1
|
Lin MT, Chan TY, Liao WH, Wu CH, Young TH, Chen WS. Low-Intensity Ultrasound Facilitation of Intranasal Drug Delivery to Olfactory Bulb and Trigeminal Nerves. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00003-1. [PMID: 39894739 DOI: 10.1016/j.ultrasmedbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Nasal-to-brain (NtoB) delivery is a noninvasive approach that uses the nasal cavity as a pathway to transport therapeutic agents directly to the brain. This approach bypasses systemic circulation and avoids the blood-brain barrier (BBB). Transcranial ultrasound, coupled with microbubbles (MB), is a technique used to oscillate and generate acoustic cavitation to open the capillary tight junctions of BBB temporarily. Its efficacy in facilitating NtoB delivery has been demonstrated in vivo. However, while opening the BBB, sonication with MB poses the risk of cerebral microhemorrhage or brain tissue damage due to sonication-induced physical injury. This study aimed to assess the effectiveness of low-intensity ultrasound treatment to facilitate NtoB delivery in a mouse model without using MB. METHODS In this study, 10-kDa dextran was administered intranasally (IN), and transcranial planar US was applied to the entire mouse brain without MB assistance. Ex-vivo whole brain imaging via fluorescence macroscopy, brain slice analysis with fluorescence microscope, and quantification of dextran concentration in distinct brain regions were conducted to compare the IN-only, IN combined with US (IN+US), and sham groups. For the trigeminal nerves (TN), fluorescence macroscopy, microscopy, and TN concentration quantification were performed to compare the three groups. RESULTS Whole brain imaging revealed that US facilitated the IN delivery of dextran to the olfactory bulb (OB) in the IN+US group compared with that in the IN-only and sham groups; however, this difference was not observed after a 24 h follow-up. Conversely, brain slice images showed that the tracer was delivered to the OB, cerebral cortex, striatum and brainstem in the IN+US group, but this finding was not observed in the IN-only group at the 4 h mark. The quantification of fluorescence intensity at two follow-up time points revealed no significant difference between the IN and IN+US groups in these specific regions. Dextran concentration analysis for distinct brain areas and TN showed that ultrasound significantly increased the tracer concentration delivered to the OB and TN in the IN+US group at the 4 h mark compared with that in the IN-only and sham groups; however, this effect was not sustained at 24 h. Confocal microscopy indicated that the dextran tracer accumulated in the perivascular space along the microvascular structures. CONCLUSION We demonstrated the efficacy of low-intensity ultrasound without using MB, in enhancing nose-to-OB and nose-to-TN drug delivery, and proposed the potential for future clinical application. Thus, we showed that this approach was safe, without evidence of microhemorrhage or brain tissue damage.
Collapse
Affiliation(s)
- Meng-Ting Lin
- Department of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yun Chan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hatakawa Y, Nakamura R, Akizawa T, Konishi M, Matsuda A, Oe T, Saito M, Ito F. SKGQA, a Peptide Derived from the ANA/BTG3 Protein, Cleaves Amyloid-β with Proteolytic Activity. Biomolecules 2024; 14:586. [PMID: 38785993 PMCID: PMC11118129 DOI: 10.3390/biom14050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Despite the extensive research conducted on Alzheimer's disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-β (Aβ) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aβ42 (a-Aβ42) and solid insoluble form s-Aβ42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aβ42 for AD treatment.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan; (Y.H.); (T.O.)
| | - Rina Nakamura
- O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun 789-1931, Kochi, Japan or (R.N.); or (T.A.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Kochi, Japan;
| | - Toshifumi Akizawa
- O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun 789-1931, Kochi, Japan or (R.N.); or (T.A.)
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Kochi, Japan;
| | - Motomi Konishi
- Department of Integrative Pharmacy, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata 573-0101, Osaka, Japan;
| | - Akira Matsuda
- Laboratory of Medicinal and Biochemical Analysis, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure 737-0112, Hiroshima, Japan;
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Miyagi, Japan; (Y.H.); (T.O.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Kochi, Japan;
| | - Fumiaki Ito
- O-Force Co., Ltd., 3454 Irino Kuroshio-cho, Hata-gun 789-1931, Kochi, Japan or (R.N.); or (T.A.)
- The Institute of Prophylactic Pharmacology, 1-58, Rinku-oraikita, Izumisano 598-8531, Osaka, Japan
| |
Collapse
|
3
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
4
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
5
|
Bahadur S, Prakash A. A Comprehensive Review on Nanomedicine: Promising Approach for Treatment of Brain Tumor through Intranasal Administration. Curr Drug Targets 2023; 24:71-88. [PMID: 36278468 DOI: 10.2174/1389450124666221019141044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Brain tumors have become one of the deadliest cancers; however, their treatment is still limited by conventional approaches. Brain tumors, among other CNS diseases, are the most lethal form of cancer due to ineffective diagnosis and profiling. The major limiting factor in treating brain tumors is the blood-brain barrier (BBB), and the required therapeutic concentration is not achieved. Hence, most drugs are prescribed at higher doses, which have several unwanted side effects. Nanotechnology has emerged as an interesting and promising new approach for treating neurological disorders, including brain tumors, with the potential to overcome concerns related to traditional therapeutic approaches. Moreover, biomimetic nanomaterials have been introduced to successfully cross the blood-brain barrier and be consumed by deep skin cancer for imaging brain tumors using multimodal functional nanostructures for more specific and reliable medical assessment. These nanomedicines can address several challenges by enhancing the bioavailability of therapeutics through controlled pharmacokinetics and pharmacodynamics. Further nasal drug delivery has been considered as an alternative approach for the brain's targeting for the treatment of several CNS diseases. A drug can be directly delivered to the brain by bypassing the BBB through intranasal administration. This review discusses intranasal nanomedicine-based therapies for brain tumor targeting, which can be explored from different perspectives.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Anubhav Prakash
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
6
|
Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40:1586-1600. [PMID: 36329321 DOI: 10.1038/s41587-022-01491-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The extraordinary success of mRNA vaccines against coronavirus disease 2019 (COVID-19) has renewed interest in mRNA as a means of delivering therapeutic proteins. Early clinical trials of mRNA therapeutics include studies of paracrine vascular endothelial growth factor (VEGF) mRNA for heart failure and of CRISPR-Cas9 mRNA for a congenital liver-specific storage disease. However, a series of challenges remains to be addressed before mRNA can be established as a general therapeutic modality with broad relevance to both rare and common diseases. An array of new technologies is being developed to surmount these challenges, including approaches to optimize mRNA cargos, lipid carriers with inherent tissue tropism and in vivo percutaneous delivery systems. The judicious integration of these advances may unlock the promise of biologically targeted mRNA therapeutics, beyond vaccines and other immunostimulatory agents, for the treatment of diverse clinical indications.
