1
|
Alkharobi H. Exploring Various Transfection Approaches and Their Applications in Studying the Regenerative Potential of Dental Pulp Stem Cells. Curr Issues Mol Biol 2023; 45:10026-10040. [PMID: 38132472 PMCID: PMC10742526 DOI: 10.3390/cimb45120626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Transfection is a contemporary approach for introducing foreign genetic material into target cells. The effective transport of genetic materials into cells is mostly influenced by (a) the characteristics of the genetic material (quantity and quality), (b) the transfection procedure (incubation time, ratio of the reagents to the introduced genetic material, and components of cell culture), and (c) targeted cells for transfection (cell origin and cell type). This review summarizes the findings of different studies focusing on various transfection approaches and their applications to explore the regenerative potential of dental pulp stem cells (DPSCs). Several databases, including Scopus, Google Scholar, and PubMed, were searched to obtain the literature for the current review. Different keywords were used as key terms in the search. Approximately 200 articles were retained after removing duplicates from different databases. Articles published in English that discussed different transfection approaches were included. Several sources were excluded because they did not meet the inclusion criteria. Approximately 70 relevant published sources were included in the final stage to achieve the study objectives. This review demonstrated that no single transfection system is applicable to all cases and the various cell types with no side effects. Further studies are needed to focus on optimizing process parameters, decreasing the toxicity and side effects of available transfection techniques, and increasing their efficiencies. Moreover, this review sheds light on the impact of using different valuable transfection approaches to investigate the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Hanaa Alkharobi
- Department of Oral Biology, College of Dentistry, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Kamel MS, Munds RA, Verma MS. The Quest for Immunity: Exploring Human Herpesviruses as Vaccine Vectors. Int J Mol Sci 2023; 24:16112. [PMID: 38003300 PMCID: PMC10671728 DOI: 10.3390/ijms242216112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Herpesviruses are large DNA viruses that have long been used as powerful gene therapy tools. In recent years, the ability of herpesviruses to stimulate both innate and adaptive immune responses has led to their transition to various applications as vaccine vectors. This vaccinology branch is growing at an unprecedented and accelerated rate. To date, human herpesvirus-based vectors have been used in vaccines to combat a variety of infectious agents, including the Ebola virus, foot and mouth disease virus, and human immunodeficiency viruses. Additionally, these vectors are being tested as potential vaccines for cancer-associated antigens. Thanks to advances in recombinant DNA technology, immunology, and genomics, numerous steps in vaccine development have been greatly improved. A better understanding of herpesvirus biology and the interactions between these viruses and the host cells will undoubtedly foster the use of herpesvirus-based vaccine vectors in clinical settings. To overcome the existing drawbacks of these vectors, ongoing research is needed to further advance our knowledge of herpesvirus biology and to develop safer and more effective vaccine vectors. Advanced molecular virology and cell biology techniques must be used to better understand the mechanisms by which herpesviruses manipulate host cells and how viral gene expression is regulated during infection. In this review, we cover the underlying molecular structure of herpesviruses and the strategies used to engineer their genomes to optimize capacity and efficacy as vaccine vectors. Also, we assess the available data on the successful application of herpesvirus-based vaccines for combating diseases such as viral infections and the potential drawbacks and alternative approaches to surmount them.
Collapse
Affiliation(s)
- Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Rachel A. Munds
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Liu F, Huang Y, Wang H. Rodent Models of Spinal Cord Injury: From Pathology to Application. Neurochem Res 2023; 48:340-361. [PMID: 36303082 DOI: 10.1007/s11064-022-03794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) often has devastating consequences for the patient's physical, mental and occupational health. At present, there is no effective treatment for SCI, and appropriate animal models are very important for studying the pathological manifestations, injury mechanisms, and corresponding treatment. However, the pathological changes in each injury model are different, which creates difficulties in selecting appropriate models for different research purposes. In this article, we analyze various SCI models and introduce their pathological features, including inflammation, glial scar formation, axon regeneration, ischemia-reperfusion injury, and oxidative stress, and evaluate the advantages and disadvantages of each model, which is convenient for selecting suitable models for different injury mechanisms to study therapeutic methods.
Collapse
Affiliation(s)
- Fuze Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China
| | - Hai Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, People's Republic of China.
| |
Collapse
|
4
|
Rasouli HR, Talebi S, Ahmadpour F. Evaluation of Associated Genes with Traumatic Pain: A Systematic Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:830-840. [PMID: 34872485 DOI: 10.2174/1871527320666211206121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES The knowledge about the molecular pathway of traumatic pain relief is less documented. This systematic review study aimed to identify the genes and molecular pathways associated with various traumatic pains. METHODS The online databases such as EMBASE, MEDLINE, PubMed, Cochrane Library, International Clinical Trials Registry Platform, Clinical Trials, Google Scholar, Wiley, ISI Web of Knowledge, and Scopus were searched. Two review authors searched and screened all records' titles and abstracts, and the third expert reviewer author resolved their disagreement. The study's design, various trauma injuries, types of genes, and molecular pathways were recorded. The genes and molecular pathways data were obtained via GeneCards®: The Human Gene Database (https://www.genecards.org). RESULTS Studies on a variety of trauma injuries regarding nerve and Spinal Cord Injuries (SCIs) (12 records), Hypertrophic scar with Severe Pain (one record), severe post-traumatic musculoskeletal pain (MSP) (one record), and orthopedic trauma (one record) were included. The main molecular pathways such as the immune system, apoptosis, and death receptor signaling, T-cell antigen receptor (TCR) signaling pathway, oxidative stress, interleukin(s) mediated signaling pathway, biological oxidations, metabolic pathways (especially amino acid metabolism and amino group), focal adhesion, the proliferation of vascular, epithelial, and connective tissue cells, angiogenesis and neural development were identified. CONCLUSION The immune system, apoptosis, and metabolic pathways are crucial for understanding the roles of genes in traumatic pain. It is recommended that these identified pathways and related genes be considered therapeutical targets for pain management in patients with trauma injuries. In addition, different forms of trauma injuries require different pathways and related genes to be considered.
