1
|
Herajärvi J, Juvonen T. Preparing the spinal cord - priming or preconditioning? A systematic review of experimental studies. Scand Cardiovasc J Suppl 2023; 57:2166100. [PMID: 36660818 DOI: 10.1080/14017431.2023.2166100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objectives. Paraplegia is devastating complication associated with thoracic and thoracoabdominal aortic aneurysm repair. Vast evidence has been gathered on pre-, peri- and postoperative protective adjuncts aiming to minimize spinal cord ischemia. This review focuses on the pretreatment phase of open surgical or endovascular aortic procedures and gathers the experimental data on the interventional preconditioning and priming methods that increase the spinal cord ischemic tolerance. Design. By the start of March 2021, a systematic review was performed in PubMed, Scopus and Web of Science core collection to identify the articles that reported (i) either an ischemic preconditioning, remote ischemic preconditioning or priming method prior to (ii) experimental spinal cord ischemia performed in endovascular or open surgical fashion mimicking either thoracic, abdominal or thoracoabdominal aortic aneurysm procedures. (iii) The outcomes were reported via neurological, motor-evoked potential, somatosensory-evoked potential, histopathological, immunohistochemical, physiological analysis, or in different combinations of these measurements. Results. The search yielded 7802 articles, and 57 articles were included in the systematic review. The articles were assessed by the evaluated species, the utilized pretreatment, the measured protective effects, and the suggested underlying mechanisms. Conclusions. The reviewed articles showed several possible mechanisms in ischemic and remote ischemic preconditioning for prevention of spinal cord ischemia. The main suggested method for priming was arteriogenetic stimulus. Future studies should confirm these hints of arteriogenetic stimulus with more precise quantification of the protective recruitment process.
Collapse
Affiliation(s)
- Johanna Herajärvi
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Research Unit of Surgery, Anesthesia and Critical Care, University of Oulu, Oulu, Finland
| | - Tatu Juvonen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Research Unit of Surgery, Anesthesia and Critical Care, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Xu T, Gao P, Huang Y, Wu M, Yi J, Zhou Z, Zhao X, Jiang T, Liu H, Qin T, Yang Z, Wang X, Bao T, Chen J, Zhao S, Yin G. Git1-PGK1 interaction achieves self-protection against spinal cord ischemia-reperfusion injury by modulating Keap1/Nrf2 signaling. Redox Biol 2023; 62:102682. [PMID: 36963288 PMCID: PMC10053403 DOI: 10.1016/j.redox.2023.102682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Spinal cord ischemia-reperfusion (IR) injury (SCIRI) is a significant secondary injury that causes damage to spinal cord neurons, leading to the impairment of spinal cord sensory and motor functions. Excessive reactive oxygen species (ROS) production is considered one critical mechanism of neuron damage in SCIRI. Nonetheless, the molecular mechanisms underlying the resistance of neurons to ROS remain elusive. Our study revealed that the deletion of Git1 in mice led to poor recovery of spinal cord motor function after SCIRI. Furthermore, we discovered that Git1 has a beneficial effect on neuron resistance to ROS production. Mechanistically, Git1 interacted with PGK1, regulated PGK1 phosphorylation at S203, and affected the intermediate products of glycolysis in neurons. The influence of Git1 on glycolysis regulates the dimerization of Keap1, which leads to changes in Nrf2 ubiquitination and plays a role in resisting ROS. Collectively, we show that Git1 regulates the Keap1/Nrf2 axis to resist ROS in a PGK1-dependent manner and thus is a potential therapeutic target for SCIRI.