Collapse
|
7
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
8
|
Papakyriakopoulou P, Rekkas DM, Colombo G, Valsami G. Development and In Vitro-Ex Vivo Evaluation of Novel Polymeric Nasal Donepezil Films for Potential Use in Alzheimer's Disease Using Experimental Design. Pharmaceutics 2022; 14:pharmaceutics14081742. [PMID: 36015368 PMCID: PMC9416078 DOI: 10.3390/pharmaceutics14081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The objective and novelty of the present study is the development and optimization of innovative nasal film of Donepezil hydrochloride (DH) for potential use in Alzheimer’s disease. Hydroxypropyl-methyl-cellulose E50 (factor A) nasal films, with Polyethylene glycol 400 as plasticizer (factor B), and Methyl-β-Cyclodextrin, as permeation enhancer (factor C), were prepared and characterized in vitro and ex vivo. An experimental design was used to determine the effects of the selected factors on permeation profile of DH through rabbit nasal mucosa (response 1), and on film flexibility/foldability (response 2). A face centered central composite design with three levels was applied and 17 experiments were performed in triplicate. The prepared films exhibited good uniformity of DH content (90.0 ± 1.6%−99.8 ± 4.9%) and thickness (19.6 ± 1.9−170.8 ± 11.5 μm), storage stability characteristics, and % residual humidity (<3%), as well as favourable swelling and mucoadhesive properties. Response surface methodology determined the optimum composition for flexible nasal film with maximized DH permeation. All selected factors interacted with each other and the effect of these interactions on responses is strongly related to the factor’s concentration ratios. Based on these encouraging results, in vivo serum and brain pharmacokinetic study of the optimized nasal film, in comparison to DH oral administration, is ongoing in an animal model.
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimitrios M. Rekkas
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence:
| |
Collapse
|
9
|
Gallego I, Villate-Beitia I, Saenz-Del-Burgo L, Puras G, Pedraz JL. Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacol Rev 2022; 74:439-461. [PMID: 35302047 DOI: 10.1124/pharmrev.121.000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Laura Saenz-Del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| |
Collapse
|
10
|
Hatakawa Y, Tanaka A, Furubayashi T, Nakamura R, Konishi M, Akizawa T, Sakane T. Direct Delivery of ANA-TA9, a Peptide Capable of Aβ Hydrolysis, to the Brain by Intranasal Administration. Pharmaceutics 2021; 13:1673. [PMID: 34683967 PMCID: PMC8538057 DOI: 10.3390/pharmaceutics13101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
We have recently reported Catalytides (Catalytic peptides) JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMI), which are the first Catalytides found to cleave Aβ42. Although the Catalytides must be delivered to the brain parenchyma to treat Alzheimer's disease, the blood-brain barrier (BBB) limits their entry into the brain from the systemic circulation. To avoid the BBB, the direct route from the nasal cavity to the brain was used in this study. The animal studies using rats and mice clarified that the plasma clearance of ANA-TA9 was more rapid than in vitro degradation in the plasma, whole blood, and the cerebrospinal fluid (CSF). The brain concentrations of ANA-TA9 were higher after nasal administration than those after intraperitoneal administration, despite a much lower plasma concentration after nasal administration, suggesting the direct delivery of ANA-TA9 to the brain from the nasal cavity. Similar findings were observed for its transport to CSF after nasal and intravenous administration. The concentration of ANA-TA9 in the olfactory bulb reached the peak at 5 min, whereas those in the frontal and occipital brains was 30 min, suggesting the sequential backward translocation of ANA-TA9 in the brain. In conclusion, ANA-TA9 was efficiently delivered to the brain by nasal application, as compared to other routes.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan;
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| | - Rina Nakamura
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Motomi Konishi
- Department of Integrative Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-Cho, Hirakata, Osaka 573-0101, Japan;
| | - Toshifumi Akizawa
- O-Force Co., Ltd., 3454 Irino Kuroshio-Cho, Hata-Gun, Kochi 789-1931, Japan; (R.N.); (T.A.)
- Laboratory of Pharmacology, School of Medicine, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Motoyamakita-Machi 4-19-1 Higashinada, Kobe, Hyogo 658-8558, Japan; (A.T.); (T.F.)
| |
Collapse
|
11
|
Cassano R, Servidio C, Trombino S. Biomaterials for Drugs Nose-Brain Transport: A New Therapeutic Approach for Neurological Diseases. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1802. [PMID: 33917404 PMCID: PMC8038678 DOI: 10.3390/ma14071802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
In the last years, neurological diseases have resulted in a global health issue, representing the first cause of disability worldwide. Current therapeutic approaches against neurological disorders include oral, topical, or intravenous administration of drugs and more invasive techniques such as surgery and brain implants. Unfortunately, at present, there are no fully effective treatments against neurodegenerative diseases, because they are not associated with a regeneration of the neural tissue but rather act on slowing the neurodegenerative process. The main limitation of central nervous system therapeutics is related to their delivery to the nervous system in therapeutic quantities due to the presence of the blood-brain barrier. In this regard, recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood-brain barrier, consequently increasing drug cerebral bioavailability. This review provides an overview of the nose-to-brain route: first, we summarize the anatomy of this route, focusing on the neural mechanisms responsible for the delivery of central nervous system therapeutics to the brain, and then we discuss the recent advances made on the design of intranasal drug delivery systems of central nervous system therapeutics to the brain, focusing in particular on stimuli-responsive hydrogels.
Collapse
Affiliation(s)
| | | | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (C.S.)
| |
Collapse
|
12
|
Rodriguez M, Soler Y, Muthu Karuppan MK, Zhao Y, Batrakova EV, El-Hage N. Targeting Beclin1 as an Adjunctive Therapy against HIV Using Mannosylated Polyethylenimine Nanoparticles. Pharmaceutics 2021; 13:223. [PMID: 33561939 PMCID: PMC7915950 DOI: 10.3390/pharmaceutics13020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally delivered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1-48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Yemmy Soler
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Yuling Zhao
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
| | - Elena V. Batrakova
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| |
Collapse
|
13
|
Tanaka A, Takayama K, Furubayashi T, Mori K, Takemura Y, Amano M, Maeda C, Inoue D, Kimura S, Kiriyama A, Katsumi H, Miyazato M, Kangawa K, Sakane T, Hayashi Y, Yamamoto A. Transnasal Delivery of the Peptide Agonist Specific to Neuromedin-U Receptor 2 to the Brain for the Treatment of Obesity. Mol Pharm 2019; 17:32-39. [PMID: 31765157 DOI: 10.1021/acs.molpharmaceut.9b00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Obesity and metabolic syndrome are threats to the health of large population worldwide as they are associated with high mortality, mainly linked to cardiovascular diseases. Recently, CPN-116 (CPN), which is an agonist peptide specific to neuromedin-U receptor 2 (NMUR2) that is expressed predominantly in the brain, has been developed as a new therapeutic candidate for the treatment of obesity and metabolic syndrome. However, treatment with CPN poses a challenge due to the limited delivery of CPN to the brain. Recent studies have clarified that the direct anatomical connection of the nasal cavity with brain allows delivery of several drugs to the brain. In this study, we confirm the nasal cavity as a promising CPN delivery route to the brain for the treatment of obesity and metabolic syndrome. According to the pharmacokinetic study, the clearance of CPN from the blood was very rapid with a half-life of 3 min. In vitro study on its stability in the serum and cerebrospinal fluid (CSF) indicates that CPN was more stable in the CSF than in the blood. The concentration of CPN in the brain was higher after nasal administration, despite its lower concentrations in the plasma than that after intravenous administration. The study on its pharmacological potency suggests the effective suppression of increased body weight in mice in a dose-dependent manner due to the direct activation of NMUR2 by CPN. This results from the higher concentration of corticosterone in blood after nasal administration of CPN as compared to nasal application of saline. In conclusion, the above findings indicate that the nasal cavity is a promising CPN delivery route to the brain to treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Akiko Tanaka
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan.,Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Tomoyuki Furubayashi
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Kenji Mori
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Yuki Takemura
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Mayumi Amano
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Chiaki Maeda
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Daisuke Inoue
- College of Pharmaceutical Sciences , Ritsumeikan University , 1-1-1 Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | - Shunsuke Kimura
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe , Kyoto 610-0395 , Japan
| | - Akiko Kiriyama
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe , Kyoto 610-0395 , Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Mikiya Miyazato
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Kenji Kangawa
- Department of Biochemistry , National Cerebral and Cardiovascular Center Research Institute , 5-7-1 Fujishirodai , Suita , Osaka 565-8565 , Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , 1432-1 Horinouchi , Hachioji , Tokyo 192-0392 , Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| |
Collapse
|
14
|
Perivascular and Perineural Pathways Involved in Brain Delivery and Distribution of Drugs after Intranasal Administration. Pharmaceutics 2019; 11:pharmaceutics11110598. [PMID: 31726721 PMCID: PMC6921024 DOI: 10.3390/pharmaceutics11110598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
One of the most challenging aspects of treating disorders of the central nervous system (CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs is able to cross the blood–brain barrier (BBB) under physiological conditions, and this observation has prompted investigation into the routes of administration that may potentially bypass the BBB and deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms regulating the delivery of therapeutics following IN administration are not fully understood, current evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain distribution. Here, we review evidence for these delivery and distribution pathways, and we address questions that should be resolved in order to optimize the IN route of administration as a viable strategy to treat CNS disease states.