Collapse
Affiliation(s)
- Hamid Reza Rasouli
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Talebi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fathollah Ahmadpour
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
MiR-30d Participates in Vincristine-Induced Neuropathic Pain by Down-Regulating GAD67. Neurochem Res 2021; 47:481-492. [PMID: 34623561 DOI: 10.1007/s11064-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Vincristine is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy(CIPN), which brings patients a great disease burden and associated economic pressure. The mechanism under CIPN remains mostly unknown. The previous study has shown that cell-type-specific spinal synaptic plasticity in the dorsal horn plays a pivotal role in neuropathic pain. Downregulation of GABA transmission, which mainly acts as an inhibitory pathway, has been reported in the growing number of research. Our present study found that GAD67, responsible for > 90% of basal GABA synthesis, is down-regulated, while its relative mRNA remains unchanged in vincristine-induced neuropathy. Considering microRNAs (miRNAs) as a post-transcription modifier by degrading targeted mRNA or repressing mRNA translation, we performed genome-wide miRNA screening and revealed that miR-30d might contribute to GAD67 down-regulation. Further investigation confirmed that miR-30d could affect the fluorescence activity of GAD67 by binding to the 3 'UTR of the GAD67 gene, and intrathecal injection of miR-30d antagomir increased the expression of GAD67, partially rescued vincristine-induced thermal hyperalgesia and mechanical allodynia. In summary, our study revealed the molecule interactions of GAD67 and miR-30d in CIPN, which has not previously been discussed in the literature. The results give more profound insight into understanding the CIPN mechanism and hopefully helps pain control.
Collapse
|
6
|
Li X, Wang Q, Ding J, Wang S, Dong C, Wu Q. Exercise training modulates glutamic acid decarboxylase-65/67 expression through TrkB signaling to ameliorate neuropathic pain in rats with spinal cord injury. Mol Pain 2021; 16:1744806920924511. [PMID: 32418502 PMCID: PMC7235678 DOI: 10.1177/1744806920924511] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain is one of the most frequently stated complications after spinal cord injury. In post-spinal cord injury, the decrease of gamma aminobutyric acid synthesis within the distal spinal cord is one of the main causes of neuropathic pain. The predominant research question of this study was whether exercise training may promote the expression of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67, which are key enzymes of gamma aminobutyric acid synthesis, within the distal spinal cord through tropomyosin-related kinase B signaling, as its synthesis assists to relieve neuropathic pain after spinal cord injury. Animal experiment was conducted, and all rats were allocated into five groups: Sham group, SCI/PBS group, SCI-TT/PBS group, SCI/tropomyosin-related kinase B-IgG group, and SCI-TT/tropomyosin-related kinase B-IgG group, and then T10 contusion SCI model was performed as well as the tropomyosin-related kinase B-IgG was used to block the tropomyosin-related kinase B activation. Mechanical withdrawal thresholds and thermal withdrawal latencies were used for assessing pain-related behaviors. Western blot analysis was used to detect the expression of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-REB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. Immunohistochemistry was used to analyze the distribution of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord dorsal horn. The results showed that exercise training could significantly mitigate the mechanical allodynia and thermal hyperalgesia in post-spinal cord injury and increase the synthesis of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. After the tropomyosin-related kinase B signaling was blocked, the analgesic effect of exercise training was inhibited, and in the SCI-TT/tropomyosin-related kinase B-IgG group, the synthesis of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord were also significantly reduced compared with the SCI-TT/PBS group. This study shows that exercise training may increase the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 expression within the spinal cord dorsal horn through the tropomyosin-related kinase B signaling, and this mechanism may play a vital role in relieving the neuropathic pain of rats caused by incomplete SCI.
