating catecholamine (CA) levels increase in heart failure: severe dysfunction of the adrenal α2-adrenergic receptors (ARs) due to the up-regulation of G protein-coupled receptor-kinase (GRK)-2, the kinase that desensitizes them. Herein we looked at the potential signaling mechanisms that bring about this GRK2 elevation in chromaffin cells. We found that chronic CA treatment of either PC12 or rat primary chromaffin cells can in itself result in GRK2 transcriptional up-regulation through α2ARs-Gi/o proteins-Src-ERK1/2. The resultant GRK2 increase severely enhances the α2AR desensitization/down-regulation elevating not only CA release but also CA biosynthesis, as evidenced by tyrosine hydroxylase up-regulation. Finally, GRK2 knockdown leads to enhanced apoptosis of PC12 cells, indicating an essential role for GRK2 in chromaffin cell homeostasis/survival. In conclusion, chromaffin cell GRK2 mediates a positive feedback loop that feeds into CA secretion, thereby enabling the adrenomedullary component of the SNS to turn itself on.
Collapse
Affiliation(s)
- Malika Jafferjee
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328-2018
| | - Thairy Reyes Valero
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328-2018
| | - Christine Marrero
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328-2018
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328-2018
| | - Ava Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328-2018
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft Lauderdale, Florida 33328-2018
| |
Collapse
|
10
|
Radojević K, Rakin A, Pilipović I, Kosec D, Djikić J, Bufan B, Vujnović I, Leposavić G. Effects of catecholamines on thymocyte apoptosis and proliferation depend on thymocyte microenvironment. J Neuroimmunol 2014; 272:16-28. [PMID: 24837703 DOI: 10.1016/j.jneuroim.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
The present study, through quantification of tyrosine hydroxylase (TH) expression and catecholamine (CA) content in the presence and in the absence of α-methyl-p-tyrosine (AMPT), a TH inhibitor, in adult thymic organ (ATOC) and thymocyte culture, demonstrated that thymic cells produce CAs. In addition, in ATOC an increase in β2-adrenoceptor (AR) mRNA expression and β2-AR thymocyte surface density was registered. Furthermore, AMPT (10(-4)M), as propranolol (10(-4)M), augmented thymocyte apoptosis and diminished thymocyte proliferation in ATOC. Propranolol exerted these effects acting on CD3(high) thymocytes. However, in thymocyte cultures, propranolol (10(-6)M) acting on the same thymocyte subset exerted the opposing effect on thymocyte apoptosis and ConA-stimulated proliferation. This suggested that, depending on thymocyte microenvironment, differential effects can be induced through the same type of AR. Additionally, arterenol (10(-8) to 10(-6)M), similar to propranolol, diminished apoptosis, but increased ConA-stimulated thymocyte proliferation in thymocyte culture. However, differently from propranolol, arterenol affected manly CD3- thymocyte subset, which harbors majority of α1-AR+thymocytes. Additionally, arterenol showed a dose-dependent decrease in efficiency of thymocyte apoptosis and proliferation modulation with the rise in its concentration. Considering greater affinity of arterenol for α1-ARs than for β2-ARs, the previous findings could be attributable to increased engagement of β2-ARs with the rise of arterenol concentration. Consistently, in the presence of propranolol (10(-6)M), a β-AR blocker, the arterenol (10(-8)M) effects on thymocytes were augmented. In conclusion, thymic endogenous CAs, acting through distinct AR types and, possible, the same AR type (but in different cell microenvironment) may exert the opposing effects on thymocyte apoptosis/proliferation.
Collapse
Affiliation(s)
- Katarina Radojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ana Rakin
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
11
|
Wu X, Song X, Li N, Zhan L, Meng Q, Xia Z. Protective effects of dexmedetomidine on blunt chest trauma–induced pulmonary contusion in rats. J Trauma Acute Care Surg 2013; 74:524-30. [DOI: 10.1097/ta.0b013e31827d5de3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Nguyen K, Kassimatis T, Lymperopoulos A. Impaired desensitization of a human polymorphic α2B-adrenergic receptor variant enhances its sympatho-inhibitory activity in chromaffin cells. Cell Commun Signal 2011; 9:5. [PMID: 21299895 PMCID: PMC3041786 DOI: 10.1186/1478-811x-9-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/07/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND α2-adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine and inhibit their secretion from adrenal chromaffin cells. Like many other G-protein coupled receptors (GPCRs), they undergo agonist-dependent phopshorylation and desensitization by GPCR Kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A deletion polymorphism in the human α2B-AR gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization in heterologous cell lines. Given the importance of α2-ARs in regulation of catecholamine secretion from chromaffin cells, we sought to investigate, in the present study, the desensitization properties and the sympatho-inhibitory activity of this variant in a chromaffin cell line. For this purpose, we expressed this variant and its wild type counterpart in the well-established chromaffin cell line PC12, and performed receptor phosphorylation and desensitization studies, as well as in vitro catecholamine secretion assays. RESULTS Both the agonist-induced phosphorylation and agonist-dependent desensitization of the human Glu301-303 deletion polymorphic α2B-AR are significantly impaired in PC12 cells, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in vitro. CONCLUSION This α2B-AR gene polymorphism (Glu301-303 deletion) might confer better protection against conditions characterized and aggravated by sympathetic/catecholaminergic overstimulation in vivo.
