1
|
Abstract
In the view of progressively aging human population and increased occurrence of dysmetabolic disorders, such as diabetes mellitus, cognitive impairment becomes a major threat to the national health. To date, the molecular mechanisms of cognitive dysfunction are partially described for diabetes and diseases of different nature, such as Alzheimer disease or Parkinson disease. The emergence of data pointing towards pleotropic effects of hypoglycaemic medicines indicates involvement of their targets in pathogenesis of cognitive impairment. We are aiming here to review available data on the most widely used hypoglycaemic drug, glibenclamide and find possible relationship of its targets to the pathogenesis of cognitive impairment.
Collapse
Affiliation(s)
- Alexander Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Zamira Muruzheva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Maria Tikhomirova
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
2
|
Tang B, Wang Y, Jiang X, Thambisetty M, Ferrucci L, Johnell K, Hägg S. Genetic Variation in Targets of Antidiabetic Drugs and Alzheimer Disease Risk: A Mendelian Randomization Study. Neurology 2022; 99:e650-e659. [PMID: 35654594 PMCID: PMC9484609 DOI: 10.1212/wnl.0000000000200771] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/08/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies have highlighted antidiabetic drugs as repurposing candidates for Alzheimer disease (AD), but the disease-modifying effects are still unclear. METHODS A 2-sample mendelian randomization study design was applied to examine the association between genetic variation in the targets of 4 antidiabetic drug classes and AD risk. Genetic summary statistics for blood glucose were analyzed using UK Biobank data of 326,885 participants, whereas summary statistics for AD were retrieved from previous genome-wide association studies comprising 24,087 clinically diagnosed AD cases and 55,058 controls. Positive control analysis on type 2 diabetes mellitus (T2DM), insulin secretion, insulin resistance, and obesity-related traits was conducted to validate the selection of instrumental variables. RESULTS In the positive control analysis, genetic variation in sulfonylurea targets was associated with higher insulin secretion, a lower risk of T2DM, and an increment in body mass index, waist circumference, and hip circumference, consistent with drug mechanistic actions and previous trial evidence. In the primary analysis, genetic variation in sulfonylurea targets was associated with a lower risk of AD (odds ratio [OR] = 0.38 per 1 mmol/L decrement in blood glucose, 95% CI 0.19-0.72, p = 0.0034). These results for sulfonylureas were largely unchanged in the sensitivity analysis using a genetic variant, rs757110, that has been validated to modulate the target proteins of sulfonylureas (OR = 0.35 per 1 mmol/L decrement in blood glucose, 95% CI 0.15-0.82, p = 0.016). An association between genetic variations in the glucagon-like peptide 1 (GLP-1) analogue target and a lower risk of AD was also observed (OR = 0.32 per 1 mmol/L decrement in blood glucose, 95% CI 0.13-0.79, p = 0.014). However, this result should be interpreted with caution because the positive control analyses for GLP-1 analogues did not comply with a weight-loss effect as shown in previous clinical trials. Results regarding other drug classes were inconclusive. DISCUSSION Genetic variation in sulfonylurea targets was associated with a lower risk of AD, and future studies are warranted to clarify the underlying mechanistic pathways between sulfonylureas and AD.
Collapse
Affiliation(s)
- Bowen Tang
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Yunzhang Wang
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Xia Jiang
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Madhav Thambisetty
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Luigi Ferrucci
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Kristina Johnell
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging
| | - Sara Hägg
- From the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm (B.T., Y.W., K.J., S.H.); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm (X.J.); Brain Aging and Behavior Section, National Institute on Aging (M.T.); and Longitudinal Studies Section (L.F.), National Institute on Aging.
