1
|
Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019; 76:106835. [PMID: 31518687 DOI: 10.1016/j.ntt.2019.106835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Venlafaxine (VEN) is one of the first clinical drugs for the treatment of depression. Long-term use may cause a potentially life-threatening serotonin syndrome. Melatonin (MT) could ameliorate depression behavior. Therefore, the aim of this study was to investigate the antidepressant effects of venlafaxine in combination with melatonin on zebrafish. Reserpine was used to induce depression-like behavioral zebrafish. To explore the effects of combined use of venlafaxine and melatonin on depression-like zebrafish induced by reserpine. We tested the depressive behavior of adult zebrafish through a novel tank test, and evaluated the levels of serotonin (5-HT), dopamine (DA) and noradrenaline (NA) in zebrafish brain using enzyme-linked immunosorbent assay (ELISA), besides that the gene expression of serotonin transporters a (serta), dopamine transporters (dat) and norepinephrine transporters (net), vesicular monoamine transporter2 (vmat2) and monoamine oxidase (mao) were evaluated by qRT-PCR. The results showed that, compared with reserpine-only group, venlafaxine (VEN, 0.025 mg/L) and melatonin (MT, 1 μM) increased the parameters of exploration in the top of the tank and decreased freezing behavior significantly. Compared with reserpine-only group, the use of VEN combined with MT increased serotonin and norepinephrine levels significantly, while there was no obvious difference in dopamine content. The results of qRT-PCR showed that the use of VEN combined with MT significantly reduced the expression of serta and promoted the expression of vmat2, but had no significant effect on the expression of net, dat and mao. The results indicated that venlafaxine combined with melatonin showed more effective role to remedy the depressive symptoms in zebrafish, providing a reference for the clinical application of antidepressants.
Collapse
Affiliation(s)
- Ya-Qiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Zhuo-Ran Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Tang H, Ma M, Wu Y, Deng M, Hu F, Almansoub H, Huang H, Wang D, Zhou L, Wei N, Man H, Lu Y, Liu D, Zhu L. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer's disease via C/EBPα/miR-125b pathway. Aging Cell 2019; 18:e12902. [PMID: 30706990 PMCID: PMC6413662 DOI: 10.1111/acel.12902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023] Open
Abstract
Impairments of dendritic trees and spines have been found in many neurodegenerative diseases, including Alzheimer's disease (AD), in which the deficits of melatonin signal pathway were reported. Melatonin receptor 2 (MT2) is widely expressed in the hippocampus and mediates the biological functions of melatonin. It is known that melatonin application is protective to dendritic abnormalities in AD. However, whether MT2 is involved in the neuroprotection and the underlying mechanisms are not clear. Here, we first found that MT2 is dramatically reduced in the dendritic compartment upon the insult of oligomer Aβ. MT2 activation prevented the Aβ-induced disruption of dendritic complexity and spine. Importantly, activation of MT2 decreased cAMP, which in turn inactivated transcriptional factor CCAAT/enhancer-binding protein α(C/EBPα) to suppress miR-125b expression and elevate the expression of its target, GluN2A. In addition, miR-125b mimics fully blocked the protective effects of MT2 activation on dendritic trees and spines. Finally, injection of a lentivirus containing a miR-125b sponge into the hippocampus of APP/PS1 mice effectively rescued the dendritic abnormalities and learning/memory impairments. Our data demonstrated that the cAMP-C/EBPα/miR-125b/GluN2A signaling pathway is important to the neuroprotective effects of MT2 activation in Aβ-induced dendritic injuries and learning/memory disorders, providing a novel therapeutic target for the treatment of AD synaptopathy.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Mei Ma
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ying Wu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Man‐Fei Deng
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Hasan.a.m.m. Almansoub
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - He‐Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ding‐Qi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Lan‐Ting Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Na Wei
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pathology, School of Basic MedicineZhengzhou UniversityZhengzhouChina
| | - Hengye Man
- Department of BiologyBoston UniversityBostonMassachusetts
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
- Department of Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling‐Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Majidinia M, Reiter RJ, Shakouri SK, Yousefi B. The role of melatonin, a multitasking molecule, in retarding the processes of ageing. Ageing Res Rev 2018; 47:198-213. [PMID: 30092361 DOI: 10.1016/j.arr.2018.07.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
Biological ageing is generally accompanied by a gradual loss of cellular functions and physiological integrity of organ systems, the consequential enhancement of vulnerability, senescence and finally death. Mechanisms which underlie ageing are primarily attributed to an array of diverse but related factors including free radical-induced damage, dysfunction of mitochondria, disruption of circadian rhythms, inflammaging, genomic instability, telomere attrition, loss of proteostasis, deregulated sensing of nutrients, epigenetic alterations, altered intercellular communication, and decreased capacity for tissue repair. Melatonin, a prime regulator of human chronobiological and endocrine physiology, is highly reputed as an antioxidant, immunomodulatory, antiproliferative, oncostatic, and endocrine-modulatory molecule. Interestingly, several recent reports support melatonin as an anti-ageing agent whose multifaceted functions may lessen the consequences of ageing. This review depicts four categories of melatonin's protective effects on ageing-induced molecular and structural alterations. We also summarize recent findings related to the function of melatonin during ageing in various tissues and organs.
