1
|
Sivalingam M, Ogawa S, Parhar IS. Mapping of Morphine-Induced OPRM1 Gene Expression Pattern in the Adult Zebrafish Brain. Front Neuroanat 2020; 14:5. [PMID: 32153369 PMCID: PMC7044135 DOI: 10.3389/fnana.2020.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
Morphine is a potent analgesic opiate commonly used in treating pain, and it is also a substance of abuse and highly addictive. Hence, it is vital to discover the action sites of morphine in the brain to increase its efficacy of treatment. In the present study, we aimed at identifying comprehensive neuroanatomical locations that are sensitive to morphine in the adult zebrafish (Danio rerio). We performed in situ hybridization to localize the mu opioid receptor (oprm1) gene and to map the morphine sensitive brain areas using neuronal PAS domain-containing protein 4a (npas4a), an early gene marker. Real-time PCR was used to detect changes in mRNA levels of oprm1 and npas4a in control and acute morphine treated fish (2 mg/L; 20 min). Intense positive oprm1 signals were seen in the telencephalon, preoptic area, habenula, hypothalamic area and periventricular gray zone of the optic tectum. Acute morphine exposure significantly increased oprm1 and npas4a mRNA levels in the medial zone of dorsal telencephalon (Dm), ventral region of the ventral telencephalon (Vv), preoptic area, and in the hypothalamus but a decrease in oprm1 and npas4a signals in the dorsal habenula. This study provides a detailed map of oprm1 localization in the brain, which includes previously unreported oprm1 in the habenula of teleost. Presence of oprm1 in multiple brain sites implies multiple action targets of morphine and potential brain functions which could include reward, cognitive and negative emotions.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018; 43:2514-2520. [PMID: 30250308 PMCID: PMC6224460 DOI: 10.1038/s41386-018-0225-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Mu opioid receptor agonists are among the most powerful analgesic medications but also among the most addictive. The current opioid crisis has energized a quest to develop opioid analgesics that are devoid of untoward effects. Since their discovery in the 1970's, there have been major advances in our understanding of the endogenous opioid systems that these drugs target. Yet many questions remain and the development of non-addictive opioid analgesics has not been achieved. However, access to new molecular, genetic and computational tools have begun to elucidate the structural dynamics of opioid receptors, the scaffolding that links them to intracellular signaling cascades, their cellular trafficking and the distinct ways that various opioid drugs modify them. This mini-review highlights some of the chemical and pharmacological findings and new perspectives that have arisen from studies using these tools. They reveal multiple layers of complexity of opioid receptor function, including a spatiotemporal specificity in opioid receptor-induced cellular signaling, ligand-directed biased signaling, allosteric modulation of ligand interactions, heterodimerization of different opioid receptors, and the existence of slice variants with different ligand specificity. By untangling these layers, basic research into the chemistry and pharmacology of opioid receptors is guiding the way towards deciphering the mysteries of tolerance and physical dependence that have plagued the field and is providing a platform for the development of more effective and safer opioids.
Collapse
|
3
|
Khalilzadeh E, Saiah GV. The possible mechanisms of analgesia produced by microinjection of morphine into the lateral habenula in the acute model of trigeminal pain in rats. Res Pharm Sci 2017. [PMID: 28626482 PMCID: PMC5465833 DOI: 10.4103/1735-5362.207205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to assess the effect of intra-habenular injection of morphine on acute trigeminal pain in rats. Also here, we examined the involvement of raphe nucleus opioid and 5HT3 receptors on the antinociceptive activity of intra habenular morphine to explore the possibility of existence of descending antinociceptive relay between the habenula and raphe nucleus. The numbers of eye wiping response elicited by applying a drop (40 μL) of NaCl (5 M) solution on the corneal surface were taken as an index of acute trigeminal nociception. Intra habenular microinjection of morphine at a dose of 2 μg was without effect, whereas at doses of 5 and 8 μg significantly produced antinociception. Microinjection of naltrexone (4 μg) and ondansetron (1 μg) into the dorsal raphe nucleus prior to intra-habenular saline did not produce any significant effect on corneal pain perception. Pretreatment of the raphe nucleus with ondansetron but not naltrexone prevented intra habenular morphine (8 μg) induced antinociception. Also, intra habenular injection of lidocaine (2%, 0.5 μL reduced corneal pain response. Moreover, intra-habenular microinjection of L-glutamic acid (1 and 2 μg/site) did not produce any analgesic activity in this model of pain. In conclusion, the present results suggest that the activation of the habenular μ opioid receptor by microinjection of morphine or inhibition of habenular neurons by microinjection of lidocaine produced an analgesic effect in the acute trigeminal model of pain in rats. The analgesic effect of intra habenular morphine was blocked by intra-dorsal raphe injection of serotonin 5-HT3 antagonist.
Collapse
Affiliation(s)
- Emad Khalilzadeh
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, I.R. Iran
| | - Gholamreza Vafaei Saiah
- Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, I.R. Iran
| |
Collapse
|
4
|
ZHANG JJ, LIU XD, YU LC. Influences of Morphine on the Spontaneous and Evoked Excitatory Postsynaptic Currents in Lateral Amygdala of Rats. Physiol Res 2016; 65:165-9. [DOI: 10.33549/physiolres.933027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute morphine exposure induces antinociceptive activity, but the underlying mechanisms in the central nervous system are unclear. Using whole-cell patch clamp recordings, we explore the role of morphine in the modulation of excitatory synaptic transmission in lateral amygdala neurons of rats. The results demonstrate that perfusion of 10 μM of morphine to the lateral amygdala inhibits the discharge frequency significantly. We further find that there are no significant influences of morphine on the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Interestingly, morphine shows no marked influence on the evoked excitatory postsynaptic currents (eEPSCs) in the lateral amygdala neurons. These results indicate that acute morphine treatment plays an important role in the modulation on the excitatory synaptic transmission in lateral amygdala neurons of rats.
