1
|
Huang F, Baset A, Bello ST, Chen X, He J. Cholecystokinin facilitates the formation of long-term heterosynaptic plasticity in the distal subiculum. Commun Biol 2025; 8:153. [PMID: 39893259 PMCID: PMC11787286 DOI: 10.1038/s42003-025-07597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
It has been well established that Cornu Ammonis-(CA1) and subiculum (SUB) serve as the major output components of the entorhinal-hippocampal circuitry. Nevertheless, how the neuromodulators regulate the neurocircuitry in hippocampal formation has remained elusive. Cholecystokinin (CCK), is the most abundant neuropeptide in the central nervous system, which broadly regulates the animal's physiological status at multiple levels, including neuroplasticity and its behavioral consequences. Here, we uncover that exogenous CCK potentiates the excitatory synaptic transmission in the CA1-SUB projections via CCK-B receptor. Dual-color light theta burst stimulation elicits heterosynaptic long-term potentiation in distal SUB region. Light activation of medial entorhinal cortex (MEC) derived CCK-positive neurons triggers the CCK release in the SUB. Neuronal activities of SUB-projecting MECCCK neurons are necessary for conveying and processing of navigation-related information. In conclusion, our findings prove a crucial role of CCK in regulating neurobiological functions in the SUB region.
Collapse
Affiliation(s)
- Fengwen Huang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Abdul Baset
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Stephen Temitayo Bello
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
2
|
Kolatt Chandran S, Yiannakas A, Kayyal H, Salalha R, Cruciani F, Mizrahi L, Khamaisy M, Stern S, Rosenblum K. Intrinsic Excitability in Layer IV-VI Anterior Insula to Basolateral Amygdala Projection Neurons Correlates with the Confidence of Taste Valence Encoding. eNeuro 2023; 10:ENEURO.0302-22.2022. [PMID: 36635250 PMCID: PMC9850927 DOI: 10.1523/eneuro.0302-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022] Open
Abstract
Avoiding potentially harmful, and consuming safe food is crucial for the survival of living organisms. However, the perceived valence of sensory information can change following conflicting experiences. Pleasurability and aversiveness are two crucial parameters defining the perceived valence of a taste and can be impacted by novelty. Importantly, the ability of a given taste to serve as the conditioned stimulus (CS) in conditioned taste aversion (CTA) is dependent on its valence. Activity in anterior insula (aIC) Layer IV-VI pyramidal neurons projecting to the basolateral amygdala (BLA) is correlated with and necessary for CTA learning and retrieval, as well as the expression of neophobia toward novel tastants, but not learning taste familiarity. Yet, the cellular mechanisms underlying the updating of taste valence representation in this specific pathway are poorly understood. Here, using retrograde viral tracing and whole-cell patch-clamp electrophysiology in trained mice, we demonstrate that the intrinsic properties of deep-lying Layer IV-VI, but not superficial Layer I-III aIC-BLA neurons, are differentially modulated by both novelty and valence, reflecting the subjective predictability of taste valence arising from prior experience. These correlative changes in the profile of intrinsic properties of LIV-VI aIC-BLA neurons were detectable following both simple taste experiences, as well as following memory retrieval, extinction learning, and reinstatement.