Collapse
Affiliation(s)
- Xiangzhe Li
- Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Qinghua Wang
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jie Ding
- Departments of Respiratory Care, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng Wang
- Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qinfeng Wu
- Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Kanao-Kanda M, Kanda H, Liu S, Roy S, Toborek M, Hao S. Viral Vector-Mediated Gene Transfer of Glutamic Acid Decarboxylase for Chronic Pain Treatment: A Literature Review. Hum Gene Ther 2020; 31:405-414. [PMID: 32041431 DOI: 10.1089/hum.2019.359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic pain is long-lasting nociceptive state, impairing the patient's quality of life. Existing analgesics are generally not effective in the treatment of chronic pain, some of which such as opioids have the risk of tolerance/dependence and overdose death with higher daily opioid doses for increasing analgesic effect. Opioid use disorders have already reached an epidemic level in the United States; therefore, nonopioid analgesic approach and/or use of nonpharmacologic interventions will be employed with increasing frequency. Viral vector-mediated gene therapy is promising in clinical trials in the nervous system diseases. Glutamic acid decarboxylase (GAD) enzyme, a key enzyme in biosynthesis of γ-aminobutyric acid (GABA), plays an important role in analgesic mechanism. In the literature review, we used PubMed and bioRxiv to search the studies, and the eligible criteria include (1) article written in English, (2) use of viral vectors expressing GAD67 or GAD65, and (3) preclinical pain models. We identified 13 eligible original research articles, in which the pain models include nerve injury, HIV-related pain, painful diabetic neuropathy, and formalin test. GAD expressed by the viral vectors from all the reports produced antinociceptive effects. Restoring GABA systems is a promising therapeutic strategy for chronic pain, which provides evidence for the clinical trial of gene therapy for pain in the near future.
Collapse
Affiliation(s)
- Megumi Kanao-Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Hirotsugu Kanda
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sabita Roy
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Michal Toborek
- Department of Anesthesiology & Critical Care Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
8
|
Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R, Kim J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J 2019; 33:2460-2471. [PMID: 30277817 PMCID: PMC6338660 DOI: 10.1096/fj.201801116rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Iron deficiency is closely associated with altered GABA metabolism and affective behavior. While mutation in the hemochromatosis ( HFE) gene disrupts iron homeostasis and promotes oxidative stress that increases the risk of neurodegeneration, it is largely unknown whether HFE mutation modifies GABAergic homeostasis and emotional behavior. The goal of our study was to investigate the impact of HFE on GABAergic neurochemistry and redox-epigenetic regulation in the brain using H67D HFE-mutant mice that recapitulates the H63D-HFE mutation in humans. H67D mice displayed elevated redox-active iron levels in the brain by 32% compared to age-matched wild-type mice. Moreover, the H67D brain had increased isoprostane and decreased glutathione, indicating elevated oxidative stress. Additionally, the H67D brain had decreased global methylation and attenuated DNA methyltransferase (DNMT) activity. Direct addition of iron to purified DNMT in vitro decreased enzyme activity in a concentration-dependent manner. Last, H67D mice exhibited decreased anxiety-like behavior, which was associated with increased expression of the GABAA receptor α2 subunits by 93%, and these changes were also observed in H67D mice fed a low-iron diet. Taken together, our results suggest a putative role of HFE in regulating labile iron status in the brain, and mutation in H67D perturbs redox-methylation status, contributing to GABAergic dysfunction.-Ye, Q., Trivedi, M., Zhang, Y., Böhlke, M., Alsulimani, H., Chang, J., Maher, T., Deth, R., Kim, J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Helal Alsulimani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Ogawa N, Terashima T, Oka K, Chan L, Kojima H. Gene therapy for neuropathic pain using dorsal root ganglion-targeted helper-dependent adenoviral vectors with GAD67 expression. Pain Rep 2018; 3:e695. [PMID: 30706038 PMCID: PMC6344132 DOI: 10.1097/pr9.0000000000000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Currently available medications for neuropathic pain are of limited efficacy. Moreover, they are administered systemically and are associated with significant side effects. Ideally, one can circumvent systemic side effects if such treatment can be administered by delivery of the therapeutic agent directly to the diseased neurons. Towards this end, we previously reported the production of a recombinant helper-dependent adenovirus (HDAd) armed with a tissue-specific homing peptide to deliver transgenes targeting sensory neurons with high efficacy. OBJECTIVES To develop an effective gene therapy for neuropathic pain by producing a dorsal root ganglion (DRG)-targeted HDAd vector that specifically expresses glutamic acid decarboxylase (GAD) 67 (HDAd-DRG-GAD67). METHODS We produced spinal nerve transection (SNT) mice as a neuropathic pain model and delivered HDAd-DRG-GAD67 by injection into spinal nerve or intrathecally to these animals. We evaluated the therapeutic efficacy by measuring ion channel gene expression and quantifying mechanical allodynia, a representative symptom of neuropathic pain, in treated animals. RESULTS Glutamic acid decarboxylase expression by HDAd-DRG-GAD67 reduced allodynia significantly in SNT mice. In addition, HDAd-DRG-GAD67 had a much greater transduction efficacy and expressed the therapeutic gene for a much longer time and at a lower dose of viral particles than wild-type HDAd. We found that SNT induced the upregulation of Cav3.2 mRNA in the DRG and GAD67 overexpression suppressed the elevation. Furthermore, the HDAd-DRG-GAD67-induced allodynia amelioration occurred even when we delayed intrathecal delivery of the therapeutic vector to day 7 after SNT. CONCLUSION HDAd-mediated DRG-targeted gene therapy delivering GAD67 is an efficacious treatment for neuropathic pain in SNT mice.
