1
|
Shimizu S. Therapeutic targets in the brain for overactive bladder: A focus on angiotensin II type 1 receptor. J Pharmacol Sci 2023; 153:69-72. [PMID: 37640471 DOI: 10.1016/j.jphs.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023] Open
Abstract
Overactive bladder is a condition that affects both men and women, and significantly affects patients' quality of life. Anticholinergics, β3-adrenoceptor agonists, and botulinum toxin are currently being used for treatment. However, several patients do not respond to these medications or discontinue them because of adverse events. Angiotensin II (Ang II) is a neuropeptide produced in both brain and peripheral tissues, and Ang II type 1 (AT1) receptors, which are important regions for the micturition reflex, are widely expressed in the cerebral cortex, paraventricular nucleus, solitary tract nucleus, and periaqueductal gray. Our data showed that cumulative central Ang II administration, even at low doses, shortened the intercontraction interval without affecting the blood pressure or blood catecholamine levels. Additionally, Ang II can enhance the micturition reflex by suppressing the GABAergic nervous system and stimulating the downstream pathway of the AT1 receptor. The peripherally administered AT1 receptor blocker telmisartan inhibited central Ang II-induced facilitation of the micturition reflex. Targeting the central AT1 receptor may be a potential treatment approach for patients with overactive bladder. This review introduces the brain AT1 receptor as a therapeutic target in overactive bladder.
Collapse
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku 783-8505, Japan.
| |
Collapse
|
2
|
Liu H, Xue Y, Chen L. Angiotensin II increases the firing activity of pallidal neurons and participates in motor control in rats. Metab Brain Dis 2023; 38:573-587. [PMID: 36454502 DOI: 10.1007/s11011-022-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The globus pallidus has emerged as a crucial node in the basal ganglia motor control circuit under both healthy and parkinsonian states. Previous studies have shown that angiotensin II (Ang II) and angiotensin subtype 1 receptor (AT1R) are closely related to Parkinson's disease (PD). Recent morphological study revealed the expression of AT1R in the globus pallidus of mice. To investigate the functions of Ang II/AT1R on the globus pallidus neurons of both normal and parkinsonian rats, electrophysiological recordings and behavioral tests were performed in the present study. Electrophysiological recordings showed that exogenous and endogenous Ang II mainly excited the globus pallidus neurons through AT1R. Behavioral tests further demonstrated that unilateral microinjection of Ang II into the globus pallidus induced significantly contralateral-biased swing in elevated body swing test (EBST), and bilateral microinjection of Ang II into the globus pallidus alleviated catalepsy and akinesia caused by haloperidol. AT1R was involved in Ang II-induced behavioral effects. Immunostaining showed that AT1R was expressed in the globus pallidus of rats. On the basis of the present findings, we concluded that pallidal Ang II/AT1R alleviated parkinsonian motor deficits through activating globus pallidus neurons, which will provide a rationale for further investigations into the potential of Ang II in the treatment of motor disorders originating from the basal ganglia.
Collapse
Affiliation(s)
- Hongxia Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Physiology, Binzhou Medical University, Yantai, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Shimizu S. [Drug therapy targeting angiotensin II type 1 receptors in brain against frequent urination]. Nihon Yakurigaku Zasshi 2023; 158:379-383. [PMID: 37673615 DOI: 10.1254/fpj.22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The production of angiotensin II (Ang II) in the brain plays important roles as neurotransmitter and neuropeptide. Central Ang II is involved in regulating various physiological processes, such as blood pressure and water homeostasis, via Ang II type 1 (AT1) receptors. We have demonstrated that Ang II induces frequent urination via AT1 receptors in the brain even at doses that does not seem to affect the blood pressure in animal experiment. Intracerebroventricular administration of Ang II was also found to reduce the bladder capacity without affecting the maximum voiding pressure, post voiding residual urine volume or voiding efficiency. Additionally, the activation of AT1 receptor downstream signal pathway (phospholipase C/protein kinase C/NADPH oxidase/superoxide anion) and suppression of GABAergic nervous system in the brain are involved in the mechanism underlying the central Ang II-inducted frequent urination. AT1 receptor blockers (ARBs) have been widely used to treat hypertension. We demonstrated that peripherally administered ARBs telmisartan, which can penetrate blood-brain barrier, exerted an inhibitory effect on central Ang II-inducted frequent urination. We present the possible drug therapy targeting AT1 receptors in the brain against frequent urination on the results obtained from our recent research work.