Collapse
|
4
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
5
|
Stefanovic B, Spasojevic N, Jovanovic P, Jasnic N, Djordjevic J, Dronjak S. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: Regulating vesicular monoamine transporter 2 and monoamine oxidase A levels. Eur Neuropsychopharmacol 2016; 26:1629-37. [PMID: 27499503 DOI: 10.1016/j.euroneuro.2016.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/13/2016] [Accepted: 07/02/2016] [Indexed: 12/17/2022]
Abstract
The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes.
Collapse
Affiliation(s)
- Bojana Stefanovic
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Predrag Jovanovic
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Nebojsa Jasnic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
6
|
Marchisella F, Coffey ET, Hollos P. Microtubule and microtubule associated protein anomalies in psychiatric disease. Cytoskeleton (Hoboken) 2016; 73:596-611. [DOI: 10.1002/cm.21300] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Marchisella
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Eleanor T. Coffey
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| | - Patrik Hollos
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; Finland
| |
Collapse
|
7
|
Yan YY, Wang XM, Jiang Y, Chen H, He JT, Mang J, Shao YK, Xu ZX. The role of Rho/Rho-kinase pathway and the neuroprotective effects of fasudil in chronic cerebral ischemia. Neural Regen Res 2015; 10:1441-9. [PMID: 26604905 PMCID: PMC4625510 DOI: 10.4103/1673-5374.165512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intragastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its related protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These findings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemia via the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.
Collapse
Affiliation(s)
- Ya-Yun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xiao-Ming Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Han Chen
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Yan-Kun Shao
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Zhong-Xin Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Domínguez-Alonso A, Valdés-Tovar M, Solís-Chagoyán H, Benítez-King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Int J Mol Sci 2015; 16:1907-27. [PMID: 25603176 PMCID: PMC4307341 DOI: 10.3390/ijms16011907] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/07/2015] [Indexed: 01/23/2023] Open
Abstract
Melatonin (MEL), the main product synthesized by the pineal gland, stimulates early and late stages of neurodevelopment in the adult brain. MEL increases dendrite length, thickness and complexity in the hilar and mossy neurons of hippocampus. Dendrite formation involves activation of Ca2+/Calmodulin (CaM)-dependent kinase II (CaMKII) by CaM. Previous work showed that MEL increased the synthesis and translocation of CaM, suggesting that MEL activates CaM-dependent enzymes by this pathway. In this work we investigated whether MEL stimulates dendrite formation by CaMKII activation in organotypic cultures from adult rat hippocampus. We found that the CaMKII inhibitor, KN-62, abolished the MEL stimulatory effects on dendritogenesis and that MEL increased the relative amount of CaM in the soluble fraction of hippocampal slices. Also, PKC inhibition abolished dendritogenesis, while luzindole, an antagonist of MEL receptors (MT1/2), partially blocked the effects of MEL. Moreover, autophosphorylation of CaMKII and PKC was increased in presence of MEL, as well as phosphorylation of ERK1/2. Our results indicate that MEL stimulates dendrite formation through CaMKII and the translocation of CaM to the soluble fraction. Dendritogenesis elicited by MEL also required PKC activation, and signaling through MT1/2 receptors was partially involved. Data strongly suggest that MEL could repair the loss of hippocampal dendrites that occur in neuropsychiatric disorders by increasing CaM levels and activation of CaMKII.