Collapse
Affiliation(s)
- Nobuhiro Ogawa
- Division of Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazuhiro Oka
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence Chan
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
10
|
Sasmita AO. Current viral-mediated gene transfer research for treatment of Alzheimer’s disease. Biotechnol Genet Eng Rev 2018; 35:26-45. [DOI: 10.1080/02648725.2018.1523521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
mir-500-Mediated GAD67 Downregulation Contributes to Neuropathic Pain. J Neurosci 2017; 36:6321-31. [PMID: 27277808 DOI: 10.1523/jneurosci.0646-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the interactions between synaptic dysfunction and the genes that are involved in persistent pain remain elusive. In the present study, we found that neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection significantly impaired the function of GABAergic synapses of spinal dorsal horn neurons via the reduction of the GAD67 expression. We also found that mir-500 expression was significantly increased and involved in the modulation of GAD67 expression via targeting the specific site of Gad1 gene in the dorsal horn. In addition, knock-out of mir-500 or using mir-500 antagomir rescued the GABAergic synapses in the spinal dorsal horn neurons and attenuated the sensitized pain behavior in the rats with neuropathic pain. To our knowledge, this is the first study to investigate the function significance and the underlying molecular mechanisms of mir-500 in the process of neuropathic pain, which sheds light on the development of novel therapeutic options for neuropathic pain. SIGNIFICANCE STATEMENT Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the underlying molecular mechanisms remain elusive. The present study illustrates for the first time a mir-500-mediated mechanism underlying spinal GABAergic dysfunction and sensitized pain behavior in neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection, which sheds light on the development of novel therapeutic options for neuropathic pain.
Collapse
|
12
|
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, Zhao C, Zeng Z, Shu Y, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, Ho S, Athiviraham A, Lee MJ, Wolf JM, Reid RR, He TC. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis 2017; 4:43-63. [PMID: 28944281 PMCID: PMC5609467 DOI: 10.1016/j.gendis.2017.04.001] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
Collapse
Affiliation(s)
- Cody S. Lee
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot S. Bishop
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Evan M. Farina
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54:260-277. [PMID: 26851553 DOI: 10.1016/j.bbi.2016.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Eric J Downer
- School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
14
|
Obradović ALJ, Scarpa J, Osuru HP, Weaver JL, Park JY, Pathirathna S, Peterkin A, Lim Y, Jagodic MM, Todorovic SM, Jevtovic-Todorovic V. Silencing the α2 subunit of γ-aminobutyric acid type A receptors in rat dorsal root ganglia reveals its major role in antinociception posttraumatic nerve injury. Anesthesiology 2015; 123:654-67. [PMID: 26164299 PMCID: PMC4568754 DOI: 10.1097/aln.0000000000000767] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Neuropathic pain (NPP) is likely the result of repetitive high-frequency bursts of peripheral afferent activity leading to long-lasting changes in synaptic plasticity in the spinal dorsal horn. Drugs that promote γ-aminobutyric acid (GABA) activity in the dorsal horn provide partial relief of neuropathic symptoms. The authors examined how in vivo silencing of the GABA receptor type A (GABAA) α2 gene in dorsal root ganglia (DRG) controls NPP. METHODS After crush injury to the right sciatic nerve of female rats, the α2 GABAA antisense and mismatch oligodeoxynucleotides or NO-711 (a GABA uptake inhibitor) were applied to the L5 DRG. In vivo behavioral assessment of nociception was conducted before the injury and ensuing 10 days (n = 4 to 10). In vitro quantification of α2 GABAA protein and electrophysiological studies of GABAA currents were performed on acutely dissociated L5 DRG neurons at relevant time points (n = 6 to 14). RESULTS NPP postcrush injury of a sciatic nerve in adult female rats coincides with significant down-regulation of the α2 subunit expression in the ipsilateral DRG (approximately 30%). Selective down-regulation of α2 expression in DRGs significantly worsens mechanical (2.55 ± 0.75 to 5.16 ± 1.16) and thermal (7.97 ± 0.96 to 5.51 ± 0.75) hypersensitivity in crush-injured animals and causes development of significant mechanical (2.33 ± 0.40 to 5.00 ± 0.33) and thermal (10.80 ± 0.29 to 7.34 ± 0.81) hypersensitivity in sham animals (data shown as mean ± SD). Conversely, up-regulation of endogenous GABA via blockade of its uptake in DRG alleviates NPP. CONCLUSION The GABAA receptor in the DRG plays an important role in pathophysiology of NPP caused by sciatic nerve injury and represents promising target for novel pain therapies.