Collapse
Affiliation(s)
| | - Adonis Yiannakas
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Randa Salalha
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Federica Cruciani
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Liron Mizrahi
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Bukharaeva EA, Skorinkin AI, Samigullin DV, Petrov AM. Presynaptic Acetylcholine Receptors Modulate the Time Course of Action Potential-Evoked Acetylcholine Quanta Secretion at Neuromuscular Junctions. Biomedicines 2022; 10:biomedicines10081771. [PMID: 35892671 PMCID: PMC9332499 DOI: 10.3390/biomedicines10081771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
For effective transmission of excitation in neuromuscular junctions, the postsynaptic response amplitude must exceed a critical level of depolarization to trigger action potential spreading along the muscle-fiber membrane. At the presynaptic level, the end-plate potential amplitude depends not only on the acetylcholine quanta number released from the nerve terminals in response to the nerve impulse but also on a degree of synchronicity of quanta releases. The time course of stimulus-phasic synchronous quanta secretion is modulated by many extra- and intracellular factors. One of the pathways to regulate the neurosecretion kinetics of acetylcholine quanta is an activation of presynaptic autoreceptors. This review discusses the contribution of acetylcholine presynaptic receptors to the control of the kinetics of evoked acetylcholine release from nerve terminals at the neuromuscular junctions. The timing characteristics of neurotransmitter release is nowadays considered an essential factor determining the plasticity and efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Ellya A. Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Correspondence:
| | - Andrey I. Skorinkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia
| | - Alexey M. Petrov
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| |
Collapse
|
4
|
Effects of exercise on proactive interference in memory: potential neuroplasticity and neurochemical mechanisms. Psychopharmacology (Berl) 2020; 237:1917-1929. [PMID: 32488351 DOI: 10.1007/s00213-020-05554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Proactive interference occurs when consolidated memory traces inhibit new learning. This kind of interference decreases the efficiency of new learning and also causes memory errors. Exercise has been shown to facilitate some types of cognitive function; however, whether exercise reduces proactive interference to enhance learning efficiency is not well understood. Thus, this review discusses the effects of exercise on proactive memory interference and explores potential mechanisms, such as neurogenesis and neurochemical changes, mediating any effect.
Collapse
|
5
|
Eivani M, Alijanpour S, Arefian E, Rezayof A. Corticolimbic analysis of microRNAs and protein expressions in scopolamine-induced memory loss under stress. Neurobiol Learn Mem 2019; 164:107065. [PMID: 31400468 DOI: 10.1016/j.nlm.2019.107065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to assess thealterations of corticolimbic microRNAs and protein expressions in the effect of scopolamine with or without stress on passive-avoidance memory in male Wistar rats. The expressions of miR-1, miR-10 and miR-26 and also the levels of p-CREB, CREB, C-FOS and BDNF in the prefrontal cortex (PFC), the hippocampus and the amygdala were evaluated using RT-qPCR and Western blotting techniques. The data showed that the administration of a muscarinic receptor antagonist, scopolamine or the exposure to 30 min stress significantly induced memory loss. Interestingly, the injection of an ineffective dose of scopolamine (0.5 mg/kg) alongside with exposure to an ineffective time of stress (10 min) impaired memory formation, suggesting a potentiative effect of stress on scopolamine response. Our results showed that memory formation was associated with the down-regulated expression of miR-1, miR-10 and miR-26 in the PFC and the hippocampus, but not the amygdala. The relative expression increase of miR-1 and miR-10 in the PFC and the hippocampus was shown in memory loss induced by scopolamine administration or 30-min stress. The PFC level of miR-10 and also hippocampal level of miR-1 and miR-10 were significantly up-regulated, while amygdala miR-1 and miR-26 were down-regulated in scopolamine-induced memory loss under stress. Memory formation increased BDNF, C-FOS and p-CREB/CREB in the PFC, the hippocampus and the amygdala. In contrast, the PFC, hippocampal and amygdala protein expressions were significantly decreased in memory loss induced by scopolamine administration (2 mg/kg), stress exposure (for 30 min) or scopolamine (0.5 mg/kg) plus stress (10 min). One of the most significant findings to emerge from this study is that the stress exposure potentiated the amnesic effect of scopolamine may via affecting the expressions of miRs and proteins in the PFC, the hippocampus and the amygdala. It is possible to hypothesis that corticolimbic signaling pathways play a critical role in relationship between stress and Alzheimer's disease.
Collapse
Affiliation(s)
- Mehdi Eivani
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res 2019; 143:1-12. [DOI: 10.1016/j.neures.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
7
|
Cell-Type-Specific Changes in Intrinsic Excitability in the Subiculum following Learning and Exposure to Novel Environmental Contexts. eNeuro 2019; 5:eN-NWR-0484-18. [PMID: 30627661 PMCID: PMC6325565 DOI: 10.1523/eneuro.0484-18.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
The subiculum is the main target of the hippocampal region CA1 and is the principle output region of the hippocampus. The subiculum is critical to learning and memory, although it has been relatively understudied. There are two functional types of principle neurons within the subiculum: regular spiking (RS) and burst spiking (BS) neurons. To determine whether these cell types are differentially modified by learning-related experience, we performed whole-cell patch clamp recordings from male mouse brain slices following contextual fear conditioning (FC) and memory retrieval relative to a number of control behavioral paradigms. RS cells, but not BS cells, displayed a greater degree of experience-related plasticity in intrinsic excitability measures [afterhyperpolarization (AHP), input resistance (Rinput), current required to elicit a spike], with fear conditioned animals having generally more excitable RS cells compared to naïve controls. Furthermore, we found that the relative proportion of RS to BS neurons is modified by the type of exposure, with the lowest proportion of BS subicular cells occurring in animals that underwent contextual FC followed by a retrieval test. These studies indicate that pyramidal neurons in the subiculum undergo experience- and learning-related plasticity in intrinsic properties in a cell-type-specific manner. As BS and RS cells are thought to convey distinct types of information, this plasticity may be particularly important in encoding, consolidating, and recalling spatial information by modulating information flow from the hippocampus to cortical regions.
