1
|
Resting-state fMRI functional connectivity of the left temporal parietal junction is associated with visual temporal order threshold. Sci Rep 2022; 12:15933. [PMID: 36153359 PMCID: PMC9509386 DOI: 10.1038/s41598-022-20309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
The study aimed to determine the relationship between the millisecond timing, measured by visual temporal order threshold (TOT), i.e. a minimum gap between two successive stimuli necessary to judge a before-after relation, and resting-state fMRI functional connectivity (rsFC). We assume that the TOT reflects a relatively stable feature of local internal state networks and is associated with rsFC of the temporal parietal junction (TPJ). Sixty five healthy young adults underwent the visual TOT, fluid intelligence (Gf) and an eyes-open resting-state fMRI examination. After controlling for the influence of gender, the higher the TOT, the stronger was the left TPJ’s rsFC with the left postcentral and the right precentral gyri, bilateral putamen and the right supplementary motor area. When the effects of Gf and TOT × Gf interaction were additionally controlled, the TOT—left TPJ’s rsFC relationship survived for almost all above regions with the exception of the left and right putamen. This is the first study demonstrating that visual TOT is associated with rsFC between the areas involved both in sub-second timing and motor control. Current outcomes indicate that the local neural networks are prepared to process brief, rapidly presented, consecutive events, even in the absence of such stimulation.
Collapse
|
2
|
Simon J, Balla VR. Electrophysiological correlates of the spatial temporal order judgment task. Biol Psychol 2020; 156:107947. [PMID: 32828914 DOI: 10.1016/j.biopsycho.2020.107947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
The study investigated auditory temporal processing on a tens of milliseconds scale that is the interval when two consecutive stimuli are processed either together or as distinct events. Distinctiveness is defined by one's ability to make correct order judgments of the presented sounds and is measured via the spatial temporal order judgement task (TOJ). The study aimed to identify electrophysiological indices of the TOJ performance. Tone pairs were presented with inter-stimulus intervals (ISI) varying between 25 and 75 ms while EEG was recorded. A pronounced amplitude change in the P2 interval was found between the event-related potential (ERP) of tone pairs having ISI = 55 and 65 ms, but it was a characteristic only of the group having poor behavioral thresholds. With the two groups combined, the amplitude change between these ERPs in the P2 interval showed a medium-size correlation with the behavioral threshold.
Collapse
Affiliation(s)
- Júlia Simon
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Cognitive Science, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Viktória Roxána Balla
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Simon J, Balla V, Winkler I. Temporal boundary of auditory event formation: An electrophysiological marker. Int J Psychophysiol 2019; 140:53-61. [DOI: 10.1016/j.ijpsycho.2019.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022]
|
4
|
Wang M, Chen Z, Zhang S, Xu T, Zhang R, Suo T, Feng T. High Self-Control Reduces Risk Preference: The Role of Connectivity Between Right Orbitofrontal Cortex and Right Anterior Cingulate Cortex. Front Neurosci 2019; 13:194. [PMID: 30914914 PMCID: PMC6421260 DOI: 10.3389/fnins.2019.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Risk preference, the preference for risky choices over safe alternatives, has a great impact on many fields, such as physical health, sexual safety and financial decision making. Ample behavioral research has attested that inadequate self-control can give rise to high risk preference. However, little is known about the neural substrates underlying the effect of self-control on risk preference. To address this issue, we combined voxel-based morphometry (VBM) with resting-state functional connectivity (RSFC) analyses to explore the neural basis underlying the effect of self-control on risk preference across two independent samples. In sample 1 (99 participants; 47 males; 20.37 ± 1.63 years), the behavioral results indicated that the scores of self-control were significantly and negatively correlated with risk preference (indexed by gambling rate). The VBM analyses demonstrated that the higher risk preference was correlated with smaller gray matter volumes in right orbitofrontal cortex (rOFC) and right posterior parietal cortex. In the independent sample 2 (80 participants; 33 males; 20.33 ± 1.83 years), the RSFC analyses ascertained that the functional connectivity of rOFC and right anterior cingulate cortex (rACC) was positively associated with risk preference. Furthermore, the mediation analysis identified that self-control mediated the impact of functional connectivity of rOFC-rACC on risk preference. These findings suggest the functional coupling between the rOFC and rACC might account for the association between self-control and risk preference. The present study extends our understanding on the relationship between self-control and risk preference, and reveals possible neural underpinnings underlying this association.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Education, Institute of Cognition, Brain, and Health, Henan University, Kaifeng, China.,School of Education, Institute of Psychology and Behavior, Henan University, Kaifeng, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Shunmin Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Tao Suo
- School of Education, Institute of Cognition, Brain, and Health, Henan University, Kaifeng, China.,School of Education, Institute of Psychology and Behavior, Henan University, Kaifeng, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| |
Collapse
|
5
|
Fogerty D, Humes LE, Busey TA. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences. Front Aging Neurosci 2016; 8:90. [PMID: 27199737 PMCID: PMC4858528 DOI: 10.3389/fnagi.2016.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/11/2016] [Indexed: 11/22/2022] Open
Abstract
Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking.