Collapse
|
15
|
Tao Y, Li C, Yao A, Qu Y, Qin L, Xiong Z, Zhang J, Wang W. Intranasal administration of erythropoietin rescues the photoreceptors in degenerative retina: a noninvasive method to deliver drugs to the eye. Drug Deliv 2019; 26:78-88. [PMID: 30744451 PMCID: PMC6374977 DOI: 10.1080/10717544.2018.1556361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Inherited retinopathies typically lead to photoreceptor loss and severe visual impairments in the subjects. Intranasal administration is an efficient approach to deliver therapeutic agents to the targeted tissue. The present study is designed to deliver the erythropoietin (EPO) into the N-methyl-N-nitrosourea (MNU) induced mice, a pharmacological retinopathy model via intranasal or intravenous route. The mice were then subjected to bioavailability assay and therapeutic effects evaluation. Our results showed that the intranasal delivery of EPO is effective to alleviate the morphological disruptions in the MNU induced mice. The intranasal delivery of EPO also ameliorated the visual impairments in the MNU induced mice. Immunostaining experiment showed that both the M-cone and S-cone populations in the degenerative retinas are rescued by the intranasal delivery of EPO. In particular, the M-cone photoreceptors in dorsal-temporal (DT) quadrant and the S-cone photoreceptors in ventral-nasal (VN) quadrant were preferentially preserved by the intranasal delivery of EPO. Mechanism studies showed that the intranasal delivery of EPO could the modulate apoptosis and restrict oxidation in the degenerative retina. Compared with intravenous delivery, the intranasal delivery led to the significantly higher EPO concentration in the retina. The intranasal delivery resulted in more potent protection and had less erythropoiesis-stimulating activity than the intravenous delivery. Our results suggest that the intranasal administration is a noninvasive and efficient approach to deliver EPO into the retinas. These findings lay the groundwork for further intranasal administration of EPO in ophthalmological practice.
Collapse
Affiliation(s)
- Ye Tao
- a Department of Ophthalmology Key Lab of Ophthalmology and visual science , Chinese PLA General Hospital , Beijing , PR China.,b Department of Physiology, Basic Medical College , Zhengzhou University , Zhengzhou , PR China
| | - Chong Li
- c Department of Neurosurgery , Chinese PLA General Hospital , Beijing , PR China
| | - Anhui Yao
- c Department of Neurosurgery , Chinese PLA General Hospital , Beijing , PR China
| | - Yingxin Qu
- a Department of Ophthalmology Key Lab of Ophthalmology and visual science , Chinese PLA General Hospital , Beijing , PR China
| | - Limin Qin
- a Department of Ophthalmology Key Lab of Ophthalmology and visual science , Chinese PLA General Hospital , Beijing , PR China
| | - Zuojun Xiong
- d Department of Neurosurgery , Central Hospital of Wuhan Tongji Medical College Huazhong University of science and technology , Wu Hang , PR China
| | - Jianbin Zhang
- e Department of Occupational and Environmental Health Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment School of Public Health , Fourth Military Medical University , Xi'an , China
| | - Weiwen Wang
- f Department of Neurosurgery and Institute for Functional Brain Disorders , Tangdu Hospital Fourth Military Medical University , Xi'an , PR China
| |
Collapse
|
16
|
Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018; 143:155-170. [PMID: 30449731 DOI: 10.1016/j.brainresbull.2018.10.009] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
The acute or chronic drug treatments for different neurodegenerative and psychiatric disorders are challenging from several aspects. The low bioavailability and limited brain exposure of oral drugs, the rapid metabolism, elimination, the unwanted side effects and also the high dose to be added mean both inconvenience for the patients and high costs for the patients, their family and the society. The reason of low brain penetration of the compounds is that they have to overcome the blood-brain barrier which protects the brain against xenobiotics. Intranasal drug administration is one of the promising options to bypass blood-brain barrier, to reduce the systemic adverse effects of the drugs and to lower the doses to be administered. Furthermore, the drugs administered using nasal route have usually higher bioavailability, less side effects and result in higher brain exposure at similar dosage than the oral drugs. In this review the focus is on giving an overview on the anatomical and cellular structure of nasal cavity and absorption surface. It presents some possibilities to enhance the drug penetration through the nasal barrier and summarizes some in vitro, ex vivo and in vivo technologies to test the drug delivery across the nasal epithelium into the brain. Finally, the authors give a critical evaluation of the nasal route of administration showing its main advantages and limitations of this delivery route for CNS drug targeting.
Collapse
|
17
|
Singh M, Khan RS, Dine K, Das Sarma J, Shindler KS. Intracranial Inoculation Is More Potent Than Intranasal Inoculation for Inducing Optic Neuritis in the Mouse Hepatitis Virus-Induced Model of Multiple Sclerosis. Front Cell Infect Microbiol 2018; 8:311. [PMID: 30234031 PMCID: PMC6132074 DOI: 10.3389/fcimb.2018.00311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/14/2018] [Indexed: 01/30/2023] Open
Abstract
Neurotropic strains of mouse hepatitis virus (MHV) induce acute inflammation and chronic demyelination in the spinal cord and optic nerves mediated by axonal spread following intracranial inoculation in mice, with pathologic features similar to the human demyelinating disease multiple sclerosis. Spinal cord demyelination is also induced following intranasal inoculation with neurotropic MHV strains, however much higher viral doses are required as compared to intracranial inoculation. Recently, it was shown that intranasal administration of low concentrations of proteins leads to significant, rapid accumulation of protein in the optic nerve and in the eye, with only low levels reaching spinal cord and other brain regions. Thus, we examined whether intranasal inoculation with MHV at doses equivalent to those given intracranially could induce optic neuritis—inflammation, demyelination and loss of retinal ganglion cells (RGCs) in the optic nerve with or without inducing spinal cord demyelination. Four week old male C57BL/6J mice were inoculated intracranially with the recombinant demyelinating strain RSA59, or intranasally with RSA59 or the non-demyelinating strain RSMHV2 as control. One month post-inoculation, mice inoculated intracranially with RSA59 had significant myelin loss in both spinal cord and optic nerves, with significant loss of RGCs as well, consistent with prior studies. As expected, intranasal inoculation with RSA59 failed to induce demyelination in spinal cord; however, it also did not induce optic nerve demyelination. No acute inflammation was found, and no viral antigen was detected, in the optic nerve or retina 1 day after inoculation. Results confirm the neurotropic effects of RSA59 following intracranial inoculation, and suggest that direct infection with axonal transport of virus from brain to spinal cord and optic nerve is required to induce demyelinating disease. These studies suggest that MHV does not selectively concentrate in optic nerve and retina to sufficient levels to induce demyelination following intranasal inoculation. Intracranial inoculation should continue to be considered a preferred method for studies of MHV-induced optic neuritis and central nervous system (CNS) demyelinating disease.