| |
Collapse
|
3
|
Moriguchi S, Inagaki R, Fukunaga K. Memantine improves cognitive deficits via K ATP channel inhibition in olfactory bulbectomized mice. Mol Cell Neurosci 2021; 117:103680. [PMID: 34715352 DOI: 10.1016/j.mcn.2021.103680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Patients with Alzheimer's disease (AD) demonstrate severely impaired olfactory systems, which occur in the early stages of the disease. Olfactory bulbectomy (OBX) in mice elicits cognitive deficits, and reduces cholinergic activity in the hippocampus. Here, we confirmed that the novel AD drug memantine rescues cognitive deficits via ATP-sensitive potassium (KATP) channel inhibition in OBX mice. Repeated memantine administration at 1-3 mg/kg p.o. for 14 days starting at 10 days after OBX surgery significantly rescued cognitive deficits in OBX mice, as assessed using Y-maze, novel object recognition, and passive avoidance tasks. Consistent with the rescued cognitive deficits in OBX mice, long-term potentiation (LTP) in the hippocampal cornu ammonis (CA) 1 region was markedly restored with memantine administration. As demonstrated by immunoblotting, the reductions of calcium/calmodulin-dependent protein kinase II (CaMKII) α (Thr-286) autophosphorylation and calcium/calmodulin-dependent protein kinase IV (CaMKIV; Thr-196) phosphorylation in the CA1 region of OBX mice were significantly restored with memantine. Conversely, pre-treatment with pinacidil, a KATP channel opener, failed to reinstate hippocampal LTP and CaMKII/CaMKIV activities in the CA1 region. Finally, improvement of cognitive deficits by memantine treatments was observed in OBX-operated Kir6.1 heterozygous (+/-) mice but not in OBX-operated Kir6.2 heterozygous (+/-) mice. Overall, our study demonstrates that memantine rescues OBX-induced cognitive deficits via Kir6.2 channel inhibition in the CA1 region.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Ryo Inagaki
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Song N, Fang Y, Zhu H, Liu J, Jiang S, Sun S, Xu R, Ding J, Hu G, Lu M. Kir6.2 is essential to maintain neurite features by modulating PM20D1-reduced mitochondrial ATP generation. Redox Biol 2021; 47:102168. [PMID: 34673451 PMCID: PMC8577462 DOI: 10.1016/j.redox.2021.102168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Kir6.2, a pore-forming subunit of the ATP-sensitive potassium (KATP) channels, regulates the functions of metabolically active tissues and acts as an ideal therapeutic target for multiple diseases. Previous studies have been conducted on peripheral kir6.2, but its precise physiological roles in the central nervous system (CNS) have rarely been revealed. In the current study, we evaluated the neurophenotypes and neuroethology of kir6.2 knockout (kir6.2-/-) mice. We demonstrated the beneficial effects of kir6.2 on maintaining the morphology of mesencephalic neurons and controlling the motor coordination of mice. The mechanisms underlying the abnormal neurological features of kir6.2 deficiency were analyzed by RNA sequencing (RNA-seq). Pm20d1, a gene encoding PM20D1 secretase that promotes the generation of endogenous mitochondria uncouplers in vivo, was dramatically upregulated in the midbrain of kir6.2-/- mice. Further investigations verified that PM20D1-induced increase of N-acyl amino acids (N-AAAs) from circulating fatty acids and amino acids promoted mitochondrial impairments and cut down the ATP generation, which mediated the morphological defects of the mesencephalic neurons and thus led to the behavioral impairments of kir6.2 knockout mice. This study is the first evidence to demonstrate the roles of kir6.2 in the morphological maintenance of neurite and motor coordination control of mice, which extends our understanding of kir6.2/KATP channels in regulating the neurophysiological function.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Siyuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Sifan Sun
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China; Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Akyuz E, Doganyigit Z, Paudel YN, Koklu B, Kaymak E, Villa C, Arulsamy A, Shaikh MF, Devinsky O. Immunoreactivity of Muscarinic Acetylcholine M2 and Serotonin 5-HT2B Receptors, Norepinephrine Transporter and Kir Channels in a Model of Epilepsy. Life (Basel) 2021; 11:life11040276. [PMID: 33810231 PMCID: PMC8066555 DOI: 10.3390/life11040276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
Abstract
Epilepsy is characterized by an imbalance in neurotransmitter activity; an increased excitatory to an inhibitory activity. Acetylcholine (ACh), serotonin, and norepinephrine (NE) may modulate neural activity via several mechanisms, mainly through its receptors/transporter activity and alterations in the extracellular potassium (K+) concentration via K+ ion channels. Seizures may disrupt the regulation of inwardly rectifying K+ (Kir) channels and alter the receptor/transporter activity. However, there are limited data present on the immunoreactivity pattern of these neurotransmitter receptors/transporters and K+ channels in chronic models of epilepsy, which therefore was the aim of this study. Changes in the immunoreactivity of epileptogenesis-related neurotransmitter receptors/transporters (M2, 5-HT2B, and NE transporter) as well as Kir channels (Kir3.1 and Kir6.2) were determined in the cortex, hippocampus and medulla of adult Wistar rats by utilizing a Pentylenetetrazol (PTZ)-kindling chronic epilepsy model. Increased immunoreactivity of the NE transporter, M2, and 5-HT2B receptors was witnessed in the cortex and medulla. While the immunoreactivity of the 5-HT2B receptor was found increased in the cortex and medulla, it was decreased in the hippocampus, with no changes observed in the M2 receptor in this region. Kir3.1 and Kir6.2 staining showed increase immunoreactivity in the cerebral cortex, but channel contrasting findings in the hippocampus and medulla. Our results suggest that seizure kindling may result in significant changes in the neurotransmitter system which may contribute or propagate to future epileptogenesis, brain damage and potentially towards sudden unexpected death in epilepsy (SUDEP). Further studies on the pathogenic role of these changes in neurotransmitter receptors/transporters and K+ channel immunoreactivity may identify newer possible targets to treat seizures or prevent epilepsy-related comorbidities.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Betul Koklu
- Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey;
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey; (Z.D.); (E.K.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alina Arulsamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (Y.N.P.); (A.A.); (M.F.S.)
