1
|
Yang W, Xia Z, Zhu Y, Tang H, Xu H, Hu X, Lin C, Jiang T, He P, Shen J. Comprehensive Study of Untargeted Metabolomics and 16S rRNA Reveals the Mechanism of Fecal Microbiota Transplantation in Improving a Mouse Model of T2D. Diabetes Metab Syndr Obes 2023; 16:1367-1381. [PMID: 37197060 PMCID: PMC10184852 DOI: 10.2147/dmso.s404352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Background Fecal microbiota transplantation (FMT) has emerged as a new therapy targeting gastrointestinal microbiota for the treatment of a growing number of diseases in recent years. Previous studies have suggested that FMT may be a potential therapy for type 2 diabetes (T2D), but the underlying mechanism remains unclear. Therefore, in the present study, we aimed to investigate the role of FMT in T2D and its underlying mechanisms. Methods To induce T2D, mice were fed a high-fat diet and injected with low-dose streptozotocin (STZ) for four weeks. The mice were then randomly divided into four groups: control group (n = 7), T2D group (n = 7), metformin (MET)-treated group (n = 7), and FMT group (n = 7). The MET group was orally administered 0.2 g/kg MET, the FMT group was orally administered 0.3 mL of bacterial solution, and the other two groups were orally administered the same volume of saline for four weeks. Serum and fecal samples were collected for non-targeted metabolomics, biochemical indicators, and 16S rRNA sequencing, respectively. Results Our results demonstrated that FMT had a curative effect on T2D by ameliorating hyperlipidemia and hyperglycemia. Using 16S rRNA sequencing and serum untargeted metabolomic analysis, we found that FMT could restore the disorders of gastrointestinal microbiota in T2D mice. Moreover, corticosterone, progesterone, L-urobilin, and other molecules were identified as biomarkers after FMT treatment. Our bioinformatics analysis suggested that steroid hormone biosynthesis, arginine, proline metabolism, and unsaturated fatty acid biosynthesis could be potential regulatory mechanisms of FMT. Conclusion In summary, our study provides comprehensive evidence for the role of FMT in the treatment of T2D. FMT has the potential to become a promising strategy for the treatment of metabolic disorders, T2D, and diabetes-related complications.
Collapse
Affiliation(s)
- Wensu Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Zhaoxin Xia
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Yi Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Hao Tang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Huaming Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Xinyi Hu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Chunhui Lin
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Pei He
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 23001, People’s Republic of China
- Anhui Public Health Clinical Center Hefei, Anhui, 230012, People’s Republic of China
- Correspondence: Jilu Shen, Tel +86-15155152963, Email
| |
Collapse
|
2
|
Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat Commun 2020; 11:2014. [PMID: 32332733 PMCID: PMC7181611 DOI: 10.1038/s41467-020-15778-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate through astrocyte networks, creating a barrier for neuronal access to an astrocytic energy reservoir in the hippocampus and neocortex, compromising long-term potentiation. Impairing astrocytic delivery of energy substrates by reducing astrocyte gap junction coupling with dominant negative connexin 43 or by disrupting lactate efflux was sufficient to mimic the effects of stress on long-term potentiation. Furthermore, direct restoration of the astrocyte lactate supply alone rescued stress-impaired synaptic plasticity, which was blocked by inhibiting neural lactate uptake. This gating of synaptic plasticity in stress by astrocytic metabolic networks indicates a broader role of astrocyte bioenergetics in determining how experience-dependent information is controlled. Enduring changes in synaptic efficacy are highly sensitive to stress. Here, the authors show that astrocytic delivery of metabolites has an important role in the stress-mediated impairment of synaptic plasticity.
Collapse
|
3
|
Zhang H, Zheng H, Zhao G, Tang C, Lu S, Cheng B, Wu F, Wei J, Liang Y, Ruan J, Song H, Su Z. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. MOLECULAR BIOSYSTEMS 2016; 12:902-13. [PMID: 26775910 DOI: 10.1039/c5mb00642b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning 530021, China
| | - Gan Zhao
- Department of Pharmacy, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Fang Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Junxiang Ruan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
4
|
Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 2011; 6:e28427. [PMID: 22180782 PMCID: PMC3236748 DOI: 10.1371/journal.pone.0028427] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/08/2011] [Indexed: 01/06/2023] Open
Abstract
When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions.
Collapse
Affiliation(s)
- Lori A Newman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America.
| | | | | |
Collapse
|