Collapse
Affiliation(s)
- Manmeet Singh
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Reas S Khan
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kimberly Dine
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Jayasri Das Sarma
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Kenneth S Shindler
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Tanaka A, Furubayashi T, Arai M, Inoue D, Kimura S, Kiriyama A, Kusamori K, Katsumi H, Yutani R, Sakane T, Yamamoto A. Delivery of Oxytocin to the Brain for the Treatment of Autism Spectrum Disorder by Nasal Application. Mol Pharm 2018; 15:1105-1111. [PMID: 29338251 DOI: 10.1021/acs.molpharmaceut.7b00991] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxytocin (OXT) is a cyclic nonapeptide, two amino acids of which are cysteine, forming an intramolecular disulfide bond. OXT is produced in the hypothalamus and is secreted into the bloodstream from the posterior pituitary. As recent studies have suggested that OXT is a neurotransmitter exhibiting central effects important for social deficits, it has drawn much attention as a drug candidate for the treatment of autism. Although human-stage clinical trials of the nasal spray of OXT for the treatment of autism have already begun, few studies have examined the pharmacokinetics and brain distribution of OXT after nasal application. The aim of this study is to evaluate the disposition, nasal absorption, and therapeutic potential of OXT after nasal administration. The pharmacokinetics of OXT after intravenous bolus injection to rats followed a two-compartment model, with a rapid initial half-life of 3 min. The nasal bioavailability of OXT was approximately 2%. The brain concentration of OXT after nasal application was much higher than that after intravenous application, despite much lower concentrations in the plasma. More than 95% of OXT in the brain was directly transported from the nasal cavity. The in vivo stress-relief effect by OXT was observed only after intranasal administration. These results indicate that pharmacologically active OXT was effectively delivered to the brain after intranasal administration. In conclusion, the nasal cavity is a promising route for the efficient delivery of OXT to the brain.
Collapse
Affiliation(s)
- Akiko Tanaka
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | | | - Mari Arai
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Daisuke Inoue
- School of Pharmacy , Shujitsu University , Kita, Okayama 703-8516 , Japan
| | - Shunsuke Kimura
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe, Kyoto 610-0395 , Japan
| | - Akiko Kiriyama
- Faculty of Pharmaceutical Sciences , Doshisha Women's College of Liberal Arts , Kodo, Kyotanabe, Kyoto 610-0395 , Japan
| | - Kosuke Kusamori
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| | - Reiko Yutani
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology , Kobe Pharmaceutical University , Motoyamakita-machi 4-19-1 , Higashinada, Kobe 658-8558 , Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics , Kyoto Pharmaceutical University , Yamashina, Kyoto 607-8414 , Japan
| |
Collapse
|
19
|
Picone P, Sabatino MA, Ditta LA, Amato A, San Biagio PL, Mulè F, Giacomazza D, Dispenza C, Di Carlo M. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release 2017; 270:23-36. [PMID: 29196041 DOI: 10.1016/j.jconrel.2017.11.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023]
Abstract
Recent evidences suggest that insulin delivery to the brain can be an important pharmacological therapy for some neurodegenerative pathologies, including Alzheimer disease (AD). Due to the presence of the Blood Brain Barrier, a suitable carrier and an appropriate route of administration are required to increase the efficacy and safety of the treatment. Here, poly(N-vinyl pyrrolidone)-based nanogels (NG), synthetized by e-beam irradiation, alone and with covalently attached insulin (NG-In) were characterized for biocompatibility and brain delivery features in a mouse model. Preliminarily, the biodistribution of the "empty" nanocarrier after intraperitoneal (i.p.) injection was investigated by using a fluorescent-labeled NG. By fluorescence spectroscopy, SEM and dynamic light scattering analyses we established that urine clearance occurs in 24h. Histological liver and kidneys inspections indicated that no morphological alterations of tissues occurred and no immunological response was activated after NG injection. Furthermore, after administration of the insulin-conjugated nanogels (NG-In) through the intranasal route (i.n.) no alteration or immunogenic response of the nasal mucosa was observed, suggesting that the formulation is well tolerated in mouse. Moreover, an enhancement of NG-In delivery to the different brain areas and of its biological activity, measured as Akt activation levels, with reference to free insulin administration was demonstrated. Taken together, these results indicate that the synthesized NG-In enhances brain insulin delivery upon i.n. administration and strongly encourage its further evaluation as therapeutic agent against some neurodegenerative diseases.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Maria Antonietta Sabatino
- Dipartimento dell'Innovazione Industriale e Digitale (DIID), Università di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy
| | - Lorena Anna Ditta
- Dipartimento dell'Innovazione Industriale e Digitale (DIID), Università di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica (IBF), Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica (IBF), Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| | - Clelia Dispenza
- Dipartimento dell'Innovazione Industriale e Digitale (DIID), Università di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy; Istituto di Biofisica (IBF), Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| | - Marta Di Carlo
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
20
|
Sanchez-Ramos J, Song S, Kong X, Foroutan P, Martinez G, Dominguez-Viqueria W, Mohapatra S, Mohapatra S, Haraszti RA, Khvorova A, Aronin N, Sava V. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Technol 2017; 43:453-460. [PMID: 29805475 DOI: 10.1016/j.jddst.2017.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The overall objective of the present research was to develop a nanocarrier system for non-invasive delivery to brain of molecules useful for gene therapy. Manganese-containing nanoparticles (mNPs) carrying anti-eGFP siRNA were tested in cell cultures of eGFP-expressing cell line of mouse fibroblasts (NIH3T3). The optimal mNPs were then tested in vivo in mice. Following intranasal instillation, mNPs were visualized by 7T MRI throughout brain at 24 and 48 hrs. mNPs were effective in significantly reducing GFP mRNA expression in Tg GFP+ mice in olfactory bulb, striatum, hippocampus and cortex. Intranasal instillation of mNPS loaded with dsDNA encoding RFP also resulted in expression of the RFP in multiple brain regions. In conclusion, mNPs carrying siRNA, or dsDNA were capable of delivering the payload from nose to brain. This approach for delivery of gene therapies to humans, if successful, will have a significant impact on disease-modifying therapeutics of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Shijie Song
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Xiaoyuan Kong
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | | | - Gary Martinez
- Mofftt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vasyl Sava
- Department of Neurology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Yu XC, Yang JJ, Jin BH, Xu HL, Zhang HY, Xiao J, Lu CT, Zhao YZ, Yang W. A strategy for bypassing the blood-brain barrier: Facial intradermal brain-targeted delivery via the trigeminal nerve. J Control Release 2017; 258:22-33. [DOI: 10.1016/j.jconrel.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
|
23
|
Vascular Endothelial Growth Factor Isoform-B Stimulates Neurovascular Repair After Ischemic Stroke by Promoting the Function of Pericytes via Vascular Endothelial Growth Factor Receptor-1. Mol Neurobiol 2017; 55:3611-3626. [PMID: 28290152 DOI: 10.1007/s12035-017-0478-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
Ischemic stroke triggers endogenous angiogenic mechanisms, which correlates with longer survival in patients. As such, promoting angiogenesis appears to be a promising approach. Experimental studies investigated mostly the potent angiogenic factor vascular endothelial growth factor isoform-A (VEGF-A). However, VEGF-A increases the risk of destabilizing the brain microvasculature, thus hindering the translation of its usage in clinics. An attractive alternative VEGF isoform-B (VEGF-B) was recently reported to act as a survival factor rather than a potent angiogenic factor. In this study, we investigated the therapeutic potential of VEGF-B in ischemic stroke using different in vivo and in vitro approaches. We showed that the delayed intranasal administration of VEGF-B reduced neuronal damage and inflammation. Unexpectedly, VEGF-B stimulated the formation of stable brain microvasculature within the injured region by promoting the interaction between endothelial cells and pericytes. Our data indicate that the effects of VEGF-B were mediated via its specific receptor VEGF receptor-1 (VEGFR-1) that is predominately expressed in brain pericytes. Importantly, VEGF-B promoted the survival of pericytes, and not brain endothelial cells, by inducing expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and the main protein involved in energy homeostasis AMP-activated protein kinase α (AMPKα). Moreover, we showed that VEGF-B stimulated the pericytic release of factors stimulating a "reparative angiogenesis" that does not compromise microvasculature stability. Our study unraveled hitherto unknown role of VEGF-B/VEGFR-1 signaling in regulating the function of pericytes. Furthermore, our findings suggest that brain microvasculature stabilization via VEGF-B constitutes a safe therapeutic approach for ischemic stroke.