Collapse
Affiliation(s)
- Aleksandar LJ Obradović
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Physiology, University of Belgrade School of Pharmacy, Belgrade, Serbia
| | - Joseph Scarpa
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hari P Osuru
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Janelle L Weaver
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ji-Yong Park
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sriyani Pathirathna
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alexander Peterkin
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Yunhee Lim
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Republic of Korea
| | - Miljenko M Jagodic
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
15
|
Human Pirh2 is a novel inhibitor of prototype foamy virus replication. Viruses 2015; 7:1668-84. [PMID: 25848801 PMCID: PMC4411673 DOI: 10.3390/v7041668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/02/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Prototype foamy virus (PFV) is a member of the unconventional and nonpathogenic retroviruses. PFV causes lifelong chronic infections, which are partially attributable to a number of host cell factors that restrict viral replication. Herein, we identified human p53-induced RING-H2 protein (Pirh2) as a novel inhibitor of prototype foamy virus. Overexpression of Pirh2 decreased the replication of PFV, whereas knockdown of Pirh2 with specific siRNA increased PFV replication. Dual-luciferase assays and coimmunoprecipitation demonstrated that Pirh2 negatively influences the Tas-dependent transcriptional activation of the PFV long terminal repeat (LTR) and internal promoter (IP) by interacting with the transactivator Tas and down-regulating its expression. In addition, the viral inhibitory function of Pirh2 is N-terminal and RING domain dependent. Together, these results indicated that Pirh2 suppresses PFV replication by negatively impacting its transactivator Tas and the transcription of two viral promoters, which may contribute to the latency of PFV infection.
Collapse
|
16
|
Cheng Q, Dong L, Zhang F, Yuan P, Li Z, Sun Y, Yin J, Peng B, He X, Liu W. Short communication: Efficiently inhibiting HIV-1 replication by a prototype foamy virus vector expressing novel H1 promoter-driven short hairpin RNAs. AIDS Res Hum Retroviruses 2015; 31:183-8. [PMID: 25531134 DOI: 10.1089/aid.2014.0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA interference has shown great potential for the treatment of HIV-1. Vectors derived from prototype foamy viruses (PFVs) with a nonpathogenic nature are very promising gene transfer vehicles in anti-HIV gene therapy. In this article, three short hairpin RNAs (shRNAs) targeting the conserved regions of the HIV-1NL4-3 5' long terminal repeat (LTR) were first designed. We then constructed novel recombinant PFV vector plasmids, p▵Φ-H1-shRNAs, expressing these shRNAs under the control of the H1 RNA promoter. To detect the efficacy of these ▵Φ-H1-shRNAs for the inhibition of HIV-1 replication, we performed a dual-luciferase reporter assay, RT-qPCR, ELISA, western blotting, and a lactate dehydrogenase (LDH) assay by transient transfection in 293T cells. The results suggest that these novel shRNAs driven by PFV vectors inhibit HIV-1 replication efficiently without cytotoxicity, with shRNA3 being the most effective. In addition, we analyzed the shRNA target sites in the 5' LTR of HIV-1 strains other than HIV-1NL4-3 and found that these shRNAs may possibly inhibit other HIV-1 strains.
Collapse
Affiliation(s)
- Qingqing Cheng
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| | - Lanlan Dong
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| | - Fengfeng Zhang
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peipei Yuan
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi'an, Shanxi, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi'an, Shanxi, China
| | - Jun Yin
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Xiaohua He
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Wanhong Liu
- Pathogenic Organism and Infectious Diseases Research Institute, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
17
|
Yu CZ, Liu YP, Liu S, Yan M, Hu SJ, Song XJ. Systematic administration of B vitamins attenuates neuropathic hyperalgesia and reduces spinal neuron injury following temporary spinal cord ischaemia in rats. Eur J Pain 2013; 18:76-85. [PMID: 24038589 DOI: 10.1002/j.1532-2149.2013.00390.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND B vitamins have been demonstrated to be effective in treating chronic pain due to peripheral nerve injury. We investigated whether B vitamins could alleviate neuropathic pain and reduce neuron injury following temporary ischaemia in a rat model of spinal cord ischaemia-reperfusion injury (SCII). METHODS SCII was produced by transiently blocking the unilateral lumbar arteries in adult male Sprague-Dawley rats. Behavioural and neurochemical signs of neuropathic pain and spinal neuron injury were analysed with and without B vitamin treatment. RESULTS SCII caused behavioural thermal hyperalgesia and mechanical allodynia and neurochemical alterations, including increased expression of the vanilloid receptor 1 (VR1) and induction of c-Fos, as well as activation of the astrocytes and microglial cells in the spinal cord. Repetitive systemic administration of vitamin B complex (B1/B6/B12 at 33/33/0.5 mg/kg, i.p., daily, for 7-14 consecutive days) significantly reduced thermal hyperalgesia and the increased expression of VR1 and c-Fos, as well as activation of the astrocytes and microglial cells. SCII caused a dramatic decrease of the expression of the rate-limiting enzyme glutamic acid decarboxylase-65 (GAD65), which synthesizes γ-aminobutyric acid (GABA) in the axonal terminals, and β-III-tubulin, and also caused loss of Nissl bodies in the spinal cord. These alterations were largely prevented and rescued by the B vitamin treatment. CONCLUSIONS These findings support the idea that the B vitamins are capable of neuroprotection and antinociception during spinal cord injury due to temporary ischaemia. Rescuing the loss of inhibitory GABAergic tone may reduce spinal central sensitization and contribute to B vitamin-induced analgesia.
Collapse
Affiliation(s)
- C-Z Yu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
18
|
Roh DH, Seo MS, Choi HS, Park SB, Han HJ, Beitz AJ, Kang KS, Lee JH. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant 2013; 22:1577-90. [PMID: 23294734 DOI: 10.3727/096368912x659907] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.
Collapse
Affiliation(s)
- Dae-Hyun Roh
- Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
"There have been rare cases of zoonotic transmission of foamy virus from monkeys to humans, but despite keeping these cases under close scrutiny for years no pathology has ever been detected...".