Collapse
Affiliation(s)
- Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing, 210008, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Peng Gao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yifan Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Mengyuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zheng Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tao Qin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhenqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xiaowei Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Tianyi Bao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
3
|
Chen J, Wang Q, Zhou W, Zhou Z, Tang PY, Xu T, Liu W, Li LW, Cheng L, Zhou ZM, Fan J, Yin GY. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling. FASEB J 2018; 32:fj201800548. [PMID: 29912587 DOI: 10.1096/fj.201800548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GPCR kinase 2-interacting protein-1 (GIT1) is a scaffold protein that plays an important role in cell adaptation, proliferation, migration, and differentiation; however, the role of GIT1 in the regulation of neuronal death after spinal cord injury remains obscure. Here, we demonstrate that GIT1 deficiency remarkably increased neuronal apoptosis and enhanced JNK/p38 signaling, which resulted in stronger motor deficits by ischemia-reperfusion in vivo, consistent with the finding of oxygen-glucose deprivation/reoxygenation-induced neuronal injury in vitro. After treatment with JNK and p38 inhibitors, abnormally necroptotic cell death caused by GIT1 knockdown could be partially rescued, with the recovery of neuronal viability, which was still poorer than that in control neurons. Meanwhile, overactivation of JNK/p38 after GIT1 depletion was concomitant with excessive activity of apoptosis signal-regulating kinase-1 (ASK1) that could be abolished by ASK1 silencing in HEK293T cells. Finally, GIT1 could disrupt the oligomerization of ASK1 via interaction between the synaptic localization domain that contains the coiled-coil (CC)-2 domain of GIT1 and the C-terminal CC domain of ASK1. It suppressed the autophosphorylation of ASK1 and led to decreasing activity of the ASK1/JNK/p38 pathway. These data reveal a protective role for GIT1 in neuronal damage by modulating ASK1/JNK/p38 signaling.-Chen, J., Wang, Q., Zhou, W., Zhou, Z., Tang, P.-Y., Xu, T., Liu, W., Li, L.-W., Cheng, L., Zhou, Z.-M., Fan, J., Yin, G.-Y. GPCR kinase 2-interacting protein-1 protects against ischemia-reperfusion injury of the spinal cord by modulating ASK1/JNK/p38 signaling.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng-Yu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin-Wei Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Yong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Edogawa S, Peters SA, Jenkins GD, Gurunathan SV, Sundt WJ, Johnson S, Lennon RJ, Dyer RB, Camilleri M, Kashyap PC, Farrugia G, Chen J, Singh RJ, Grover M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J 2018; 32:fj201800560R. [PMID: 29897814 PMCID: PMC6219825 DOI: 10.1096/fj.201800560r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Collapse
Affiliation(s)
- Shoko Edogawa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephanie A. Peters
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory D. Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Wendy J. Sundt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan J. Lennon
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Roy B. Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Purna C. Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ravinder J. Singh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Ueno K, Samura M, Nakamura T, Tanaka Y, Takeuchi Y, Kawamura D, Takahashi M, Hosoyama T, Morikage N, Hamano K. Increased plasma VEGF levels following ischemic preconditioning are associated with downregulation of miRNA-762 and miR-3072-5p. Sci Rep 2016; 6:36758. [PMID: 27905554 PMCID: PMC5131337 DOI: 10.1038/srep36758] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Ischemic preconditioning (IPC) has protective effects against ischemia-perfusion injury of organs. In the present study, we investigated the associated mechanisms after performing remote IPC (rIPC) of lower limbs by clamping abdominal aorta in mice. Subsequent experiments showed decreased damage and paralysis of lower limbs following spinal cord injury (SCI). Concomitantly, plasma vascular endothelial growth factor (VEGF) levels were increased 24 h after rIPC compared with those in sham-operated animals. In subsequent microRNA analyses, thirteen microRNAs were downregulated in exosomes 24 h after rIPC. Further studies of femoral CD34-positive bone marrow (BM) cells confirmed downregulation of these seven microRNAs 24 h after rIPC compared with those in sham-operated controls. Subsequent algorithm-based database searches suggested that two of the seven microRNAs bind to the 3′ UTR of VEGF mRNA, and following transfection into CD34-positive BM cells, anti-miR-762, and anti-miR-3072-5p inhibitors led to increased VEGF concentrations. The present data suggest that rIPC transiently increases plasma VEGF levels by downregulating miR-762 and miR-3072-5p in CD34-positive BM cells, leading to protection against organ ischemia.