Collapse
|
8
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
9
|
Pandey A, Sikdar SK. Depression biased non-Hebbian spike-timing-dependent synaptic plasticity in the rat subiculum. J Physiol 2014; 592:3537-57. [PMID: 24907304 DOI: 10.1113/jphysiol.2014.273367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein pre- before postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process.
Collapse
Affiliation(s)
- Anurag Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
10
|
Adermark L. Modulation of endocannabinoid-mediated long-lasting disinhibition of striatal output by cholinergic interneurons. Neuropharmacology 2011; 61:1314-20. [PMID: 21839753 DOI: 10.1016/j.neuropharm.2011.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 12/22/2022]
Abstract
The frequency and duration of glutamatergic inputs to the striatum are strong determinants of the net effect of retrograde endocannabinoid (eCB) signaling, and key factors in determining if long-term depression (LTD) has a net disinhibitory or inhibitory action in striatum. Low to moderate frequency stimulation in the dorsolateral striatum elevates eCB levels to an extent that primarily depresses transmitter release at inhibitory synapses, leading to a long-lasting disinhibition (DLL) of synaptic output. The aim of this study was to further characterize the basic features of endocannabinoid-mediated DLL of striatal output induced by moderate frequency stimulation (5 Hz, 60 s). DLL was inhibited in slices treated with the group 1 metabotropic glutamate receptor (mGluR) antagonists MPEP (40 μM) and CPCCOEt (40 μM), the dopamine D2 receptor antagonist sulpiride (5 μM), the L-type calcium channel blocker nifedipine (20 μM), the nicotinic receptor antagonist mecamylamine (10 μM), the muscarinic agonist oxotremorine sesquifumarate (10 μM), and strychnine (0.1 μM). Strychnine did not block DLL induced by WIN55,212-2 (250 nM), showing that glycine receptor-mediated modulation of eCB signaling occurs upstream from CB(1)R activation. Scopolamine (10 μM) restored DLL in strychnine-treated slices, suggesting that inhibition of glycine receptors on cholinergic interneurons could modulate eCB signaling by enhancing muscarinic receptor activation and reducing the opening of L-type calcium channels in response to depolarization. These data suggests that similar activation points are required for stimulation-induced DLL as for LTD at excitatory striatal synapses, and that cholinergic interneurons are key modulators of stimulation-induced eCB signaling in the striatum.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Box 410, 405 30 Gothenburg, Sweden.
| |
Collapse
|
11
|
Ali EHA, Arafa NMS. Comparative protective action of curcumin, memantine and diclofenac against scopolamine-induced memory dysfunction. Fitoterapia 2011; 82:601-8. [PMID: 21277954 DOI: 10.1016/j.fitote.2011.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 11/18/2022]
Abstract
The comparative preventive effect of curcumin, memantine, and diclofenac on scopolamine-induced memory dysfunction was investigated in a controlled study. A group of male and female rats was treated with one of these compounds for 15 days, after which a single dosage of scopolamine was administered. The preventive activity of curcumin on memory dysfunction was higher than that of diclofenac or memantine, that was, however, administered at lower dosages. Gender differences were observed.