Collapse
|
20
|
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1:27. [PMID: 23210086 PMCID: PMC3507026 DOI: 10.4103/2277-9175.98152] [Citation(s) in RCA: 505] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/10/2012] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is the process of introducing foreign genomic materials into host cells to elicit a therapeutic benefit. Although initially the main focus of gene therapy was on special genetic disorders, now diverse diseases with different patterns of inheritance and acquired diseases are targets of gene therapy. There are 2 major categories of gene therapy, including germline gene therapy and somatic gene therapy. Although germline gene therapy may have great potential, because it is currently ethically forbidden, it cannot be used; however, to date human gene therapy has been limited to somatic cells. Although numerous viral and nonviral gene delivery systems have been developed in the last 3 decades, no delivery system has been designed that can be applied in gene therapy of all kinds of cell types in vitro and in vivo with no limitation and side effects. In this review we explain about the history of gene therapy, all types of gene delivery systems for germline (nuclei, egg cells, embryonic stem cells, pronuclear, microinjection, sperm cells) and somatic cells by viral [retroviral, adenoviral, adeno association, helper-dependent adenoviral systems, hybrid adenoviral systems, herpes simplex, pox virus, lentivirus, Epstein-Barr virus)] and nonviral systems (physical: Naked DNA, DNA bombardant, electroporation, hydrodynamic, ultrasound, magnetofection) and (chemical: Cationic lipids, different cationic polymers, lipid polymers). In addition to the above-mentioned, advantages, disadvantages, and practical use of each system are discussed.
Collapse
Affiliation(s)
- Nouri Nayerossadat
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Talebi Maedeh
- Molecular Genetic Laboratory, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Palizban Abas Ali
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| |
Collapse
|
21
|
Goins WF, Cohen JB, Glorioso JC. Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis 2012; 48:255-70. [PMID: 22668775 DOI: 10.1016/j.nbd.2012.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 05/11/2012] [Accepted: 05/24/2012] [Indexed: 11/30/2022] Open
Abstract
Chronic pain is a major health concern affecting 80 million Americans at some time in their lives with significant associated morbidity and effects on individual quality of life. Chronic pain can result from a variety of inflammatory and nerve damaging events that include cancer, infectious diseases, autoimmune-related syndromes and surgery. Current pharmacotherapies have not provided an effective long-term solution as they are limited by drug tolerance and potential abuse. These concerns have led to the development and testing of gene therapy approaches to treat chronic pain. The potential efficacy of gene therapy for pain has been reported in numerous pre-clinical studies that demonstrate pain control at the level of the spinal cord. This promise has been recently supported by a Phase-I human trial in which a replication-defective herpes simplex virus (HSV) vector was used to deliver the human pre-proenkephalin (hPPE) gene, encoding the natural opioid peptides met- and leu-enkephalin (ENK), to cancer patients with intractable pain resulting from bone metastases (Fink et al., 2011). The study showed that the therapy was well tolerated and that patients receiving the higher doses of therapeutic vector experienced a substantial reduction in their overall pain scores for up to a month post vector injection. These exciting early clinical results await further patient testing to demonstrate treatment efficacy and will likely pave the way for other gene therapies to treat chronic pain.
Collapse
Affiliation(s)
- William F Goins
- Dept of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh PA 15219, USA.
| | | | | |
Collapse
|
22
|
Sapunar D, Kostic S, Banozic A, Puljak L. Dorsal root ganglion - a potential new therapeutic target for neuropathic pain. J Pain Res 2012; 5:31-8. [PMID: 22375099 PMCID: PMC3287412 DOI: 10.2147/jpr.s26603] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A regional approach can protect our patients from often unacceptable adverse effects produced by systematically applied drugs. Regional therapeutic approaches, as well as interventions at the level of the peripheral nervous system and particularly the dorsal root ganglion (DRG), represent an alternative to the systemic application of therapeutic agents. This article provides an overview of DRG anatomical peculiarities, explains why the DRG is an important therapeutic target, and how animal models of targeted drug delivery can help us in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Damir Sapunar
- Department of Anatomy, Histology, and Embryology, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| | - Sandra Kostic
- Department of Anatomy, Histology, and Embryology, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| | - Adriana Banozic
- Department of Anatomy, Histology, and Embryology, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| | - Livia Puljak
- Department of Anatomy, Histology, and Embryology, University of Split Medical School, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
23
|
Kumar S, Ruchi R, James SR, Chidiac EJ. Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? PAIN MEDICINE 2011; 12:808-22. [PMID: 21564510 DOI: 10.1111/j.1526-4637.2011.01120.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Chronic neuropathic pain has been an enigma to physicians and researchers for decades. A better understanding of its pathophysiology has given us more insight into its various mechanisms and possible treatment options. We now have an understanding of the role of various ionic channels, biologically active molecules involved in pain, and also the intricate pain pathways where possible interventions might lead to substantial pain relief. The recent research on laboratory animals using virus-based vectors for gene transfer at targeted sites is very promising and may lead to additional human clinical trials. However, one needs to be aware that this "novel" approach is still in its infancy and that many of its details need to be further elucidated. The purpose of this article is to thoroughly review the current available literature and analyze the deficiencies in our current knowledge. DESIGN Literature review. METHODS After an extensive online literature search, a total of 133 articles were selected to synthesize a comprehensive review about chronic neuropathic pain and gene therapy in order to understand the concepts and mechanisms. RESULTS Most of the studies have shown benefits of gene therapy in animal models, and recently, phase 1 human trials using herpes simplex virus vector have started for intractable cancer pain. CONCLUSION Although animal data have shown safety and efficacy, and initial human trials have been promising, additional studies in humans are required to more completely understand the actual benefits and risks of using gene therapy for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Anesthesiology, Wayne State University/Detroit Medical Center, Harper University Hospital, MI 48201, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Huang Y, Liu X, Dong L, Liu Z, He X, Liu W. Development of viral vectors for gene therapy for chronic pain. PAIN RESEARCH AND TREATMENT 2011; 2011:968218. [PMID: 22110937 PMCID: PMC3200086 DOI: 10.1155/2011/968218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/31/2011] [Indexed: 11/17/2022]
Abstract
Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.