Collapse
Affiliation(s)
- Koji Ueno
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Makoto Samura
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tamami Nakamura
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuya Tanaka
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuriko Takeuchi
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Daichi Kawamura
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masaya Takahashi
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tohru Hosoyama
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Noriyasu Morikage
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
6
|
Vurusaner B, Leonarduzzi G, Gamba P, Poli G, Basaga H. Oxysterols and mechanisms of survival signaling. Mol Aspects Med 2016; 49:8-22. [PMID: 27017897 DOI: 10.1016/j.mam.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Oxysterols, a family of oxidation products of cholesterol, are increasingly drawing attention of scientists to their multifaceted biochemical properties, several of them of clear relevance to human pathophysiology. Taken up by cells through both vesicular and non-vesicular ways or often generated intracellularly, oxysterols contribute to modulate not only the inflammatory and immunological response but also cell viability, metabolism and function by modulating several signaling pathways. Moreover, they have been recognized as elective ligands for the most important nuclear receptors. The outcome of such a complex network of intracellular reactions promoted by these cholesterol oxidation products appears to be largely dependent not only on the type of cells, the dynamic conditions of the cellular and tissue environment but also on the concentration of the oxysterols. Here focus has been given to the cascade of molecular events exerted by relatively low concentrations of certain oxysterols that elicit survival and functional signals in the cells, with the aim to contribute to further expand the knowledge about the biological and physiological potential of the biochemical reactions triggered and modulated by oxysterols.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey
| | | | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
7
|
p63 Expression in the Gerbil Hippocampus Following Transient Ischemia and Effect of Ischemic Preconditioning on p63 Expression in the Ischemic Hippocampus. Neurochem Res 2015; 40:1013-22. [PMID: 25777256 DOI: 10.1007/s11064-015-1556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/15/2015] [Accepted: 03/10/2015] [Indexed: 01/17/2023]
Abstract
p63 is a transcription factor of p53 gene family, which are involved in development, differentiation and cell response to stress; however, its roles in ischemic preconditioning (IPC) in the brain are not clear. In the present study, we investigated the effect of IPC on p63 immunoreactivity caused by 5 min of transient cerebral ischemia in gerbils. IPC was induced by subjecting the gerbils to 2 min of transie ischemia 1 day prior to 5 min of transient ischemia. The animals were randomly assigned to four groups (sham-operated-group, ischemia-operated-group, IPC plus (+)-sham-operated-group and IPC + ischemia-operated-group). The number of viable neurons in the stratum pyramidale of the hippocampal CA1 region (CA1) was significantly increased by IPC + ischemia-operated-group compared with that in the ischemia-operated-group 5 days after ischemic insult. We found that strong p63 immunoreactivity was detected in the CA1 pyramidal neurons in the sham-operated-group, and the immunoreactivity was decreased with time after ischemia-reperfusion. In addition, strong p63 immunoreactivity was newly expressed in microglial cells of the CA1 region from 2 days after ischemia-reperfusion. In all the IPC + sham-operated-groups, p63 immunoreactivity in the CA1 pyramidal neurons was similar to that in the sham-operated-group, and the immunoreactivity was well maintained in the IPC + ischemia-operated-groups after cerebral ischemia. In brief, our present findings show that IPC dramatically protected the reduction of p63 immunoreactivity in the pyramidal neurons of the CA1 region after ischemia-reperfusion, and this result suggests that the expression of p63 may be necessary for neurons to survive after transient cerebral ischemia.