Collapse
Affiliation(s)
- Aline Domínguez-Alonso
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, CP 14370 Tlalpan, DF, Mexico.
| |
Collapse
|
9
|
Gómez BP, Reyes-Vázquez C, Velázquez-Paniagua M. Melatonin Avoids Anatomofunctional Changes Associated to Aging in a Rat Model. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aar.2014.34041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Ladurelle N, Gabriel C, Viggiano A, Mocaër E, Baulieu EE, Bianchi M. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology (Berl) 2012; 221:493-509. [PMID: 22160164 DOI: 10.1007/s00213-011-2597-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/18/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Agomelatine is described as a novel and clinical effective antidepressant drug with melatonergic (MT(1)/MT(2)) agonist and 5-HT(2C) receptor antagonist properties. Previous studies suggest that modulation of neuronal plasticity and microtubule dynamics may be involved in the treatment of depression. OBJECTIVE The present study investigated the effects of agomelatine on microtubular, synaptic and brain-derived neurotrophic factor (BDNF) proteins in selected rat brain regions. METHODS Adult male rats received agomelatine (40 mg/kg i.p.) once a day for 22 days. The pro-cognitive effect of agomelatine was tested in the novel object recognition task and antidepressant activity in the forced swimming test. Microtubule dynamics markers, microtubule-associated protein type 2 (MAP-2), phosphorylated MAP-2, synaptic markers [synaptophysin, postsynaptic density-95 (PSD-95) and spinophilin] and BDNF were measured by Western blot in the hippocampus, amygdala and prefrontal cortex (PFC). RESULTS Agomelatine exerted pro-cognitive and antidepressant activity and induced molecular changes in the brain areas examined. Agomelatine enhanced microtubule dynamics in the hippocampus and to a higher magnitude in the amygdala. By contrast, in the PFC, a decrease in microtubule dynamics was observed. Spinophilin (dendritic spines marker) was decreased, and BDNF increased in the hippocampus. Synaptophysin (presynaptic) and spinophilin were increased in the PFC and amygdala, while PSD-95 (postsynaptic marker) was increased in the amygdala, consistent with the phenomena of synaptic remodelling. CONCLUSIONS Agomelatine modulates cytoskeletal microtubule dynamics and synaptic markers. This may play a role in its pharmacological behavioural effects and may result from the melatonergic agonist and 5-HT(2C) antagonist properties of the compound.
Collapse
Affiliation(s)
- Nataly Ladurelle
- Institut National de la Santé et de la Recherche Médicale-UMR788, Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
11
|
Domínguez-Alonso A, Ramírez-Rodríguez G, Benítez-King G. Melatonin increases dendritogenesis in the hilus of hippocampal organotypic cultures. J Pineal Res 2012; 52:427-36. [PMID: 22257024 DOI: 10.1111/j.1600-079x.2011.00957.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuropsychiatric disorders are characterized by hippocampus decreased volume and loss of dendrite arborizations in the subiculum and prefrontal cortex. These structural changes are associated with diminished memory performance. Hilar neurons of the hippocampus integrate spatial memory and are lost in dementia. They receive information from dentate gyrus neurons through dendrites, while they send axonal tracts to the CA3 region. Dendrites are complex structures of neurons that receive chemical information from presynaptic and postsynaptic terminals. Melatonin, the main product of the pineal gland, has neuroprotective actions through its free radical-scavenging properties and decreases neuronal apoptosis. Recently, we found that melatonin increases dendrite maturation and complexity in new neurons formed in the dentate gyrus of mice. In addition, in N1E-115 cultured cells, the indole stimulates early stages of neurite formation, a process that is known to antecede dendrite formation and maturation. Thus, in this study, we explored whether melatonin stimulates dendrite formation and complexity in the adult rat hippocampus in organotypic slice cultures, which is a model that preserves the hippocampal circuitry and their tridimensional organizations of connectivity. The effects of melatonin were studied in nonpathological conditions and in the absence of harmful agents. The results showed that the indole at nocturnal concentrations reached in the cerebrospinal fluid stimulates dendritogenesis at formation, growth, and maturation stages. Also, data showed that dendrites formed became competent to form presynaptic specializations. Evidence strongly suggests that melatonin may be useful in the treatment of neuropsychiatric diseases to repair the loss of dendrites and re-establish lost synaptic connections.