Collapse
|
24
|
|
25
|
Bianchi A, Painter KJ, Sherratt JA. Spatio-temporal Models of Lymphangiogenesis in Wound Healing. Bull Math Biol 2016; 78:1904-1941. [PMID: 27670430 DOI: 10.1007/s11538-016-0205-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/05/2016] [Indexed: 01/13/2023]
Abstract
Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: (1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case and (2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here, we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.
Collapse
Affiliation(s)
- Arianna Bianchi
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK. .,University of Alberta, 632 Central Academic Building, Edmonton, AB, T6G 2G1, Canada.
| | - Kevin J Painter
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Jonathan A Sherratt
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| |
Collapse
|
26
|
McGowan JW, Shao Q, Vig PJ, Bidwell GL. Intranasal administration of elastin-like polypeptide for therapeutic delivery to the central nervous system. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2803-2813. [PMID: 27660412 PMCID: PMC5019317 DOI: 10.2147/dddt.s106216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bypassing the blood–brain barrier is one of the primary considerations when designing compounds intended to function in the central nervous system (CNS). Intranasal (IN) administration of otherwise blood–brain barrier impermeable molecules can result in high CNS concentrations and low systemic accumulation, indicating that IN administration may be a useful method of delivering therapeutics to the CNS. Elastin-like polypeptide (ELP) is a large, non-immunogenic, highly manipulable biopolymer with extensive evidence supporting its use as a carrier with the ability to improve drug pharmacokinetics and drug targeting. The ability of ELP to reach the CNS via IN administration has been shown previously. Previous studies have also identified the ability of cell penetrating peptides (CPPs) to increase the uptake of molecules in some instances, including via the IN route. Here, we compared and contrasted the biodistribution of ELPs with or without addition of the CPPs Tat or SynB1 via both the IN and intravenous routes. Administration of ELP via the IN route led to significant accumulation in the brain, especially in the olfactory bulbs. When injected intravenously, <3% of the ELP signal was present outside the vascular compartment. This contrasted with IN administration, which resulted in 79% of the fluorescence signal localized outside the vascular space. The fusion of Tat or SynB1 significantly altered the biodistribution of ELP, decreasing the total CNS accumulation following IN administration. The addition of CPPs to ELP increased their retention in the nasal epithelium. These results suggest ELP may represent an effective CNS delivery vector without further modification and that the addition of a CPP significantly influences biodistribution.
Collapse
Affiliation(s)
| | | | - Parminder Js Vig
- Department of Neurology; Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gene L Bidwell
- Department of Neurology; Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
27
|
Garbuzova-Davis S, Thomson A, Kurien C, Shytle RD, Sanberg PR. Potential new complication in drug therapy development for amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 16:1397-1405. [PMID: 27362330 DOI: 10.1080/14737175.2016.1207530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the brain and spinal cord. Treatment development for ALS is complicated by complex underlying disease factors. Areas covered: Numerous tested drug compounds have shown no benefits in ALS patients, although effective in animal models. Discrepant results of pre-clinical animal studies and clinical trials for ALS have primarily been attributed to limitations of ALS animal models for drug-screening studies and methodological inconsistencies in human trials. Current status of pre-clinical and clinical trials in ALS is summarized. Specific blood-CNS barrier damage in ALS patients, as a novel potential reason for the clinical failures in drug therapies, is discussed. Expert commentary: Pathological perivascular collagen IV accumulation, one unique characteristic of barrier damage in ALS patients, could be hindering transport of therapeutics to the CNS. Restoration of B-CNS-B integrity would foster delivery of therapeutics to the CNS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,b Department of Neurosurgery and Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,c Department of Molecular Pharmacology and Physiology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,d Department of Pathology and Cell Biology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - Avery Thomson
- e Department of Neurology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - Crupa Kurien
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - R Douglas Shytle
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,b Department of Neurosurgery and Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - Paul R Sanberg
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,b Department of Neurosurgery and Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,d Department of Pathology and Cell Biology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,f Department of Psychiatry , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|
28
|
Pignataro G, Ziaco B, Tortiglione A, Gala R, Cuomo O, Vinciguerra A, Lapi D, Mastantuono T, Anzilotti S, D’Andrea LD, Pedone C, di Renzo G, Annunziato L, Cataldi M. Neuroprotective Effect of VEGF-Mimetic Peptide QK in Experimental Brain Ischemia Induced in Rat by Middle Cerebral Artery Occlusion. ACS Chem Neurosci 2015; 6:1517-25. [PMID: 26173041 DOI: 10.1021/acschemneuro.5b00175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated the effect of the VEGF-mimetic peptide, QK, on ischemic brain damage and on blood-brain barrier permeability in the rat. QK administered by the intracerebroventricular, intravenous, or intranasal route caused a 40% decrease in ischemic brain damage induced by permanent occlusion of the middle cerebral artery relative to that in controls. No increase in the volume of the ischemic hemisphere compared to that of the contralateral nonischemic hemisphere was observed in rats treated with QK, suggesting that this peptide did not cause brain edema. The effect of QK on vessel permeability was evaluated by intravital pial microvessel videoimaging, a technique that allows the pial vessels to be visualized through a surgically prepared open cranial window. The results showed that QK did not cause any leakage of intravenously injected fluorescein-dextran conjugates after intracarotid administration or topical application to the brain cortex. Collectively, these data suggest that QK may exert neuroprotective activity in the context of stroke without promoting any increase in vascular permeability. Because VEGF's neuroprotective activity may be overshadowed by the appearance of brain edema and microbleeds, QK could represent a significant step forward in stroke treatment.