Collapse
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University
| |
Collapse
|
4
|
Zhao L, Li J, Kälviäinen R, Jolkkonen J, Zhao C. Impact of drug treatment and drug interactions in post-stroke epilepsy. Pharmacol Ther 2021; 233:108030. [PMID: 34742778 DOI: 10.1016/j.pharmthera.2021.108030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Stroke is a huge burden on our society and this is expected to grow in the future due to the aging population and the associated co-morbidities. The improvement of acute stroke care has increased the survival rate of stroke patients, and many patients are left with permanent disability, which makes stroke the main cause of adult disability. Unfortunately, many patients face other severe complications such as post-stroke seizures and epilepsy. Acute seizures (ASS) occur within 1 week after the stroke while later occurring unprovoked seizures are diagnosed as post-stroke epilepsy (PSE). Both are associated with a poor prognosis of a functional recovery. The underlying neurobiological mechanisms are complex and poorly understood. There are no universal guidelines on the management of PSE. There is increasing evidence for several risk factors for ASS/PSE, however, the impacts of recanalization, drugs used for secondary prevention of stroke, treatment of stroke co-morbidities and antiseizure medication are currently poorly understood. This review focuses on the common medications that stroke patients are prescribed and potential drug interactions possibly complicating the management of ASS/PSE.
Collapse
Affiliation(s)
- Lanqing Zhao
- Department of Sleep Medicine Center, The Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Jinwei Li
- Department of Stroke Center, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
5
|
Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021; 28:1093-1104. [PMID: 34387005 DOI: 10.1111/iju.14663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
6
|
Angiotensin-II Modulates GABAergic Neurotransmission in the Mouse Substantia Nigra. eNeuro 2021; 8:ENEURO.0090-21.2021. [PMID: 33771900 PMCID: PMC8174047 DOI: 10.1523/eneuro.0090-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
GABAergic projections neurons of the substantia nigra reticulata (SNr), through an extensive network of dendritic arbors and axon collaterals, provide robust inhibitory input to neighboring dopaminergic neurons in the substantia nigra compacta (SNc). Angiotensin-II (Ang-II) receptor signaling increases SNc dopaminergic neuronal sensitivity to insult, thus rendering these cells susceptible to dysfunction and destruction. However, the mechanisms by which Ang-II regulates SNc dopaminergic neuronal activity are unclear. Given the complex relationship between SN dopaminergic and GABAergic neurons, we hypothesized that Ang-II could regulate SNc dopaminergic neuronal activity directly and indirectly by modulating SNr GABAergic neurotransmission. Here, using transgenic mice, slice electrophysiology, and optogenetics, we provide evidence of an AT1 receptor-mediated signaling mechanism in SNr GABAergic neurons where Ang-II suppresses electrically-evoked neuronal output by facilitating postsynaptic GABAA receptors (GABAARs) and prolonging the action potential (AP) duration. Unexpectedly, Ang-II had no discernable effects on the electrical properties of SNc dopaminergic neurons. Also, and indicating a nonlinear relationship between electrical activity and neuronal output, following phasic photoactivation of SNr GABAergic neurons, Ang-II paradoxically enhanced the feedforward inhibitory input to SNc dopaminergic neurons. In sum, our observations describe an increasingly complex and heterogeneous response of the SN to Ang-II by revealing cell-specific responses and nonlinear effects on intranigral GABAergic neurotransmission. Our data further implicate the renin-angiotensin-system (RAS) as a functionally relevant neuromodulator in the substantia nigra, thus underscoring a need for additional inquiry.