Collapse
Affiliation(s)
| | | | - L.-C. YU
- State Key Laboratory of Biomembrane and Membrane Biotechnology and Laboratory of Neurobiology, College of Life Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Abstract
It has been established that mu opioid receptors activate the ERK1/2 signaling cascade both in vitro and in vivo. The Ser/Thr kinase RSK2 is a direct downstream effector of ERK1/2 and has a role in cellular signaling, cell survival growth, and differentiation; however, its role in biological processes in vivo is less well known. Here we determined whether RSK2 contributes to mu-mediated signaling in vivo. Knockout mice for the rsk2 gene were tested for main morphine effects, including analgesia, tolerance to analgesia, locomotor activation, and sensitization to this effect, as well as morphine withdrawal. The deletion of RSK2 reduced acute morphine analgesia in the tail immersion test, indicating a role for this kinase in mu receptor-mediated nociceptive processing. All other morphine effects and adaptations to chronic morphine were unchanged. Because the mu opioid receptor and RSK2 both show high density in the habenula, we specifically downregulated RSK2 in this brain metastructure using an adeno-associated-virally mediated shRNA approach. Remarkably, morphine analgesia was significantly reduced, as observed in the total knockout animals. Together, these data indicate that RSK2 has a role in nociception, and strongly suggest that a mu opioid receptor-RSK2 signaling mechanism contributes to morphine analgesia at the level of habenula. This study opens novel perspectives for both our understanding of opioid analgesia, and the identification of signaling pathways operating in the habenular complex.
Collapse
|
6
|
Shelton L, Becerra L, Borsook D. Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol 2012; 96:208-19. [PMID: 22270045 PMCID: PMC3465722 DOI: 10.1016/j.pneurobio.2012.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/01/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
The habenula is a small bilateral structure in the posterior-medial aspect of the dorsal thalamus that has been implicated in a remarkably wide range of behaviors including olfaction, ingestion, mating, endocrine and reward function, pain and analgesia. Afferent connections from forebrain structures send inputs to the lateral and medial habenula where efferents are mainly projected to brainstem regions that include well-known pain modulatory regions such as the periaqueductal gray and raphe nuclei. A convergence of preclinical data implicates the region in multiple behaviors that may be considered part of the pain experience including a putative role in pain modulation, affective, and motivational processes. The habenula seems to play a role as an evaluator, acting as a major point of convergence where external stimuli is received, evaluated, and redirected for motivation of appropriate behavioral response. Here, we review the role of the habenula in pain and analgesia, consider its potential role in chronic pain, and review more recent clinical and functional imaging data of the habenula from animals and humans. Even through the habenula is a small brain structure, advances in structural and functional imaging in humans should allow for further advancement of our understanding of its role in pain and analgesia.
Collapse
Affiliation(s)
- L. Shelton
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
| | - L. Becerra
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| | - D. Borsook
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| |
Collapse
|
7
|
Bajo M, Roberto M, Madamba SG, Siggins GR. Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment. Addict Biol 2011; 16:551-64. [PMID: 21182569 PMCID: PMC3117063 DOI: 10.1111/j.1369-1600.2010.00269.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We investigated possible alterations of pharmacologically-isolated, evoked GABA(A) inhibitory postsynaptic potentials (eIPSPs) and miniature GABA(A) inhibitory postsynaptic currents (mIPSCs) in the rat central amygdala (CeA) elicited by acute application of µ-opioid receptor (MOR) agonists (DAMGO and morphine; 1 µM) and by chronic morphine treatment with morphine pellets. The acute activation of MORs decreased the amplitudes of eIPSPs, increased paired-pulse facilitation (PPF) of eIPSPs and decreased the frequency (but not the amplitude) of mIPSCs in a majority of CeA neurons, suggesting that acute MOR-dependent modulation of this GABAergic transmission is mediated predominantly via presynaptic inhibition of GABA release. We observed no significant changes in the membrane properties, eIPSPs, PPF or mIPSCs of CeA neurons during chronic morphine treatment compared to CeA of naïve or sham rats. Superfusion of the MOR antagonist CTOP (1 µM) increased the mean amplitude of eIPSPs in a majority of CeA neurons to the same degree in both naïve/sham and morphine-treated rats, suggesting a tonic activation of MORs in both conditions. Superfusion of DAMGO decreased eIPSP amplitudes and the frequency of mIPSCs equally in both naïve/sham and morphine-treated rats but decreased the amplitude of mIPSCs only in morphine treated rats, an apparent postsynaptic action. Our combined findings suggest the development of tolerance of the CeA GABAergic system to inhibitory effects of acute activation of MORs on presynaptic GABA release and possible alteration of MOR-dependent postsynaptic mechanisms that may represent important neuroadaptations of the GABAergic and MOR systems during chronic morphine treatment.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Drug Tolerance
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Inhibitory Postsynaptic Potentials/drug effects
- Inhibitory Postsynaptic Potentials/physiology
- Male
- Miniature Postsynaptic Potentials/drug effects
- Miniature Postsynaptic Potentials/physiology
- Morphine/pharmacology
- Narcotics/pharmacology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Michal Bajo
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Samuel G. Madamba
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| | - George Robert Siggins
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
8
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|