Collapse
|
8
|
Pang Y, Chai CR, Gao K, Jia XH, Kong JG, Chen XQ, Vatcher G, Chen JG, Yu ACH. Ischemia preconditioning protects astrocytes from ischemic injury through 14-3-3γ. J Neurosci Res 2015; 93:1507-18. [PMID: 25711139 DOI: 10.1002/jnr.23574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/11/2015] [Accepted: 01/25/2015] [Indexed: 12/28/2022]
Abstract
Stroke is a leading cause of death and disability, and new strategies are required to reduce neuronal injury and improve prognosis. Ischemia preconditioning (IPC) is an intrinsic phenomenon that protects cells from subsequent ischemic injury and might provide promising mechanisms for clinical treatment. In this study, primary astrocytes exhibited significantly less cell death than control when exposed to different durations of IPC (15, 30, 60, or 120 min). A 15-min duration was the most effective IPC to protect astrocytes from 8-hr-ischemia injury. The protective mechanisms of IPC involve the upregulation of protective proteins, including 14-3-3γ, and attenuation of malondialdehyde (MDA) content and ATP depletion. 14-3-3γ is an antiapoptotic intracellular protein that was significantly upregulated for up to 84 hr after IPC. In addition, IPC promoted activation of the c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK)-1/2, p38, and protein kinase B (Akt) signaling pathways. When JNK was specifically inhibited with SP600125, the upregulation of 14-3-3γ induced by IPC was almost completely abolished; however, there was no effect on ATP or MDA levels. This suggests that, even though both energy preservation and 14-3-3γ up-regulation were turned on by IPC, they were controlled by different pathways. The ERK1/2, p38, and Akt signaling pathways were not involved in the 14-3-3γ upregulation and energy preservation. These results indicate that IPC could protect astrocytes from ischemia injury by inducing 14-3-3γ and by alleviating energy depletion through different pathways, suggesting multiple protection of IPC and providing new insights into potential stroke therapies.
Collapse
Affiliation(s)
- Ying Pang
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Chao Rui Chai
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Kai Gao
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xi Hua Jia
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Jin Ge Kong
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Xiao Qian Chen
- Department of Pathophysiology, Ministry of Education and Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Greg Vatcher
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Jian Guo Chen
- Key Laboratory of Biomembrane and Membrane Bioengineering, Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Albert Cheung Hoi Yu
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, China
| |
Collapse
|
9
|
Wang B, Zhu Q, Man X, Guo L, Hao L. Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury. Neural Regen Res 2014; 9:1678-87. [PMID: 25374589 PMCID: PMC4211188 DOI: 10.4103/1673-5374.141802] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/04/2022] Open
Abstract
Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-dependently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reperfusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression.
Collapse
Affiliation(s)
- Baogang Wang
- Department of Cardiac Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaxia Man
- Department of Oncological Gynecology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Liming Hao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Hu H, Zhou Y, Leng T, Liu A, Wang Y, You X, Chen J, Tang L, Chen W, Qiu P, Yin W, Huang Y, Zhang J, Wang L, Sang H, Yan G. The major cholesterol metabolite cholestane-3β,5α,6β-triol functions as an endogenous neuroprotectant. J Neurosci 2014; 34:11426-38. [PMID: 25143622 PMCID: PMC6615515 DOI: 10.1523/jneurosci.0344-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022] Open
Abstract
Overstimulation of NMDA-type glutamate receptors is believed to be responsible for neuronal death of the CNS in various disorders, including cerebral and spinal cord ischemia. However, the intrinsic and physiological mechanisms of modulation of these receptors are essentially unknown. Here we report that cholestane-3β,5α,6β-triol (triol), a major metabolite of cholesterol, is an endogenous neuroprotectant and protects against neuronal injury both in vitro and in vivo via negative modulation of NMDA receptors. Treatment of cultured neurons with triol protects against glutamate-induced neurotoxicity, and administration of triol significantly decreases neuronal injury after spinal cord ischemia in rabbits and transient focal cerebral ischemia in rats. An inducible elevation of triol is associated with ischemic preconditioning and subsequent neuroprotection in the spinal cord of rabbits. This neuroprotection is effectively abolished by preadministration of a specific inhibitor of triol synthesis. Physiological concentrations of triol attenuate [Ca(2+)]i induced by glutamate and decrease inward NMDA-mediated currents in cultured cortical neurons and HEK-293 cells transiently transfected with NR1/NR2B NMDA receptors. Saturable binding of [(3)H]triol to cerebellar granule neurons and displacement of [(3)H]MK-801 binding to NMDA receptors by triol suggest that direct blockade of NMDA receptors may underlie the neuroprotective properties. Our findings suggest that the naturally occurring oxysterol, the major cholesterol metabolite triol, functions as an endogenous neuroprotectant in vivo, which may provide novel insights into understanding and developing potential therapeutics for disorders in the CNS.
