1
|
Urbina SL, Roberts MD, Kephart WC, Villa KB, Santos EN, Olivencia AM, Bennett HM, Lara MD, Foster CA, Purpura M, Jäger R, Taylor LW, Wilborn CD. Effects of twelve weeks of capsaicinoid supplementation on body composition, appetite and self-reported caloric intake in overweight individuals. Appetite 2017; 113:264-273. [DOI: 10.1016/j.appet.2017.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/17/2017] [Accepted: 02/18/2017] [Indexed: 12/01/2022]
|
2
|
Oh J, Wall EH, Bravo DM, Hristov AN. Host-mediated effects of phytonutrients in ruminants: A review. J Dairy Sci 2017; 100:5974-5983. [PMID: 28390713 DOI: 10.3168/jds.2016-12341] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/21/2017] [Indexed: 12/28/2022]
Abstract
Plants produce an extensive array of organic compounds derived from secondary metabolism that may be useful in animal nutrition because of their chemical makeup. These plant-derived bioactive compounds, also referred to as phytonutrients (PN) or phytobiotics, have been shown to express antimicrobial activities against a wide range of bacteria, yeast, and fungi and have been investigated as rumen modifiers in ruminant nutrition. Studies have reported that PN may inhibit deamination of AA and methanogenesis in the rumen and shift fermentation toward propionate and butyrate. Most of the experiments, however, have been conducted in vitro, and responses have been highly variable and inconsistent in animal experiments. In addition, some studies have reported that PN had positive effects on productivity, although rumen fermentation was not affected. Other than antimicrobial effects in the gut, PN are known to bind specific receptors expressed in neurons, intestines, and other cells and exhibit related physiological effects in nonruminants. The receptor-mediated effects include immune responses, oxidative stress, and insulin secretion and activity. Some PN, due to their phenolic nature, are likely less susceptible to microbial degradation in the rumen and may exhibit activities postruminally, similar to their mode of action in nonruminant species. This opens a new area of research in ruminants, including effects of PN on the animal's immune system, postruminal nutrient use, and animal physiology. Although limited, studies with ruminants provide first evidence of PN's regulatory effects on the host responses. For example, PN were reported to regulate immune cells related to adaptive and innate immunity in challenged or nonchallenged dairy cows. Supplementation of PN reduced oxidative stress by decreasing lipid peroxidation and increasing endogenous antioxidants in ruminants. Additionally, insulin secretion and sensitivity were reportedly regulated by PN in dairy cows. The regulatory effects of PN on immunity may be beneficial for immune suppression and inflammation in dairy cows. In addition, PN could positively affect energy partitioning for milk production through their effects on insulin secretion and sensitivity. Further research is needed to elucidate the effect and mode of action of PN on immune function and animal energetics.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - D M Bravo
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
3
|
Oh J, Harper M, Giallongo F, Bravo DM, Wall EH, Hristov AN. Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide. J Dairy Sci 2017; 100:1902-1913. [PMID: 28109601 DOI: 10.3168/jds.2016-11666] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/18/2016] [Indexed: 01/19/2023]
Abstract
The objective of this experiment was to investigate the effects of rumen-protected Capsicum oleoresin (RPC) on productivity and immune responses including feed intake, milk yield and composition, white and red blood cells, lipid peroxidation, and blood concentration of cortisol, haptoglobin, glucose, and insulin in lactating dairy cows experimentally challenged with lipopolysaccharide (LPS). The experiment was a replicated 3 × 3 Latin square design with 9 multiparous Holstein cows in three 28-d periods. Treatments were 0 (control), 100, and 200 mg of RPC/cow per day, mixed with small portions of the total mixed ration and top-dressed. Bacterial LPS was intravenously administered at 1.0 μg/kg of body weight in the last week of each experimental period, and blood samples were collected at 0, 2, 4, 8, and 24 h after administration. Dry matter intake, milk yield, and white blood cells including neutrophils, lymphocytes, monocytes, and eosinophils were decreased, and rectal temperature, hemoglobin, and serum concentrations of cortisol and haptoglobin were increased by LPS. Red blood cells, platelets, and plasma concentration of thiobarbituric acid reactive substances were not affected by LPS. Dry matter intake, milk yield, and milk composition in the 5 d post-LPS challenge were not affected by RPC. Rectal temperature, white blood cells, red blood cells, hemoglobin, and platelets were also not affected by RPC. Compared with the control, RPC tended to decrease cortisol at 2 h following LPS challenge and decreased haptoglobin concentration in serum across sampling points. Concentration of thiobarbituric acid reactive substances in plasma was decreased by RPC at 24 h post-LPS challenge. Glucose and insulin were not affected by RPC, but serum insulin concentration at 8 h was lowered by RPC compared to the control. Collectively, RPC had no or subtle effects on feed intake, milk yield and composition, rectal temperature, white and red blood cells, and serum glucose and insulin concentration in dairy cows challenged by LPS. However, RPC tended to decrease cortisol and decreased concentrations of haptoglobin and thiobarbituric acid reactive substances in blood following LPS challenge. Data suggest that dietary supplementation of RPC may modulate acute phase responses induced by bacterial infection in lactating dairy cows.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D M Bravo