Collapse
Affiliation(s)
| | - Barbara Ziaco
- Institute
of Biostructure and Bioimaging, Italian National Research Council (CNR), 80145 Naples, Italy
| | | | | | | | | | | | | | | | - Luca Domenico D’Andrea
- Institute
of Biostructure and Bioimaging, Italian National Research Council (CNR), 80145 Naples, Italy
| | - Carlo Pedone
- Institute
of Biostructure and Bioimaging, Italian National Research Council (CNR), 80145 Naples, Italy
| | | | | | | |
Collapse
|
29
|
Bender T, Migliore M, Campbell R, John Gatley S, Waszczak B. Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience 2015; 303:569-76. [DOI: 10.1016/j.neuroscience.2015.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
|
30
|
Aly AEE, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2015; 12:1923-41. [PMID: 26289676 DOI: 10.1517/17425247.2015.1069815] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Developing a disease-modifying gene therapy for Parkinson's disease (PD) has been a high priority for over a decade. However, due to the inability of large biomolecules to cross the blood-brain barrier (BBB), the only means of delivery to the brain has been intracerebral infusion. Intranasal administration offers a non-surgical means of bypassing the BBB to deliver neurotrophic factors, and the genes encoding them, directly to the brain. AREAS COVERED This review summarizes: i) evidence demonstrating intranasal delivery to the brain of a number of biomolecules having therapeutic potential for various CNS disorders; and ii) evidence demonstrating neuroprotective efficacy of a subset of biomolecules specifically for PD. The intersection of these two spheres represents the area of opportunity for development of new intranasal gene therapies for PD. To that end, our laboratory showed that intranasal administration of glial cell line-derived neurotrophic factor (GDNF), or plasmid DNA nanoparticles encoding GDNF, provides neuroprotection in a rat model of PD, and that the cells transfected by the nanoparticle vector are likely to be pericytes. EXPERT OPINION A number of genes encoding neurotrophic factors have therapeutic potential for PD, but few have been tested by the intranasal route and shown to be neuroprotective in a model of PD. Intranasal delivery provides a largely unexplored, promising approach for development of a non-invasive gene therapy for PD.
Collapse
Affiliation(s)
- Amirah E-E Aly
- a 1 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA
| | - Barbara L Waszczak
- b 2 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA +1 617 373 3312 ; +1 617 373 8886 ;
| |
Collapse
|
31
|
Addington CP, Roussas A, Dutta D, Stabenfeldt SE. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights 2015; 10:43-60. [PMID: 25983552 PMCID: PMC4429653 DOI: 10.4137/bmi.s20062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) affects 5.3 million Americans annually. Despite the many long-term deficits associated with TBI, there currently are no clinically available therapies that directly address the underlying pathologies contributing to these deficits. Preclinical studies have investigated various therapeutic approaches for TBI: two such approaches are stem cell transplantation and delivery of bioactive factors to mitigate the biochemical insult affiliated with TBI. However, success with either of these approaches has been limited largely due to the complexity of the injury microenvironment. As such, this review outlines the many factors of the injury microenvironment that mediate endogenous neural regeneration after TBI and the corresponding bioengineering approaches that harness these inherent signaling mechanisms to further amplify regenerative efforts.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Adam Roussas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dipankar Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
32
|
Abstract
The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to, disease modifying effects. With change in population demographics, the incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain.
Collapse
|
33
|
Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 2015; 35:371-81. [PMID: 25492117 PMCID: PMC4348383 DOI: 10.1038/jcbfm.2014.215] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 11/09/2022]
Abstract
The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood-brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.
Collapse
|
34
|
Ruigrok MJR, de Lange ECM. Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans. AAPS JOURNAL 2015; 17:493-505. [PMID: 25693488 PMCID: PMC4406961 DOI: 10.1208/s12248-015-9724-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
To investigate the potential added value of intranasal drug administration, preclinical studies to date have typically used the area under the curve (AUC) in brain tissue or cerebrospinal fluid (CSF) compared to plasma following intranasal and intravenous administration to calculate measures of extent like drug targeting efficiencies (%DTE) and nose-to-brain transport percentages (%DTP). However, CSF does not necessarily provide direct information on the target site concentrations, while total brain concentrations are not specific to that end either as non-specific binding is not explicitly considered. Moreover, to predict nose-to-brain transport in humans, the use of descriptive analysis of preclinical data does not suffice. Therefore, nose-to-brain research should be performed translationally and focus on preclinical studies to obtain specific information on absorption from the nose, and distinguish between the different transport routes to the brain (absorption directly from the nose to the brain, absorption from the nose into the systemic circulation, and distribution between the systemic circulation and the brain), in terms of extent as well as rate. This can be accomplished by the use of unbound concentrations obtained from plasma and brain, with subsequent advanced mathematical modeling. To that end, brain extracellular fluid (ECF) is a preferred sampling site as it represents most closely the site of action for many targets. Furthermore, differences in nose characteristics between preclinical species and humans should be considered. Finally, pharmacodynamic measurements that can be obtained in both animals and humans should be included to further improve the prediction of the pharmacokinetic-pharmacodynamic relationship of intranasally administered CNS drugs in humans.
Collapse
Affiliation(s)
- Mitchel J R Ruigrok
- Division of Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | |
Collapse
|
35
|
Ibanez C, Suhard D, Tessier C, Delissen O, Lestaevel P, Dublineau I, Gourmelon P. Intranasal exposure to uranium results in direct transfer to the brain along olfactory nerve bundles. Neuropathol Appl Neurobiol 2015; 40:477-88. [PMID: 23672198 DOI: 10.1111/nan.12061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/10/2013] [Indexed: 01/01/2023]
Abstract
AIMS Uranium olfactory uptake after intranasal exposure raises some concerns for people potentially exposed to airborne radionuclide contamination as the brain could be a direct target for these contaminants. A model of nasal instillation was used to elucidate the transport mechanisms of uranium to the brain and to map its localization. METHODS Increasing concentrations of depleted uranium containing solutions were instilled in the nasal cavity of adult male rats. Uranium concentrations were measured using inductively coupled plasma-mass spectrometry (ICP-MS) 4 h after instillation. Olfactory neuroepithelium cytoarchitecture was studied using immunohistochemistry experiments. Secondary ion mass spectrometry (SIMS) microscopy was performed to localize uranium in the olfactory system. RESULTS ICP-MS analyses showed a frontal accumulation of uranium in the olfactory bulbs associated with a smaller increase in more caudal brain regions (frontal cortex, hippocampus and cerebellum). Uranium concentrations in the olfactory bulbs do not reach a saturation point. Olfactory nerve bundle integrity is not affected by uranium as revealed by immunohistochemistry. SIMS microscopy allowed us to show that uranium localization is mainly restricted to the olfactory neuroepithelium and around olfactory nerve bundles. It is subsequently detected in the olfactory nerve layer of the olfactory bulb. DISCUSSION These results suggest the existence of a transcellular passage from the mucosa to the perineural space around axon bundles. Uranium bypasses the blood brain barrier and is conveyed to the brain via the cerebrospinal fluid along the olfactory nerve. Future studies might need to integrate this new contamination route to assess uranium neurotoxicity after nasal exposure.
Collapse
|
36
|
Kanazawa T. Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2015; 8:57-64. [PMID: 25610007 PMCID: PMC4294762 DOI: 10.2147/mder.s70856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, the development of effective strategies for enhancing drug delivery to the brain has been a topic of great interest in both clinical and pharmaceutical fields. In this review, we summarize our studies evaluating nose-to-brain delivery of drugs and small interfering ribonucleic acids in combination with cell-penetrating peptide-modified polymer micelles. Our findings show that the use of polymer micelles with surface modification with Tat peptide in the intranasal administration enables the non-invasive delivery of therapeutic agents to the brain by increasing the transfer of the administered drug or small interfering ribonucleic acid to the central nervous system from the nasal cavity.
Collapse
Affiliation(s)
- Takanori Kanazawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
37
|
Quintana DS, Alvares GA, Hickie IB, Guastella AJ. Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. Neurosci Biobehav Rev 2014; 49:182-92. [PMID: 25526824 DOI: 10.1016/j.neubiorev.2014.12.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 01/28/2023]
Abstract
Accumulating evidence demonstrates the important role of oxytocin (OT) in the modulation of social cognition and behavior. This has led many to suggest that the intranasal administration of OT may benefit psychiatric disorders characterized by social dysfunction, such as autism spectrum disorders and schizophrenia. Here, we review nasal anatomy and OT pathways to central and peripheral destinations, along with the impact of OT delivery to these destinations on social behavior and cognition. The primary goal of this review is to describe how these identified pathways may contribute to mechanisms of OT action on social cognition and behavior (that is, modulation of social information processing, anxiolytic effects, increases in approach-behaviors). We propose a two-level model involving three pathways to account for responses observed in both social cognition and behavior after intranasal OT administration and suggest avenues for future research to advance this research field.