Collapse
Affiliation(s)
- Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | | - Xiuhua You
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | | - Wei Yin
- Biochemistry, Zhongshan School of Medicine and
| | | | | | - Liwei Wang
- Department of Physiology, School of Medicine, Ji-nan University, Guangzhou, Guangdong 510632, China, and
| | - Hanfei Sang
- Departments of Pharmacology and Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | |
Collapse
|
11
|
Neuroprotective function of 14-3-3 proteins in neurodegeneration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:564534. [PMID: 24364034 PMCID: PMC3865737 DOI: 10.1155/2013/564534] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/17/2013] [Indexed: 12/21/2022]
Abstract
14-3-3 proteins are abundantly expressed adaptor proteins that interact with a vast number of binding partners to regulate their cellular localization and function. They regulate substrate function in a number of ways including protection from dephosphorylation, regulation of enzyme activity, formation of ternary complexes and sequestration. The diversity of 14-3-3 interacting partners thus enables 14-3-3 proteins to impact a wide variety of cellular and physiological processes. 14-3-3 proteins are broadly expressed in the brain, and clinical and experimental studies have implicated 14-3-3 proteins in neurodegenerative disease. A recurring theme is that 14-3-3 proteins play important roles in pathogenesis through regulating the subcellular localization of target proteins. Here, we review the evidence that 14-3-3 proteins regulate aspects of neurodegenerative disease with a focus on their protective roles against neurodegeneration.
Collapse
|
12
|
Ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in rabbits by attenuating blood spinal cord barrier disruption. Int J Mol Sci 2013; 14:10343-54. [PMID: 23685868 PMCID: PMC3676842 DOI: 10.3390/ijms140510343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 01/22/2023] Open
Abstract
Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion) followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan’s Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-α (TNF-α) were measured by Western blot and a real-time polymerase chain reaction. ZO-1 was also assessed using immunofluorescence. Spinal cord I-R injury reduced neurologic scores, and ischemic preconditioning treatment ameliorated this effect. Ischemic preconditioning inhibited I-R-induced increases in blood spinal cord barrier permeability and water content, increased ZO-1 mRNA and protein expression, and reduced MMP-9 and TNF-α mRNA and protein expression. These findings suggest that ischemic preconditioning attenuates the increase in blood spinal cord barrier permeability due to spinal cord I-R injury by preservation of tight junction protein ZO-1 and reducing MMP-9 and TNF-α expression.