Collapse
Affiliation(s)
- Aline Domínguez-Alonso
- Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México, D.F
| | | | | |
Collapse
|
12
|
Yoo DY, Kim W, Lee CH, Shin BN, Nam SM, Choi JH, Won MH, Yoon YS, Hwang IK. Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. J Pineal Res 2012; 52:21-8. [PMID: 21718363 DOI: 10.1111/j.1600-079x.2011.00912.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has multiple functions. In this study, we investigated the effects of melatonin on memory, cell proliferation, and neuroblast differentiation in the dentate gyrus of a mouse model of D-galactose-induced aging. D-galactose was subcutaneously administered to 7-wk-old mice for 10 wk, and age-matched mice were used as controls. Seven weeks after D-galactose administration, vehicle (water) or melatonin (6 mg/L in water) was administered ad libitum to the mice for 3 wk. The administration of D-galactose significantly increased the escape latency compared with that in the control mice on days 1-3. In addition, cells in the subgranular zone and in the granule cell layer of the dentate gyrus showed severe damage (cytoplasmic condensation) in the D-galactose-treated mice. However, melatonin supplementation to these mice for 3 wk significantly ameliorated the D-galactose-induced increase in escape latency and neuronal damage compared with the vehicle-treated group. The administration of melatonin also significantly restored the D-galactose-induced reduction of proliferating cells (Ki67-positive cells) and differentiating neuroblasts (doublecortin-positive neuroblasts) in the dentate gyrus. Furthermore, the administration of melatonin significantly increased Ser133-phosphorylated cyclic AMP response element binding protein in the dentate gyrus. The administration of melatonin significantly reduced D-galactose-induced lipid peroxidation in the dentate gyrus. These results suggest that melatonin may be helpful in reducing age-related phenomena in the brain.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gardiner J, Overall R, Marc J. The microtubule cytoskeleton acts as a key downstream effector of neurotransmitter signaling. Synapse 2011; 65:249-56. [PMID: 20687109 DOI: 10.1002/syn.20841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are well known to play a key role in the trafficking of neurotransmitters to the synapse. However, less attention has been paid to their role as downstream effectors of neurotransmitter signaling in the target neuron. Here, we show that neurotransmitter-based signaling to the microtubule cytoskeleton regulates downstream microtubule function through several mechanisms. These include tubulin posttranslational modification, binding of microtubule-associated proteins, release of microtubule-interacting second messenger molecules, and regulation of tubulin expression levels. We review the evidence for neurotransmitter regulation of the microtubule cytoskeleton, focusing on the neurotransmitters serotonin, melatonin, dopamine, glutamate, glycine, and acetylcholine. Some evidence suggests that microtubules may even play a more direct role in propagating action potentials through conductance of electric current. In turn, there is evidence for the regulation of neurotransmission by the microtubule cytoskeleton.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences, The University of Sydney 2006, New South Wales, Australia.
| | | | | |
Collapse
|
14
|
Haley GE, Kohama SG, Urbanski HF, Raber J. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus. AGE (DORDRECHT, NETHERLANDS) 2010; 32:283-296. [PMID: 20640549 PMCID: PMC2926858 DOI: 10.1007/s11357-010-9137-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/16/2010] [Indexed: 05/29/2023]
Abstract
Loss of synaptic integrity in the hippocampus and prefrontal cortex (PFC) may play an integral role in age-related cognitive decline. Previously, we showed age-related increases in the dendritic marker microtubule associated protein 2 (MAP-2) and the synaptic marker synaptophysin (SYN) in mice. Similarly, apolipoprotein E (apoE), involved in lipid transport and metabolism, and glial fibrillary acidic protein (GFAP), a glia specific marker, increase with age in rodents. In this study, we assessed whether these four proteins show similar age-related changes in a nonhuman primate, the rhesus macaque. Free-floating sections from the PFC and hippocampus from adult, middle-aged, and aged rhesus macaques were immunohistochemically labeled for MAP-2, SYN, apoE, and GFAP. Protein levels were measured as area occupied by fluorescence using confocal microscopy as well as by Western blot. In the PFC and hippocampus of adult and middle-aged animals, the levels of SYN, apoE, and GFAP immunoreactivity were comparable but there was a trend towards higher MAP-2 levels in middle-aged than adult animals. There was significantly less SYN and more MAP-2, apoE, and GFAP immunoreactivity in the PFC and hippocampus of aged animals compared to adult or middle-aged animals. Thus, the age-related changes in MAP-2, apoE, and GFAP levels were similar to those previously observed in rodents. On the other hand, the age-related changes in SYN levels were not, but were similar to those previously observed in the aging human brain. Taken together, these data emphasize the value of the rhesus macaque as a pragmatic translational model for human brain aging.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Henryk F. Urbanski