Collapse
Affiliation(s)
- Yu Huang
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Xin Liu
- College of Pharmacy, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Lanlan Dong
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Zhongchun Liu
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Xiaohua He
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
- Research Center of Food and Drug Evaluation, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| | - Wanhong Liu
- School of Medicine, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
- Research Center of Food and Drug Evaluation, Wuhan University, Donghu Road #185, Wuchang, Wuhan 430071, China
| |
Collapse
|
26
|
The animal model of spinal cord injury as an experimental pain model. J Biomed Biotechnol 2011; 2011:939023. [PMID: 21436995 PMCID: PMC3062973 DOI: 10.1155/2011/939023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/19/2010] [Indexed: 12/25/2022] Open
Abstract
Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models.
Collapse
|
27
|
GABAergic pathway in a rat model of chronic neuropathic pain: Modulation after intrathecal transplantation of a human neuronal cell line. Neurosci Res 2011; 69:111-20. [DOI: 10.1016/j.neures.2010.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 10/14/2010] [Indexed: 12/30/2022]
|
28
|
Gwak YS, Hulsebosch CE. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology 2011; 60:799-808. [PMID: 21216257 DOI: 10.1016/j.neuropharm.2010.12.030] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 12/31/2022]
Abstract
Spinal cord injury induces maladaptive synaptic transmission in the somatosensory system that results in chronic central neuropathic pain. Recent literature suggests that glial-neuronal interactions are important modulators in synaptic transmission following spinal cord injury. Neuronal hyperexcitability is one of the predominant phenomenon caused by maladaptive synaptic transmission via altered glial-neuronal interactions after spinal cord injury. In the somatosensory system, spinal inhibitory neurons counter balance the enhanced synaptic transmission from peripheral input. For a decade, the literature suggests that hypofunction of GABAergic inhibitory tone is an important factor in the enhanced synaptic transmission that often results in neuronal hyperexcitability in dorsal horn neurons following spinal cord injury. Neurons and glial cells synergistically control intracellular chloride ion gradients via modulation of chloride transporters, extracellular glutamate and GABA concentrations via uptake mechanisms. Thus, the intracellular "GABA-glutamate-glutamine cycle" is maintained for normal physiological homeostasis. However, hyperexcitable neurons and glial activation after spinal cord injury disrupts the balance of chloride ions, glutamate and GABA distribution in the spinal dorsal horn and results in chronic neuropathic pain. In this review, we address spinal cord injury induced mechanisms in hypofunction of GABAergic tone that results in chronic central neuropathic pain. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.
Collapse
Affiliation(s)
- Young S Gwak
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | |
Collapse
|
29
|
Foamy virus: an available vector for gene transfer in neural cells and other nondividing cells. J Neurovirol 2010; 16:419-26. [DOI: 10.1007/bf03210847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Validity of acute and chronic tactile sensory testing after spinal cord injury in rats. Exp Neurol 2010; 225:366-76. [PMID: 20643128 DOI: 10.1016/j.expneurol.2010.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) impairs sensory systems causing allodynia. Measuring the development of allodynia in rodent models of SCI is challenging due to spinal shock and marked motor impairments. Assessment of SCI-induced allodynia is not standardized across labs, making interpretation of results difficult. Therefore, we validated sensory threshold assessment after SCI and developed a novel assessment of allodynia prior to motor recovery in a rat SCI model. One hundred fifty-six Sprague-Dawley rats received T8 laminectomy or mild to moderate SCI using the OSU SCI device (0.3 mm to 1.3 mm cord displacement). To determine tactile thresholds, von Frey hairs (VFH) were applied in Up-Down or ascending order to the dorsal or plantar hindpaw. The most efficient and valid procedures that maintain high sensitivity and specificity were identified. Ten Up-Down VFH applications yielded stable thresholds; reducing the risk of threshold decay and unnecessary exposure to painful stimuli. Importantly, distraction of SCI-rats with food revealed differential decay of thresholds than when distraction is not provided. The new test uses dorsal VFH stimulation and is independent of trunk or hindlimb control. Acute dorsal VFH thresholds collected before recovery of hindlimb weight support accurately predicted plantar VFH thresholds measured at late timepoints (chi(2)=8.479; p<0.05). Thus, standardized testing early after SCI using the dorsal VFH test or later using 10 stimuli in the Up-Down test produces valid measures of tactile sensation across many SCI severities. Early detection of allodynia in experimental SCI will allow identification of mechanisms responsible for pain development and determine targets for therapeutic interventions.