Collapse
|
13
|
Li Y, Gu J, Liu Y, Long H, Wang G, Yin G, Fan J. iNOS participates in apoptosis of spinal cord neurons via p-BAD dephosphorylation following ischemia/reperfusion (I/R) injury in rat spinal cord. Neurosci Lett 2013; 545:117-22. [PMID: 23643992 DOI: 10.1016/j.neulet.2013.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
The pro-apoptotic effect of nitric oxide (NO) has been reported both in vivo and in vitro. Previous studies have revealed that NO, especially which produced by inducible nitric oxide synthase (iNOS), has an important effect on apoptosis of neurons in spinal cord ischemia/reperfusion (I/R) injury. To investigate the role of iNOS in this process, a randomized, controlled study was designed using a classical rat model of ischemic spinal cord injury. Fifty-four male Sprague-Dawley rats were randomly divided into three different groups: a sham-operated group (n=6), a vehicle group (I/R, n=24), and an iNOS inhibitor (aminoguanidine: AG) group (I/R+AG, n=24). Rats were sacrificed 6, 12, 24 and 72 h after reperfusion. We examined neurological motor function evaluated by 'Tarlov's score', assessed alterations in the morphology of spinal cord neurons by transmission electron microscopy (TEM), analyzed expression of iNOS at the levels of mRNA and protein, evaluated local concentrations and cellular locations of other key regulatory proteins, and investigated protein-protein interactions. In the vehicle group, iNOS expression, dephosphorylation of p-BAD (Ser 136), disassociation of BAD from p-BAD/14-3-3 dimers, and release of cytochrome c were all increased compared with the sham group. But in the AG group, all the performances above were decreased compared with the vehicle group. Similarly, rats in the sham group got a maximum score of 5 by Tarlov's motor scores evaluation. While the scores were higher in the AG group compared to the vehicle group because iNOS was inhibited. These results indicate that the activity of iNOS plays a critical role in the apoptosis of spinal cord neurons by influencing the dephosphorylation of p-BAD (Ser 136) and the interaction between BAD and 14-3-3.
Collapse
Affiliation(s)
- Yiming Li
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Fan J, Zhang N, Yin G, Zhang Z, Cheng G, Qian W, Long H, Cai W. Edaravone protects cortical neurons from apoptosis by inhibiting the translocation of BAX and Increasing the interaction between 14-3-3 and p-BAD. Int J Neurosci 2012; 122:665-74. [PMID: 22757651 DOI: 10.3109/00207454.2012.707714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Edaravone, a free radical scavenger, has shown neuroprotection properties in both animals and humans. To evaluate the mechanisms involved, we obtained a culture of almost pure neurons. The neurons, either untreated or prophylactically treated with edaravone, were exposed to 300 μM hydrogen peroxide. We examined alterations in mitochondria, the percent of apoptotic cells and the immunoblots of key regulatory proteins, and the protein-protein interactions and the cellular locations of cytochrome c. The levels of p-JNK (Thr183/Tyr185) and cytochrome c in cytosol and BAX in heavy membrane (HM), respectively, were increased at 0.5 h and reached the peak at 12 h after stimulation with hydrogen peroxide. The levels of p-BAD and BAX in the cytosol and the interaction between BAD and 14-3-3 were decreased in the untreated neurons. However, edaravone could prevent these changes. In addition, mitochondrial morphology was better preserved and the percentage of apoptosis was lower under the treatment with edaravone. In summary, the present study indicates that edaravone could protect neurons by inhibiting: (1) the activity of JNK, (2) the disassociation of BAD from 14-3-3, and (3) the translocation of BAX from cytosol to mitochondria.
Collapse
Affiliation(s)
- Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Umahara T, Uchihara T, Iwamoto T. Structure-oriented review of 14-3-3 protein isoforms in geriatric neuroscience. Geriatr Gerontol Int 2012; 12:586-99. [PMID: 22672672 DOI: 10.1111/j.1447-0594.2012.00860.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the possible relevance of 14-3-3 proteins in geriatric neuroscience. 14-3-3 proteins are mainly localized in the synapses and neuronal cytoplasm. These proteins regulate intracellular signal cascades for differentiation, development, growth, apoptosis and survival. Seven isoforms have so far been identified in mammals. The binding motifs and potential functions of 14-3-3 proteins are now recognized to have a wide range of functional relevance. First, we provide a brief summary of the molecular structure and multiple functions of 14-3-3 proteins. Second, we review the involvement of 14-3-3 proteins in common diseases of geriatric neurology, such as Alzheimer's disease and tauopathies, Parkinson's disease and α-synucleinopathies, Huntington's disease and polyglutamine diseases, Creutzfeldt-Jakob disease and prion diseases, cerebral infarction, and atherosclerosis. Finally, we discuss the immunohistochemical localization of 14-3-3 proteins and its isoforms during the postnatal development of rat brains as a basis for understanding adult neurogenesis. The elucidation of the isoform-dependent functions of 14-3-3 proteins with regard to brain development might be promising for the future development of novel therapeutic interventions for common diseases of geriatric neurology.