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239 USA
- 3181 SW Sam Jackson Pkwy, Mail Code L-470, Portland, OR 97239 USA
| |
Collapse
|
15
|
Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Fiol MA, Rial R. Chronic melatonin treatment and its precursor L-tryptophan improve the monoaminergic neurotransmission and related behavior in the aged rat brain. J Pineal Res 2010; 48:170-7. [PMID: 20082664 DOI: 10.1111/j.1600-079x.2009.00741.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin has an important role in the aging process as a potential drug to relieve oxidative damage, a likely cause of age-associated brain dysfunction. As age advances, the nocturnal production of melatonin decreases potentially causing physiological alterations. The present experiments were performed to study in vivo the effects of exogenously administered melatonin chronically on monoaminergic central neurotransmitters serotonin (5-HT), dopamine (DA) and norepinephrine (NE) and behavioral tests in old rats. The accumulation of 5-hydroxy-tryptophan (5-HTP) and L-3,4-dihydroxyphenylalanine (DOPA) after decarboxylase inhibition was used as a measure of the rate of tryptophan and tyrosine hydroxylation in rat brain. Also neurotransmitters 5-HT, DA and NE and some metabolites were quantified by HPLC. In control rats, an age-related decline was observed in neurochemical parameters. However, chronic administration of melatonin (1 mg/kg/day, diluted in drinking water, 4 wk) significantly reversed the age-induced deficits in all the monoaminergic neurotransmitters studied. Also, neurochemical parameters were analyzed after administration of melatonin biosynthesis precursor L-tryptophan (240 mg/kg/day, i.p., at night for 4 wk) revealing similar improvement effects to those induced by melatonin. Behavioral data corresponded well with the neurochemical findings since spatial memory test in radial-maze and motor coordination in rota-rod were significantly improved after chronic melatonin treatment. In conclusion, these in vivo findings suggest that melatonin and L-tryptophan treatments exert a long-term effect on the 5-HT, DA and NE neurotransmission by enhancing monoamine synthesis in aged rats, which might improve the age-dependent deficits in cognition and motor coordination.
Collapse
Affiliation(s)
- Susana Esteban
- Laboratorio de Neurofisiología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares, Mallorca, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen HY, Hung YC, Chen TY, Huang SY, Wang YH, Lee WT, Wu TS, Lee EJ. Melatonin improves presynaptic protein, SNAP-25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res 2009; 47:260-70. [PMID: 19709397 DOI: 10.1111/j.1600-079x.2009.00709.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapto-dendritic dysfunction and rearrangement takes place over time at the peri-infarct brain after stroke, and the event plays an important role in post-stroke functional recovery. Here, we evaluated whether melatonin would modulate the synapto-dendritic plasticity after stroke. Adult male Sprague-Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Local cerebral blood perfusion, somatosensory electrophysiological recordings and neurobehavioral tests were serially measured. Animals were sacrificed at 7 days after tMCAO. The brain was processed for Nissl-stained histology, Golgi-Cox-impregnated sections, or Western blotting for presynaptic proteins, synaptosomal-associated protein of 25 kDa (SNAP-25) and synaptophysin (a calcium-binding protein found on presynaptic vesicle membranes). Relative to controls, melatonin-treated animals had significantly reduced infarction volumes (P < 0.05) and improved neurobehavioral outcomes, as accessed by sensorimotor and rota-rod motor performance tests (P < 0.05, respectively). Melatonin also significantly improved the SNAP-25, but not synaptophysin, protein expression in the ischemic brain (P < 0.05). Moreover, melatonin significantly improved the dendritic spine density and the somatosensory electrophysiological field potentials both in the ischemic brain and the contralateral homotopic intact brain (P < 0.05, respectively). Together, melatonin not only effectively attenuated the loss of presynaptic protein, SANP-25, and dendritic spine density in the ischemic territory, but also improved the reductions in the dendritic spine density in the contralateral intact brain. This synapto-dendritic plasticity may partly account for the melatonin-mediated improvements in functional and electrophysiological circuitry after stroke.
Collapse
Affiliation(s)
- Hung-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|