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Langone School of Medicine, New York, NY 10010, USA
- Correspondence: (E.A.); (O.D.); Tel.: +90-535-7629979 (E.A.); +1-646-558-0803 (O.D.)
| |
Collapse
|
6
|
Song N, Zhu H, Xu R, Liu J, Fang Y, Zhang J, Ding J, Hu G, Lu M. Induced Expression of kir6.2 in A1 Astrocytes Propagates Inflammatory Neurodegeneration via Drp1-dependent Mitochondrial Fission. Front Pharmacol 2021; 11:618992. [PMID: 33584303 PMCID: PMC7876245 DOI: 10.3389/fphar.2020.618992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Glia-mediated inflammatory processes are crucial in the pathogenesis of Parkinson’s disease (PD). As the most abundant cells of the brain and active participants in neuroinflammatory responses, astrocytes largely propagate inflammatory signals and amplify neuronal loss. Hence, intensive control of astrocytic activation is necessary to prevent neurodegeneration. In this study, we report that the astrocytic kir6.2, as a abnormal response after inflammatory stimuli, promotes the reactivity of A1 neurotoxic astrocytes. Using kir6.2 knockout (KO) mice, we find reversal effects of kir6.2 deficiency on A1-like astrocyte activation and death of dopaminergic neurons in lipopolysaccharide (LPS)-induced mouse models for PD. Further in vitro experiments show that aberrant kir6.2 expression induced by inflammatory irritants in astrocytes mediates the dynamin-related protein 1 (Drp1)-dependent excessive mitochondrial fragmentation and results in mitochondrial malfunctions. By deleting kir6.2, astrocytic activation is reduced and astrocytes-derived neuronal injury is prevented. We therefore conclude that astrocytic kir6.2 can potentially elucidate the pathology of PD and promote the development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Vidal-Martinez G, Yang B, Vargas-Medrano J, Perez RG. Could α-Synuclein Modulation of Insulin and Dopamine Identify a Novel Link Between Parkinson's Disease and Diabetes as Well as Potential Therapies? Front Mol Neurosci 2018; 11:465. [PMID: 30622456 PMCID: PMC6308185 DOI: 10.3389/fnmol.2018.00465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Characterizing the normal function(s) of the protein α-Synuclein (aSyn) has the potential to illuminate links between Parkinson’s disease (PD) and diabetes and also point the way toward new therapies for these disorders. Here we provide a perspective for consideration based on our discovery that aSyn normally acts to inhibit insulin secretion from pancreatic β-cells by interacting with the Kir6.2 subunit of the ATP-sensitive potassium channel (K-ATP). It is also known that K-ATP channels act to inhibit brain dopamine secretion, and we have also shown that aSyn is a normal inhibitor of dopamine synthesis. The finding, that aSyn modulates Kir6.2 and other proteins involved in dopamine and insulin secretion, suggests that aSyn interacting proteins may be negatively impacted when aSyn aggregates inside cells, whether in brain or pancreas. Furthermore, identifying therapies for PD that can counteract dysfunction found in diabetes, would be highly beneficial. One such compound may be the multiple sclerosis drug, FTY720, which like aSyn can stimulate the activity of the catalytic subunit of protein phosphatase 2A (PP2Ac) as well as insulin secretion. In aging aSyn transgenic mice given long term oral FTY720, the mice had reduced aSyn pathology and increased levels of the protective molecule, brain derived neurotrophic factor (BDNF) (Vidal-Martinez et al., 2016). In collaboration with medicinal chemists, we made two non-immunosuppressive FTY720s that also enhance PP2Ac activity, and BDNF expression (Vargas-Medrano et al., 2014; Enoru et al., 2016; Segura-Ulate et al., 2017a). FTY720 and our novel FTY720-based-derivatives, may thus have therapeutic potential for both diabetes and PD.