- Pancosma S.A., CH-1218, Geneva, Switzerland
| | - E H Wall
- Pancosma S.A., CH-1218, Geneva, Switzerland
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
4
|
Oh J, Giallongo F, Frederick T, Pate J, Walusimbi S, Elias RJ, Wall EH, Bravo D, Hristov AN. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J Dairy Sci 2015; 98:6327-39. [PMID: 26188565 DOI: 10.3168/jds.2014-9294] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/05/2015] [Indexed: 01/21/2023]
Abstract
This study investigated the effect of Capsicum oleoresin in granular form (CAP) on nutrient digestibility, immune responses, oxidative stress markers, blood chemistry, rumen fermentation, rumen bacterial populations, and productivity of lactating dairy cows. Eight multiparous Holstein cows, including 3 ruminally cannulated, were used in a replicated 4×4 Latin square design experiment. Experimental periods were 25 d in duration, including a 14-d adaptation and an 11-d data collection and sampling period. Treatments included control (no CAP) and daily supplementation of 250, 500, or 1,000 mg of CAP/cow. Dry matter intake was not affected by CAP (average 27.0±0.64 kg/d), but milk yield tended to quadratically increase with CAP supplementation (50.3 to 51.9±0.86 kg/d). Capsicum oleoresin quadratically increased energy-corrected milk yield, but had no effect on milk fat concentration. Rumen fermentation variables, apparent total-tract digestibility of nutrients, and N excretion in feces and urine were not affected by CAP. Blood serum β-hydroxybutyrate was quadratically increased by CAP, whereas the concentration of nonesterified fatty acids was similar among treatments. Rumen populations of Bacteroidales, Prevotella, and Roseburia decreased and Butyrivibrio increased quadratically with CAP supplementation. T cell phenotypes were not affected by treatment. Mean fluorescence intensity for phagocytic activity of neutrophils tended to be quadratically increased by CAP. Numbers of neutrophils and eosinophils and the ratio of neutrophils to lymphocytes in peripheral blood linearly increased with increasing CAP. Oxidative stress markers were not affected by CAP. Overall, in the conditions of this experiment, CAP did not affect feed intake, rumen fermentation, nutrient digestibility, T cell phenotypes, and oxidative stress markers. However, energy-corrected milk yield was quadratically increased by CAP, possibly as a result of enhanced mobilization of body fat reserves. In addition, CAP increased neutrophil activity and immune cells related to acute phase immune response.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - F Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - T Frederick
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Pate
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S Walusimbi
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - R J Elias
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - E H Wall
- Pancosma S.A., CH-1218 Geneva, Switzerland
| | - D Bravo
- InVivo Animal Nutrition & Health, Talhouët, 56250 Saint-Nolff, France
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
5
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
6
|
Denadai-Souza A, Camargo LDL, Ribela MT, Keeble JE, Costa SK, Muscará MN. Participation of peripheral tachykinin NK1
receptors in the carrageenan-induced inflammation of the rat temporomandibular joint. Eur J Pain 2012; 13:812-9. [DOI: 10.1016/j.ejpain.2008.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/19/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
|
7
|
Lee J, Yamamoto T, Kuramoto H, Kadowaki M. TRPV1 expressing extrinsic primary sensory neurons play a protective role in mouse oxazolone-induced colitis. Auton Neurosci 2011; 166:72-6. [PMID: 21855422 DOI: 10.1016/j.autneu.2011.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 02/06/2023]
Abstract
TRPV1 expressing sensory neurons which have been considered to be largely associated with neurogenic inflammation were chemically denervated by capsaicin treatment in neonatal mice. However, neonatal capsaicin treatment aggravated mouse oxazolone-induced colitis, and did not affect the expression of calcitonin gene-related peptide (CGRP)- or substance P-immunoreactive nerve fibers in the colon. Meanwhile, the capsaicin-induced contraction was absent in the colon of neonatal capsaicin treatment mouse. These results suggest a protective role of TRPV1 expressing extrinsic sensory neurons in oxazolone-induced colitis and the involvement of some neurotransmitter other than CGRP and substance P in the pathogenesis of the colitis.