Collapse
Affiliation(s)
- Daniel S Quintana
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia.
| | - Gail A Alvares
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ian B Hickie
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Adam J Guastella
- Brain & Mind Research Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
38
|
Kamei N, Takeda-Morishita M. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Control Release 2014; 197:105-10. [PMID: 25445695 DOI: 10.1016/j.jconrel.2014.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/02/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| |
Collapse
|
39
|
Lu J, Fu T, Qian Y, Zhang Q, Zhu H, Pan L, Guo L, Zhang M. Distribution of α-asarone in brain following three different routes of administration in rats. Eur J Pharm Sci 2014; 63:63-70. [PMID: 25008114 DOI: 10.1016/j.ejps.2014.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/22/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022]
Abstract
The goal of the present paper is to compare the distributions of α-asarone administered to rats through three different routes: oral, intravenous and intranasal. The concentrations of α-asarone in seven distinct brain regions, the olfactory bulb, cerebellum, hypothalamus, frontal cortex, striatum, hippocampus and medulla/pons as well as in plasma and cerebrospinal fluid (CSF), were determined by HPLC. The quantities of α-asarone accumulated in liver were measured to determine whether α-asarone could generate hepatotoxicity when administered via the three different routes. The results indicated that α-asarone could be absorbed via two different routes into the brain, after intranasal administration of dry powders. In the systemic route, α-asarone immediately entered the brain through the blood-brain barrier (BBB) after uptake into the circulatory system. In the olfactory bulb route, α-asarone traveled from the olfactory epithelium in the nasal cavity straight into brain tissue via the olfactory bulb. Furthermore, intranasal administration of α-asarone as a dry powder can ensure quick absorption and avoid excessive concentrations in the blood and liver, while achieving concentrations in the brain comparable to those attained by intravenous and oral administration routes.
Collapse
Affiliation(s)
- Jin Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingming Fu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuyi Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linmei Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Meng Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Chen Z, Gong X, Lu Y, Du S, Yang Z, Bai J, Li P, Wu H. Enhancing effect of borneol and muscone on geniposide transport across the human nasal epithelial cell monolayer. PLoS One 2014; 9:e101414. [PMID: 24992195 PMCID: PMC4081582 DOI: 10.1371/journal.pone.0101414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/06/2014] [Indexed: 11/18/2022] Open
Abstract
Geniposide is widely used in the treatment of cerebral ischemic stroke and cerebrovascular diseases for its anti-thrombotic and anti-inflammatory effects. Recent studies demonstrated that geniposide could be absorbed promptly and thoroughly by intranasal administration in mice and basically transported into the brain. Here, we explored its transport mechanism and the effect of borneol and muscone on its transport by human nasal epithelial cell (HNEC) monolayer. The cytotoxicity of geniposide, borneol, muscone and their combinations on HNECs was evaluated by the MTT assay. Transcellular transport of geniposide and the influence of borneol and muscone were studied using the HNEC monolayer. Immunostaining and transepithelial electrical resistance were measured to assess the integrity of the monolayer. The membrane fluidity of HNEC was evaluated by fluorescence recovery after photobleaching. Geniposide showed relatively poor absorption in the HNEC monolayer and it was not a P-gp substrate. Geniposide transport in both directions significantly increased when co-administrated with increasing concentrations of borneol and muscone. The enhancing effect of borneol and muscone on geniposide transport across the HNEC may be attributed to the significant enhancement on cell membrane fluidity, disassembly effect on tight junction integrity and the process was reversible. These results indicated that intranasal administration has good potential to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhenzhen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Gong
- Reproductive Endocrinology Centre, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- * E-mail:
| | - Zhihui Yang
- Department of Psychiatry, University of Florida, Gainesville, Florida, United States of America
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengyue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
41
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
42
|
Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS NANO 2014; 8:1958-65. [PMID: 24660817 DOI: 10.1021/nn501292z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The treatment of neurodegenerative diseases remains a tremendous challenge due to the limited access of molecules across the blood-brain barrier, especially large molecules such as peptides and proteins. As a result, at most, a small percentage of a drug that is administered systemically will reach the central nervous system in its active form. Currently, research in the field focuses on developing safer and more effective approaches to deliver peptides and proteins into the central nervous system. Multiple strategies have been developed for this purpose. However, noninvasive approaches, such as nanostructured protein delivery carriers and intranasal administration, seem to be the most promising strategies for the treatment of chronic diseases, which require long-term interventions. These approaches are both target-specific and able to rapidly bypass the blood-brain barrier. In this Perspective, we detail some of these strategies and discuss some of the potential pitfalls and opportunities in this field. The next generation strategies will most likely be more cell-type-specific. Devising these strategies to target the brain may ultimately become a novel therapeutic modality to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Meir Goldsmith
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Department of Material Science and Engineering, and the Center for Nanoscience and Nanotechnology, Tel Aviv University , Tel Aviv 69978, Israel
| | | | | |
Collapse
|
43
|
|
44
|
Yang J, Yao Y, Chen T, Zhang T. VEGF ameliorates cognitive impairment in in vivo and in vitro ischemia via improving neuronal viability and function. Neuromolecular Med 2013; 16:376-88. [PMID: 24338641 DOI: 10.1007/s12017-013-8284-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/05/2013] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor (VEGF) has recently been proved to be a potential therapeutic drug in ischemic disorders depending on the dose, route and time of administration, especially in focal cerebral ischemia. Whether VEGF could exert protection in a long-term total cerebral ischemic model is still uncertain, and the cellular mechanism has not been clarified so far. In order to answer the above issue, an experiment was performed in non-invasively giving exogenous VEGF to a total cerebral ischemic model rats and examining their spatial cognitive function by performing Morris water maze and long-term potential test. Moreover, we performed in vitro experiment to explore the cellular mechanism of VEGF protection effect. In an in vitro ischemia model oxygen-glucose deprivation (OGD), whole-cell patch-clamp recording was employed to examine neuronal function. Additionally, hematoxylin-eosin and propidium iodide staining were applied in vivo and in vitro in the neuropathological and viability study, separately. Our results showed that intranasal administration of VEGF could improve the cognitive function, synaptic plasticity and damaged hippocampal neurons in a global cerebral ischemia model. In addition, VEGF could retain the membrane potential, neuronal excitability and spontaneous excitatory postsynaptic currents in the early stage of ischemia, which further demonstrated that there was an acute effect of VEGF in OGD-induced pyramidal neurons. Simultaneously, it was also found that the death of CA1 pyramidal neuronal was significantly reduced by VEGF, but there was no similar effect in VEGF coexists with SU5416 group. These results indicated that VEGF could ameliorate cognitive impairment and synaptic plasticity via improving neuronal viability and function through acting on VEGFR-2.