Collapse
Affiliation(s)
- Takahiko Umahara
- Department of Geriatric Medicine, Tokyo Medical University, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:114-37. [PMID: 21521171 DOI: 10.2174/187152411796011349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/18/2011] [Accepted: 03/22/2011] [Indexed: 12/31/2022]
Abstract
Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxiainducible factor 1(HIF1) transcription factors, in stroke.
Collapse
Affiliation(s)
- Geng-Xian Shi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, 741 S. Limestone St., Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
17
|
Feng SQ, Kong XH, Liu Y, Ban DX, Ning GZ, Chen JT, Guo SF, Wang P. Regeneration of spinal cord with cell and gene therapy. Orthop Surg 2012; 1:153-63. [PMID: 22009833 DOI: 10.1111/j.1757-7861.2009.00018.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Transplantation of fetal spinal cord cells (FSCC) can promote regeneration of injured spinal cord, while Schwann cells (SC) and some growth factors have a similar effect. However, the synergistic effects and optimal combination of these modalities have not yet been evaluated. In the current study, the efficiency of cell therapy of FSCC and/or SC, with/without growth factors (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) was examined, with the aim of establishing an optimized protocol for spinal cord injury. METHODS One hundred and twenty adult rats were randomly divided into six groups with 20 rats in each group. One week after the thoracic spinal cord injury model had been created, the rats were treated with different therapeutic modalities: Dulbecco's modified Eagles medium (DMEM) in Group I, FSCC in Group II, FSCC plus SC in Group III, FSCC plus SC over-expressing NGF in Group IV, FSCC plus SC over-expressing BDNF in Group V, and FSCC plus SC over-expressing both NGF and BDNF in Group VI. Subsequently, the rats were subjected to behavioral tests once a week after injury, while histology, immunohistochemistry and electron microscopy were performed at one and three month post-operation. RESULTS Both SC and FSCC promoted regeneration of spinal cord injury when used separately, while a combination of the two types of cell resulted in better recovery than either alone. Both growth factors (NGF and BDNF) enhanced the outcomes of cell therapy, while synergistic effects meant that a combination of each individual component (group VI) achieved the best results according to locomotion scale, histology and immunoreactivity in the injured cords. CONCLUSION SC, NGF and BDNF can enhance the outcome of FSCC therapy, while the combination of FSC with SC, NGF and BDNF is possibly the optimal protocol for clinical treatment of acute spinal cord injury.