Collapse
Affiliation(s)
- Kristy Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | | | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
13
|
Effects of Dexmedetomidine on Regulating Endotoxin-Induced Up-Regulation of Inflammatory Molecules in Murine Macrophages. J Surg Res 2009; 154:212-9. [DOI: 10.1016/j.jss.2008.07.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 07/06/2008] [Accepted: 07/13/2008] [Indexed: 11/18/2022]
|
14
|
Luna MSA, Hortencio TMA, Ferreira ZS, Yamanouye N. Sympathetic outflow activates the venom gland of the snakeBothrops jararacaby regulating the activation of transcription factors and the synthesis of venom gland proteins. J Exp Biol 2009; 212:1535-43. [DOI: 10.1242/jeb.030197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland,the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on bothα 1- and β-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NFκB and AP-1 in the venom gland. In dispersed secretory cells,noradrenaline activated both NFκB and AP-1. Activation of NFκB and AP-1 depended on phospholipase C and protein kinase A. Activation of NFκB also depended on protein kinase C. Isoprenaline activated both NFκB and AP-1, and phenylephrine activated NFκB and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change,and the administration of α1- and β-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with α1- or β-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.
Collapse
Affiliation(s)
- Milene S. A. Luna
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil 1500,05503-900, São Paulo, Brazil
| | - Thiago M. A. Hortencio
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil 1500,05503-900, São Paulo, Brazil
| | - Zulma S. Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 05508-900, São Paulo, Brazil
| | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil 1500,05503-900, São Paulo, Brazil
| |
Collapse
|
15
|
Su NY, Tsai PS, Huang CJ. Clonidine-Induced Enhancement of iNOS Expression Involves NF-κB. J Surg Res 2008; 149:131-7. [DOI: 10.1016/j.jss.2007.11.725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/15/2007] [Accepted: 11/12/2007] [Indexed: 11/25/2022]
|
16
|
Han S, Ritzenthaler JD, Zheng Y, Roman J. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1238-49. [PMID: 18390835 DOI: 10.1152/ajplung.00017.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- ShouWei Han
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Whitehead Bioresearch Bldg., 615 Michael St., Suite 205-M, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
17
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 2007; 13:503-511. [PMID: 17981507 DOI: 10.1016/j.molmed.2007.10.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 12/20/2022]
Abstract
Chronic heart failure (HF) is characterized by sympathetic hyperactivity reflected by increased circulating catecholamines (CAs), which contributes significantly to its morbidity and mortality. Therefore, sympatholytic treatments, that is, treatments that reduce sympathetic hyperactivity, are being pursued currently for the treatment of HF. Secretion of CAs from the adrenal gland, which is a major source of CAs, is regulated by alpha(2)-adrenoceptors (alpha(2)ARs), which inhibit, and by beta-adrenoceptors (betaARs), which enhance CA secretion. All ARs are G-protein-coupled receptors (GPCRs), whose signaling and function are regulated tightly by the family of GPCR kinases (GRKs). Despite the enormous potential of adrenal ARs for the regulation of sympathetic outflow, elucidation of their properties has only begun recently. Here, recent advances regarding the roles of adrenal ARs in the regulation of sympathetic outflow in HF and the regulatory properties of ARs are discussed, along with the potential benefits and challenges of harnessing their function for HF therapy.
Collapse
|
18
|
Alonso E, Garrido E, Díez-Fernández C, Pérez-García C, Herradón G, Ezquerra L, Deuel TF, Alguacil LF. Yohimbine prevents morphine-induced changes of glial fibrillary acidic protein in brainstem and α2-adrenoceptor gene expression in hippocampus. Neurosci Lett 2007; 412:163-7. [PMID: 17123717 DOI: 10.1016/j.neulet.2006.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/01/2006] [Accepted: 11/01/2006] [Indexed: 11/20/2022]
Abstract
The alpha(2)-adrenoceptor antagonist yohimbine is known to oppose to several pharmacological effects of opioid drugs, but the consequences and the mechanisms involved remain to be clearly established. In the present study we have checked the effects of yohimbine on morphine-induced alterations of the expression of key proteins (glial fibrillary acidic protein, GFAP) and genes (alpha(2)-adrenoceptors) in rat brain areas known to be relevant in opioid dependence, addiction and individual vulnerability to drug abuse. Rats were treated with morphine in the presence or absence of yohimbine. The effects of the treatments on GFAP expression were studied by immunohistochemical staining in Locus Coeruleus (LC) and Nucleus of the Solitary Tract (NST), two important noradrenergic nuclei. In addition, drug effects on alpha(2)-adrenoceptor gene expression were determined by real time RT-PCR in the hippocampus, a brain area that receives noradrenergic input from the brainstem. Morphine administration increased GFAP expression both in LC and NST as it was previously reported in other brain areas. Yohimbine was found to efficiently prevent morphine-induced GFAP upregulation. Chronic (but not acute) morphine downregulated mRNA levels of alpha(2A)- and alpha(2C)-adrenoceptors in the hippocampus, while simultaneously increased the expression of the alpha(2B)-adrenoceptor gene. Again, yohimbine was able to prevent morphine-induced changes in the levels of expression of the three alpha(2)-adrenoceptor genes. These results correlate the well-established reduction of opioid dependence and addiction by yohimbine and suggest that this drug could interfere with the neural plasticity induced by chronic morphine in central noradrenergic pathways.
Collapse
Affiliation(s)
- Elba Alonso
- Lab. Pharmacology and Toxicology, Universidad San Pablo CEU, 28668 Boadilla del Monte, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|