Collapse
|
31
|
Abstract
Foamy viruses, distantly related to the major subfamily of Retroviruses, Orthoretroviruses that include oncoviruses (for example, murine leukemia virus (MLV)) and lentiviruses (human immunodeficiency virus (HIV)), are endemic in mammalian species, but not in human populations. Humans infected by accidental or occupational exposure remain well. The virus is not transmitted to others, nor is it associated with any disease. These features added to its broad host range, efficient transduction of progenitor cells and an integration profile less likely to induce insertional mutagenesis, make these viruses attractive as vectors. Long-term reversal of disease phenotype in dogs with the genetic defect, leukocyte adhesion deficiency, by foamy virus vector therapy strengthens the case for their clinical exploitation.
Collapse
|
32
|
Abstract
Foamy virus (FV) vectors are efficient gene delivery vehicles that have shown great promise for gene therapy in preclinical animal models. FVs or spumaretroviruses are not endemic in humans, but are prevalent in nonhuman primates and in other mammals. They have evolved means for efficient horizontal transmission in their host species without pathology. FV vectors have several unique properties that make them well suited for therapeutic gene transfer including a desirable safety profile, a broad tropism, a large transgene capacity, and the ability to persist in quiescent cells. They mediate efficient and stable gene transfer to hematopoietic stem cells (HSCs) in mouse models, and in the canine large animal model. Analysis of FV vector integration sites in vitro and in hematopoietic repopulating cells shows they have a unique integration profile, and suggests they may be safer than gammaretroviruses or lentiviral vectors. Here, properties of FVs relevant to the safety and efficacy of FV vectors are discussed. The development of FV vector systems is described, and studies evaluating their potential in vitro, and in small and large animal models, is reviewed.
Collapse
Affiliation(s)
- Grant D Trobridge
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
33
|
Vit JP, Ohara PT, Sundberg C, Rubi B, Maechler P, Liu C, Puntel M, Lowenstein P, Castro M, Jasmin L. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia. Mol Pain 2009; 5:42. [PMID: 19656360 PMCID: PMC2734545 DOI: 10.1186/1744-8069-5-42] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/05/2009] [Indexed: 01/15/2023] Open
Abstract
Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int 2009; 55:9-12. [PMID: 19428801 DOI: 10.1016/j.neuint.2009.01.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/24/2022]
Abstract
This review focuses on the recent advances that were made in understanding the fundamental mechanisms of the regulation of l-glutamic acid decarboxylase (GAD; E.C. 4.1.1.15), the enzyme responsible for the synthesis of the major inhibitory neurotransmitter gamma-amino butyric acid (GABA). In the brain, there are two isoforms of GAD- GAD67 and GAD65, where 67 and 65 refer to their respective molecular weights in kDa. A number of neurodegenerative diseases are known to occur as a result of insufficient inhibition due to failure of GABA neurotransmission. Since the rate-limiting step in GABA biosynthesis is the decarboxylation of glutamate by GAD, it is important to understand how GAD is regulated. So far, we know that GAD is regulated at the transcriptional level by alternate splicing and at the post-translational level by protein phosphorylation, palmitoylation and activity-dependent cleavage. Here, we present new evidence of the presence of GAD65 associated with mitochondria in the axon terminal and project a model in which ATP generated by mitochondrial GAD65 may serve an important function in providing energy for GAD65 mediated GABA biosynthesis and packaging into synaptic vesicles by vesicular GABA transporter (VGAT).
Collapse
|
35
|
Abstract
BACKGROUND Management of chronic pain remains a challenge in spite of the numerous drugs either approved or still in development. Apart from inadequacy of relief, there are concerns about adverse effects and addiction in the case of drugs such as opioids. Gene therapy is being investigated for improving management of pain. OBJECTIVE To addresses the rationale of gene therapy for treatment of pain and its advantages over drugs. The prospects of translation of these techniques from experimental animals to clinical use are discussed. METHODS The review is based on the available literature and is confined to experimental work, as there are no approved therapies in this category. RESULTS/CONCLUSION A number of promising gene therapies as well as antisense- and RNA interference-based approaches have been identified. These provide targeted approaches to delivery of antinociceptive molecules or interruption of pain pathways without subjecting the patient to systemic toxicity of drugs. Some of these approaches are aimed at correcting the underlying pathology of the diseases (e.g., treating degenerative joint diseases causing pain). Management of neuropathic pain is a challenge and a number of studies are addressing it. Overall the future of gene therapy for pain is promising.
Collapse
Affiliation(s)
- K K Jain
- Jain PharmaBiotech, Blaesiring 7, CH-4057, Basel, Switzerland.
| |
Collapse
|
36
|
Current World Literature. Curr Opin Anaesthesiol 2008; 21:684-93. [DOI: 10.1097/aco.0b013e328312c01b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|