Collapse
Affiliation(s)
- Jaemin Lee
- Division of Gastroinstestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| | | | | | | |
Collapse
|
8
|
Involvement of sensory nerves and TRPV1 receptors in the rat airway inflammatory response to two environment pollutants: diesel exhaust particles (DEP) and 1,2-naphthoquinone (1,2-NQ). Arch Toxicol 2009; 84:109-17. [PMID: 19399481 DOI: 10.1007/s00204-009-0427-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/07/2009] [Indexed: 01/12/2023]
Abstract
The environmental chemical 1,2-naphthoquinone (1,2-NQ) is implicated in the exacerbation of airways diseases induced by exposure to diesel exhaust particles (DEP), which involves a neurogenic-mediated mechanism. Plasma extravasation in trachea, main bronchus and lung was measured as the local (125)I-bovine albumin accumulation. RT-PCR quantification of TRPV1 and tachykinin (NK(1) and NK(2)) receptor gene expression were investigated in main bronchus. Intratracheal injection of DEP (1 and 5 mg/kg) or 1,2-NQ (35 and 100 nmol/kg) caused oedema in trachea and bronchus. 1,2-NQ markedly increased the DEP-induced responses in the rat airways in an additive rather than synergistic manner. This effect that was significantly reduced by L-732,138, an NK(1) receptor antagonist, and in a lesser extent by SR48968, an NK(2) antagonist. Neonatal capsaicin treatment also markedly reduced DEP and 1,2-NQ-induced oedema. Exposure to pollutants increased the TRPV1, NK(1) and NK(2) receptors gene expression in bronchus, an effect was partially suppressed by capsaicin treatment. In conclusion, our results are consistent with the hypothesis that DEP-induced airways oedema is highly influenced by increased ambient levels of 1,2-NQ and takes place by neurogenic mechanisms involving up-regulation of TRPV1 and tachykinin receptors.
Collapse
|
9
|
Liu D, Jiang LS, Dai LY. Substance P and its receptors in bone metabolism. Neuropeptides 2007; 41:271-83. [PMID: 17655927 DOI: 10.1016/j.npep.2007.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Accumulating evidence on bone physiopathology has indicated that the skeleton contains numerous nerve fibers and its metabolism is regulated by the nervous system. Until now, more than 10 neuropeptides have been identified in bone. Substance P (SP) is a neuropeptide released from axons of sensory neurons, belongs to the tachykinin family and plays important roles in many physiological and pathological processes by acting as a neurotransmitter, neuromodulator, or trophic factor. It activates signal transduction cascades by acting on the neurokinin-1 receptor (NK(1)-R). Previous studies have confirmed that the SP-immunoreactive (IR) axons innervate bone and adjacent tissues, and that their density varies depending on the regions and physiological or pathological conditions. Over the past few decades, it has been found that SP takes part in the stimulation of bone resorption, and its receptors have been demonstrated to be located in osteoclasts. Notably, in studies of skeletal ontogeny, SP-IR axons have been shown to appear at an early stage, mostly coinciding with the sequence of long bone mineralization. These findings, together with data obtained from chemically or surgically targeted nerve deletions, strongly suggest that SP is a potent regulator of skeletal physiology. The specific distribution of SP-IR nerve fibers, the different amount of SP within regions, and the various levels of expression of NK(1)-R in targeted cells presumably related to and participate in bone metabolism. It can be predicted that the indirect roles of SP through other cytokines are as important as its direct roles in bone metabolism. This new regulating pathway of bone metabolism would have enormous implications in skeletal physiology and the relevant research might present curative potentials to a spectrum of bone diseases.
Collapse
Affiliation(s)
- Da Liu
- Shanghai Jiaotong University School of Medicine, Xinhua Hospital, Department of Orthopaedic Surgery, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | |
Collapse
|