Collapse
Affiliation(s)
- Guadalupe Vidal-Martinez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Barbara Yang
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Javier Vargas-Medrano
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neurosciences, Graduate School of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
8
|
Possible involvement of monoamine neurons in the emotional abnormality in Kir6.2-deficient mice. Physiol Behav 2018; 188:251-261. [PMID: 29432787 DOI: 10.1016/j.physbeh.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/24/2022]
Abstract
ATP-sensitive potassium (KATP) channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a regulatory sulfonylurea receptor subunit (SUR1, SUR2A or SUR2B). Although Kir6.2 is widely distributed in the brain, the mechanisms that underlie the impact of Kir6.2 on emotional behavior are not yet fully understood. To clarify the role of Kir6.2 in emotional behavior, in the present study, we investigated the behavioral characteristics of Kir6.2-knockout (Kir6.2-/-) mice. Kir6.2-/- mice showed impaired general behavior in a locomotor activity test and open field test. In addition, anxiety-like behavior was observed in the open field test, elevated plus-maze test and light-dark test. In particular, excessive anxiety-like behavior was observed in female Kir6.2-/- mice. Moreover, we investigated whether Kir6.2 is expressed on monoamine neurons in the brain. Immunohistochemical studies showed that Kir6.2 was co-localized with tryptophan hydroxylase (TPH), a marker of serotonergic neurons, in dorsal raphe nuclei. Kir6.2 was also co-localized with tyrosine hydroxylase (TH), a marker of dopaminergic/noradrenergic neurons, in the ventral tegmental area and locus coeruleus. Next, we checked the protein levels of TH and TPH in the midbrain. Interestingly, TPH expression was significantly elevated in female Kir6.2-/- mice. These results suggest that Kir6.2 in monoamine neurons, especially serotonergic neurons, could play a key role in emotional behavior.
Collapse
|
9
|
Yang H, Sampson MM, Senturk D, Andrews AM. Sex- and SERT-mediated differences in stimulated serotonin revealed by fast microdialysis. ACS Chem Neurosci 2015; 6:1487-501. [PMID: 26167657 DOI: 10.1021/acschemneuro.5b00132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo microdialysis is widely used to investigate how neurotransmitter levels in the brain respond to biologically relevant challenges. Here, we combined recent improvements in the temporal resolution of online sampling and analysis for serotonin with a brief high-K(+) stimulus paradigm to study the dynamics of evoked release. We observed stimulated serotonin overflow with high-K(+) pulses as short as 1 min when determined with 2-min dialysate sampling in ventral striatum. Stimulated serotonin levels in female mice during the high estrogen period of the estrous cycle were similar to serotonin levels in male mice. By contrast, stimulated serotonin overflow during the low estrogen period in female mice was increased to levels similar to those in male mice with local serotonin transporter (SERT) inhibition. Stimulated serotonin levels in mice with constitutive loss of SERT were considerably higher yet, pointing to neuroadaptive potentiation of serotonin release. When combined with brief K(+) stimulation, fast microdialysis reveals dynamic changes in extracellular serotonin levels associated with normal hormonal cycles and pharmacologic vs genetic loss of SERT function.
Collapse
Affiliation(s)
- Hongyan Yang
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Maureen M. Sampson
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Damla Senturk
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, ‡Molecular Toxicology Interdepartmental Program, §Department of Chemistry & Biochemistry, and ∥Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes. PLoS One 2013; 8:e69883. [PMID: 23922840 PMCID: PMC3726734 DOI: 10.1371/journal.pone.0069883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1) knockout (KO) mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABA(A) receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.
Collapse
|
11
|
Zhou Y, Liu MD, Fan Y, Ding JH, Du RH, Hu G. Enhanced MK-801-induced locomotion in Kir6.2 knockout mice. Neurosci Res 2012; 74:195-9. [DOI: 10.1016/j.neures.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
|
12
|
Impaired striatal dopamine output of homozygous Wfs1 mutant mice in response to [K+] challenge. J Physiol Biochem 2010; 67:53-60. [DOI: 10.1007/s13105-010-0048-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 09/21/2010] [Indexed: 12/18/2022]
|
13
|
Betourne A, Bertholet AM, Labroue E, Halley H, Sun HS, Lorsignol A, Feng ZP, French RJ, Penicaud L, Lassalle JM, Frances B. Involvement of hippocampal CA3 KATP channels in contextual memory. Neuropharmacology 2009; 56:615-25. [DOI: 10.1016/j.neuropharm.2008.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/27/2022]
|