Collapse
Affiliation(s)
- Elham H A Ali
- Zoology Department, Women College, for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|
12
|
Upadhya MA, Nakhate KT, Kokare DM, Singru PS, Subhedar NK. Cocaine- and amphetamine-regulated transcript peptide increases spatial learning and memory in rats. Life Sci 2010; 88:322-34. [PMID: 21167182 DOI: 10.1016/j.lfs.2010.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/29/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
AIM We investigated the involvement of cocaine- and amphetamine-regulated transcript peptide (CART) in spatial learning and memory. MAIN METHODS Rats were intracerebroventricularly injected with CART or CART-antibody, with or without intraperitoneal scopolamine, for a period of 4 days, during which they were subjected to the acquisition protocol in Morris water maze (MWM). In retrieval protocols, at 24 h and 15 days post-acquisition time points similar treatments were given to trained rats and subjected to MWM. The response of endogenous CART system to the training as well as retrieval sessions in MWM was evaluated with immunohistochemistry. KEY FINDINGS CART-administered rats showed a significant reduction in escape latency from day 1 through 4 days of acquisition; the rats spent more time in the platform quadrant in MWM during the retrieval protocol. CART-antibody or scopolamine produced an opposite effect. The effects of scopolamine were attenuated by CART, and potentiated by CART-antibody. CART-immunoreactivity in the arcuate and paraventricular nuclei, central nucleus of amygdala, bed nucleus of stria terminalis, accumbens shell, dentate gyrus (DG), and thalamic paraventricular nucleus (PVT), but not in the cornu ammonis 1-3 of hippocampus, was significantly increased following 4 days of training, and at 24 h retrieval time point in MWM. The changes were blocked by scopolamine. At 15 days retrieval time point, the immunoreactivity profiles resembled those in naïve control. SIGNIFICANCE While CART seems to promote spatial learning and memory, navigational experiences in MWM up regulates the endogenous CART systems in extended amygdala, hypothalamus, DG and PVT.
Collapse
Affiliation(s)
- Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur-440 033, India
| | | | | | | | | |
Collapse
|
13
|
L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. J Neurosci 2010; 30:6197-204. [PMID: 20445045 DOI: 10.1523/jneurosci.4673-09.2010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability of synapses to undergo persistent activity-dependent potentiation or depression [long-term potentiation (LTP)/long-term depression (LTD)] may be profoundly altered by previous neuronal activity. Although natural neuronal activity can be experimentally manipulated in vivo, very little is known about the in vivo physiological mechanisms involved in regulating this metaplasticity in models of LTP/LTD. To examine whether Ca(2+) signaling may influence metaplasticity in vivo in humans, we used continuous theta burst stimulation (cTBS) (Huang et al., 2005), a noninvasive novel repetitive magnetic stimulation protocol known to induce persistent alterations of corticospinal excitability whose polarity is changed by previous voluntary motor activity. When directed to the naive motor cortex, cTBS induced long-lasting potentiation of corticospinal excitability, but depression under the influence of nimodipine (NDP), an L-type voltage-gated Ca(2+) channel (L-VGCC) antagonist. Both aftereffects were blocked by dextromethorphan, an NMDA receptor antagonist, supporting the notion that these bidirectional cTBS-induced alterations of corticospinal excitability map onto LTP and LTD as observed in animal studies. A short period of voluntary contraction and a small dose of NDP were each ineffective in blocking the cTBS-induced potentiation. However, when both interventions were combined, a depression was induced, and the magnitude of this depression increased with the dose of NDP. These findings suggest that Ca(2+) dynamics determine the polarity of LTP/LTD-like changes in vivo. L-VGCCs may act as molecular switches mediating metaplasticity induced by endogenous neuronal activation.
Collapse
|
14
|
Behr J, Wozny C, Fidzinski P, Schmitz D. Synaptic plasticity in the subiculum. Prog Neurobiol 2009; 89:334-42. [PMID: 19770022 DOI: 10.1016/j.pneurobio.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
The subiculum is the principal target of CA1 pyramidal cells. It functions as a mediator of hippocampal-cortical interaction and has been proposed to play an important role in the encoding and retrieval of long-term memory. The cellular mechanisms of memory formation are thought to include long-term potentiation (LTP) and depression (LTD) of synaptic strength. This review summarizes the contemporary knowledge of LTP and LTD at CA1-subiculum synapses. The observation that the underlying mechanisms of LTP and LTD at CA1-subiculum synapses correlate with the discharge properties of subicular pyramidal cell reveals a novel and intriguing mechanism of cell-specific consolidation of hippocampal output.
Collapse
Affiliation(s)
- Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|