Collapse
Affiliation(s)
- Shi-qing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liang CL, Lu K, Liliang PC, Chen TB, Chan SHH, Chen HJ. Ischemic preconditioning ameliorates spinal cord ischemia-reperfusion injury by triggering autoregulation. J Vasc Surg 2011; 55:1116-23. [PMID: 22133453 DOI: 10.1016/j.jvs.2011.09.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The mechanism underlying ischemic preconditioning (IPC) protection against spinal cord ischemia-reperfusion (I/R) injury is unclear. We investigated the role of spinal cord autoregulation in tolerance to spinal cord I/R injury induced by IPC in a rat model. METHODS Sprague-Dawley rats were randomly assigned to four groups. IPC (P) group animals received IPC by temporary thoracic aortic occlusion (AO) with a 2F Fogarty arterial embolectomy catheter (Baxter Healthcare, Irvine, Calif) for 3 minutes. The I/R injury (I/R) group animals were treated with blood withdrawal and temporary AO for 12 minutes, and shed blood reinfusion at the end of the procedures. The P+I/R animals received IPC, followed by 5 minutes reperfusion, and then I/R procedures for 12 minutes. Sham (S) group animals received anesthesia and underwent surgical preparation, but without preconditioning or I/R injury. Neurologic function on postprocedure days 1, 3, 5, and 7 was evaluated by Tarlov scoring. Lumbar segments were harvested for histopathologic examination on day 7. To evaluate the role of autoregulation in IPC, spinal cord blood flow and tissue oxygenation were continuously monitored throughout the procedure duration. RESULTS The Tarlov scores in the I/R group were significantly lower than those in the S, P, and P+I/R groups on days 1, 3, 5, and 7 (P < .001). No significant differences were noted between the S, P, and P+I/R groups. The numbers of surviving motor neurons in the S, P, and P+I/R groups were significantly higher than those in the I/R group (P < .001); however, the number of surviving motor neurons did not differ between the S, P, and P+I/R groups. The P group exhibited higher spinal cord blood flow (P = .001-.043) and tissue oxygenation (P = .032-.043) within the first 60 minutes after reperfusion than the S group. The P+I/R group exhibited higher spinal cord blood flow (P = .016-.045) and tissue oxygenation (P = .001-.038) within the first 60 minutes after reperfusion than the I/R group. CONCLUSIONS IPC ameliorates spinal cord I/R injury in rats, probably mediated by triggering spinal cord autoregulation and improving local spinal cord blood flow and tissue oxygenation. This concept may be the new therapeutic targets in patients requiring aortic surgery.
Collapse
Affiliation(s)
- Cheng-Loong Liang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Dong Y, Zhao R, Chen XQ, Yu ACH. 14-3-3γ and Neuroglobin are New Intrinsic Protective Factors for Cerebral Ischemia. Mol Neurobiol 2010; 41:218-31. [DOI: 10.1007/s12035-010-8142-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/20/2010] [Indexed: 12/15/2022]
|
20
|
Fan J, Xu G, Nagel DJ, Hua Z, Zhang N, Yin G. A model of ischemia and reperfusion increases JNK activity, inhibits the association of BAD and 14-3-3, and induces apoptosis of rabbit spinal neurocytes. Neurosci Lett 2010; 473:196-201. [PMID: 20188143 DOI: 10.1016/j.neulet.2010.02.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
It is now well established that the protein BAD (a pro-apoptotic Bcl-2 family protein) plays a pivotal role in determining cell death and survival. The c-Jun N-terminal kinase (JNK) pathway has been hypothesized to be involved in regulation of BAD. To clarify the role of BAD within the JNK pathway, a randomized, controlled study was designed using a rabbit model of ischemic spinal cord injury [5,8]. Forty-five white adult New England rabbits were randomly assigned to one of the three groups: sham-operation group (n=5), vehicle group (n=20), and JNK inhibitor group (n=20). We examined alterations in spinal tissue morphology, local concentration and cellular locations of key regulatory proteins, and protein-protein interactions. Changes in spinal cord morphology were observed with hematoxylin and eosin (H&E) staining and electron microscopy. In the vehicle group, the amount of JNK phosphorylation, cytochrome c release, and the interaction between BAD and Bcl-XL or Bcl-2 were increased compared with the JNK inhibitor group. Similarly, the phosphorylation of BAD (Ser136) and the interaction between BAD and 14-3-3 were decreased in the vehicle group. Immunohistochemical studies showed that cytoplasmic location of 14-3-3 and p-BAD (Ser136) were decreased in the vehicle group compared with the JNK inhibitor group. In addition, mitochondrial morphology was better preserved and the percentage of apoptosis was lower when JNK was inhibited. These results indicate that the JNK pathway has a critical role in the survival of neurocytes by regulating the interaction between BAD and 14-3-3.
Collapse
Affiliation(s)
- Jin Fan
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu 210029, China
| | | | | | | | | | | |
Collapse
|