Collapse
Affiliation(s)
- Jiajia Yang
- Key Lab of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | | | | | | |
Collapse
|
45
|
Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 2013; 21:148-54. [PMID: 24128122 DOI: 10.3109/10717544.2013.838014] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) is an immunological privileged sanctuary site-providing reservoir for HIV-1 virus. Current anti-HIV drugs, although effective in reducing plasma viral levels, cannot eradicate the virus completely from the body. The low permeability of anti-HIV drugs across the blood-brain barrier (BBB) leads to insufficient delivery. Therefore, developing a novel approaches enhancing the CNS delivery of anti-HIV drugs are required for the treatment of neuro-AIDS. The aim of this study was to develop intranasal nanoemulsion (NE) for enhanced bioavailability and CNS targeting of saquinavir mesylate (SQVM). SQVM is a protease inhibitor which is a poorly soluble drug widely used as antiretroviral drug, with oral bioavailability is about 4%. The spontaneous emulsification method was used to prepare drug-loaded o/w nanoemulsion, which was characterized by droplet size, zeta potential, pH, drug content. Moreover, ex-vivo permeation studies were performed using sheep nasal mucosa. The optimized NE showed a significant increase in drug permeation rate compared to the plain drug suspension (PDS). Cilia toxicity study on sheep nasal mucosa showed no significant adverse effect of SQVM-loaded NE. Results of in vivo biodistribution studies show higher drug concentration in brain after intranasal administration of NE than intravenous delivered PDS. The higher percentage of drug targeting efficiency (% DTE) and nose-to-brain drug direct transport percentage (% DTP) for optimized NE indicated effective CNS targeting of SQVM via intranasal route. Gamma scintigraphy imaging of the rat brain conclusively demonstrated transport of drug in the CNS at larger extent after intranasal administration as NE.
Collapse
Affiliation(s)
- Hitendra S Mahajan
- R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , India and
| | | | | | | |
Collapse
|
46
|
Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 2013; 17:525-44. [PMID: 24029446 DOI: 10.1016/j.tics.2013.08.001] [Citation(s) in RCA: 649] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
Significant progress has been made in understanding the neurobiological mechanisms through which exercise protects and restores the brain. In this feature review, we integrate animal and human research, examining physical activity effects across multiple levels of description (neurons up to inter-regional pathways). We evaluate the influence of exercise on hippocampal structure and function, addressing common themes such as spatial memory and pattern separation, brain structure and plasticity, neurotrophic factors, and vasculature. Areas of research focused more within species, such as hippocampal neurogenesis in rodents, also provide crucial insight into the protective role of physical activity. Overall, converging evidence suggests exercise benefits brain function and cognition across the mammalian lifespan, which may translate into reduced risk for Alzheimer's disease (AD) in humans.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychology, The University of Iowa, Iowa City, IA, USA; Aging Mind and Brain Initiative (AMBI), The University of Iowa, Iowa City, IA, USA.
| | | | | | | |
Collapse
|
47
|
Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37:1445-65. [PMID: 23648680 PMCID: PMC7112651 DOI: 10.1016/j.neubiorev.2013.04.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The mechanisms behind the effects of IN-applied substances need more attention. The mechanisms involved in the brain-distribution of IN-OT are completely unexplored. The possibly cascading effects of IN-OT on the intrinsic OT-system require serious investigation. IN-OT induces clear and specific changes in neural activation. IN-OT is a promising approach to treat certain clinical symptoms.
The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. ‘Direct-access-pathways’ from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral ‘prosocial’ effects: from social relations and ‘trust’ to treatment of ‘autism’. Only very recently in a microdialysis study in rats and mice, the ‘direct-nose-brain-pathways’ of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the ‘intrinsic’ OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.
Collapse
Affiliation(s)
- Jan G Veening
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands; Department of Anatomy (109), Radboud University of Medical Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
48
|
Wang S, Chen P, Zhang L, Yang C, Zhai G. Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. J Drug Target 2012; 20:831-40. [PMID: 22934854 DOI: 10.3109/1061186x.2012.719230] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of our study was to develop a microemulsion-based in situ ion-sensitive gelling system for intranasal administration of curcumin. A new microemulsion composition for curcumin was optimized with the simple lattice design. And the microemulsion-based in situ ion-sensitive gelling system consisted of Capryol 90 as oil phase, Solutol HS15 as surfactant, Transcutol HP as cosurfactant and 0.3% DGG solution as water phase. The physicochemical properties such as morphology, droplet size distribution, zeta value and the in vitro release were investigated. In addition, the histological section studies on the reaction between the obtained formulation and nasal mucosa showed that the microemulsion-based in situ ion-sensitive gelling system could not produce obvious damage to nasal mucosa. The pharmacokinetics results showed that the absolute bioavailability of curcumin in the microemulsion-based in situ ion-sensitive gelling system was 55.82% by intranasal administration. And the brain targeting index (BTI) was 6.50, and in the tissue distribution experiment, the value of (AUC(brain)/AUC(blood)) following intranasal administration was higher than that following intravenous administration, suggesting that the obvious brain targeting property by nasal delivery be attributed to a direct nose-to-brain drug transport. It can be concluded that the microemulsion-based in situ gelling as an effective and safe vehicle could greatly enhance the in vivo absorption and facilitate the delivery of curcumin to brain by intranasal administration.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
49
|
Herbert RP, Harris J, Chong KP, Chapman J, West AK, Chuah MI. Cytokines and olfactory bulb microglia in response to bacterial challenge in the compromised primary olfactory pathway. J Neuroinflammation 2012; 9:109. [PMID: 22642871 PMCID: PMC3411416 DOI: 10.1186/1742-2094-9-109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/29/2012] [Indexed: 12/04/2022] Open
Abstract
Background The primary olfactory pathway is a potential route through which microorganisms from the periphery could potentially access the central nervous system. Our previous studies demonstrated that if the olfactory epithelium was damaged, bacteria administered into the nasal cavity induced nitric oxide production in olfactory ensheathing cells. This study investigates the cytokine profile of olfactory tissues as a consequence of bacterial challenge and establishes whether or not the bacteria are able to reach the olfactory bulb in the central nervous system. Methods The olfactory epithelium of C57BL/6 mice was damaged by unilateral Triton X-100 nasal washing, and Staphylococcus aureus was administered ipsilaterally 4 days later. Olfactory mucosa and bulb were harvested 6 h, 24 h and 5 days after inoculation and their cytokine profile compared to control tissues. The fate of S. aureus and the response of bulbar microglia were examined using fluorescence microscopy and transmission electron microscopy. Results In the olfactory mucosa, administered S. aureus was present in supporting cells of the olfactory epithelium, and macrophages and olfactory nerve bundles in the lamina propria. Fluorescein isothiocyanate-conjugated S. aureus was observed within the olfactory mucosa and bulb 6 h after inoculation, but remained restricted to the peripheral layers up to 5 days later. At the 24-h time point, the level of interleukin-6 (IL-6) and tumour necrosis factor-α in the compromised olfactory tissues challenged with bacteria (12,466 ± 956 pg/ml and 552 ± 193 pg/ml, respectively) was significantly higher than that in compromised olfactory tissues alone (6,092 ± 1,403 pg/ml and 80 ± 2 pg/ml, respectively). Immunohistochemistry confirmed that IL-6 was present in several cell types including olfactory ensheathing cells and mitral cells of the olfactory bulb. Concurrently, there was a 4.4-, 4.5- and 2.8-fold increase in the density of iNOS-expressing cells in the olfactory mucosa, olfactory nerve and glomerular layers combined, and granule layer of the olfactory bulb, respectively. Conclusions Bacteria are able to penetrate the immunological defence of the compromised olfactory mucosa and infiltrate the olfactory bulb within 6 h even though a proinflammatory profile is mounted. Activated microglia may have a role in restricting bacteria to the outer layers of the olfactory bulb.
Collapse
Affiliation(s)
- Rosalind P Herbert
- Menzies Research Institute Tasmania, 17 Liverpool Street, Hobart, TAS, 7001, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64:614-28. [PMID: 22119441 DOI: 10.1016/j.addr.2011.11.002] [Citation(s) in RCA: 770] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022]
Abstract
Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | |
Collapse
|