Collapse
Affiliation(s)
- Daniel Fogerty
- Department of Communication Sciences and Disorders, University of South CarolinaColumbia, SC, USA
| | - Larry E. Humes
- Department of Speech and Hearing Sciences, Indiana UniversityBloomington, IN, USA
| | - Thomas A. Busey
- Department of Brain and Psychological Sciences, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
6
|
Pereira DR, Cardoso S, Ferreira-Santos F, Fernandes C, Cunha-Reis C, Paiva TO, Almeida PR, Silveira C, Barbosa F, Marques-Teixeira J. Effects of inter-stimulus interval (ISI) duration on the N1 and P2 components of the auditory event-related potential. Int J Psychophysiol 2014; 94:311-8. [PMID: 25304172 DOI: 10.1016/j.ijpsycho.2014.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
7
|
Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment. Neuropsychologia 2010; 48:2579-85. [PMID: 20457165 DOI: 10.1016/j.neuropsychologia.2010.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/10/2010] [Accepted: 05/01/2010] [Indexed: 11/24/2022]
Abstract
Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Collapse
|
8
|
Fogerty D, Humes LE, Kewley-Port D. Auditory temporal-order processing of vowel sequences by young and elderly listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:2509-520. [PMID: 20370033 PMCID: PMC2865703 DOI: 10.1121/1.3316291] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18-31 years) and older (N=151; 60-88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners' SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age.
Collapse
Affiliation(s)
- Daniel Fogerty
- Department of Speech and Hearing Sciences, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Pöppel E. Pre-semantically defined temporal windows for cognitive processing. Philos Trans R Soc Lond B Biol Sci 2009; 364:1887-96. [PMID: 19487191 PMCID: PMC2685817 DOI: 10.1098/rstb.2009.0015] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuronal oscillations of different frequencies are hypothesized to be basic for temporal perception; this theoretical concept provides the frame to discuss two temporal mechanisms that are thought to be essential for cognitive processing. One such mechanism operates with periods of oscillations in the range of some tens of milliseconds, and is used for complexity reduction of temporally and spatially distributed neuronal activities. Experimental evidence comes from studies on temporal-order threshold, choice reaction time, single-cell activities, evoked responses in neuronal populations or latency distributions of oculomotor responses. The other mechanism refers to pre-semantic integration in the temporal range of approximately 2-3 s. Experimental evidence comes from studies on temporal reproduction, sensorimotor synchronization, intentional movements, speech segmentation, the shift rate of ambiguous stimuli in the visual or auditory modality or the temporal modulation of the mismatch negativity. These different observations indicate the existence of a universal process of temporal integration underlying the mental machinery. This process is believed to be basic for maintenance and change of perceptual identity. Owing to the omnipresence of this kind of temporal segmentation, it is suggested to use this process for a pragmatic definition of the states of being conscious or the 'subjective presence'.
Collapse
Affiliation(s)
- Ernst Pöppel
- Human Science Center, Institute for Medical Psychology and Human Science Center, Ludwig Maximilian University Munich, Goethestrasse 31, Munich, Germany.
| |
Collapse
|