Collapse
|
7
|
Milanez MIO, Nishi EE, Rocha AA, Bergamaschi CT, Campos RR. Interaction between angiotensin II and GABA in the spinal cord regulates sympathetic vasomotor activity in Goldblatt hypertension. Neurosci Lett 2020; 728:134976. [PMID: 32304717 DOI: 10.1016/j.neulet.2020.134976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Previous studies have been described changes in brain regions contributing to the sympathetic vasomotor overactivity in Goldblatt hypertension (2K1C). Furthermore, changes in the spinal cord are also involved in the cardiovascular and autonomic dysfunction in renovascular hypertension, as intrathecal (i.t.) administration of Losartan (Los) causes a robust hypotensive/sympathoinhibitory response in 2K1C but not in control rats. The present study evaluated the role of spinal γ-aminobutyric acid (GABA)-ergic inputs in the control of sympathetic vasomotor activity in the 2K1C rats. Hypertension was induced by clipping the renal artery. After six weeks, a catheter (PE-10) was inserted into the subarachnoid space and advanced to the T10-11 vertebral level in urethane-anaesthetized rats. The effects of i.t. injection of bicuculline (Bic) on blood pressure (BP), renal and splanchnic sympathetic nerve activity (rSNA and sSNA, respectively) were evaluated over 40 consecutive minutes in the presence or absence of spinal AT1 antagonism. I.t. Bic triggered a more intense pressor and sympathoexcitatory response in 2K1C rats, however, these responses were attenuated by previous i.t. Los. No differences in the gene expression of GAD 65 and GABA-A receptors subunits in the spinal cord segments were found. Thus, the sympathoexcitation induced by spinal GABA-A blockade is dependent of local AT1 receptor in 2K1C but not in control rats. Excitatory angiotensinergic inputs to sympathetic preganglionic neurons are tonic controlled by spinal GABAergic actions in Goldblatt hypertension.
Collapse
Affiliation(s)
- Maycon I O Milanez
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Erika E Nishi
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Antônio A Rocha
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Cássia T Bergamaschi
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Ruy R Campos
- Cardiovascular Division, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
8
|
Shimizu S, Shimizu T, Nakamura K, Higashi Y, Saito M. Angiotensin II, a stress-related neuropeptide in the CNS, facilitates micturition reflex in rats. Br J Pharmacol 2018; 175:3727-3737. [PMID: 29981238 DOI: 10.1111/bph.14439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effects of centrally administered stress-related neuropeptide, angiotensin II, on the micturition reflex and the downstream signalling pathways in rats. EXPERIMENTAL APPROACH Male Wistar rats were anaesthetized with urethane for cystometry before and after i.c.v. administration of vehicle or angiotensin II (30 pmol). Muscimol (a GABAA receptor agonist) or baclofen (a GABAB receptor agonist) was i.c.v. administered 30 min before or 15 min after central angiotensin II administration. Telmisartan [an angiotensin II type 1 (AT1 ) receptor antagonist], valsartan (an AT1 receptor antagonist), PD123319 (an AT2 receptor antagonist), U-73122 (a PLC inhibitor), chelerythrine chloride (a PKC inhibitor), apocynin (a NADPH oxidase inhibitor) or tempol (an antioxidant) was centrally administered 30 min before central angiotensin II administration. KEY RESULTS Centrally administered angiotensin II significantly shortened the intercontraction interval and decreased the voided volume and bladder capacity without altering the maximum voiding pressure, post-voiding residual urine volume or voiding efficacy. Muscimol, baclofen, telmisartan, valsartan, U-73122, chelerythrine chloride, apocynin or tempol pretreatment significantly suppressed the reduction in intercontraction interval induced by central angiotensin II. Post-treatment with muscimol or baclofen also ameliorated the decrease in intercontraction interval induced by central angiotensin II. CONCLUSIONS AND IMPLICATIONS Angiotensin II in the CNS facilitates micturition reflex by inhibiting central GABAergic activity and activating the AT1 receptor/PLC/PKC/NADPH oxidase/superoxide anion pathway.
Collapse
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Kumiko Nakamura
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
9
|
Angiotensin II facilitates GABAergic neurotransmission at postsynaptic sites in rat amygdala neurons. Neuropharmacology 2018; 133:334-344. [PMID: 29447844 DOI: 10.1016/j.neuropharm.2018.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022]
Abstract
The central nucleus of the amygdala (CeA) is critical in the regulation of sodium appetite. Angiotensin II (Ang II) is important in the generation of sodium appetite and may function as a neurotransmitter or modulator to affect the synaptic transmission and the excitability of neurons. However, the role of Ang II in the CeA remains unclear. In this study, we determined the effects of Ang II on the excitatory and inhibitory synaptic inputs to the CeA neurons in brain slices with whole-cell patch-clamp recordings. Ang II (0.5-5 μM) significantly potentiated the amplitude of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) in a concentration-dependent manner. Ang II (2 μM) significantly increased the amplitude of miniature GABAergic inhibitory postsynaptic currents (mIPSCs) without affecting the frequency. This effect was blocked by Ang II type 1 (AT1) receptor antagonist, losartan. One mM guanosine 5'-O-(-2-thiodiphosphate) (GDP-β-s) in the pipette internal solution eliminated the facilitatory effect of Ang II on GABAergic synaptic transmission. In contrast, Ang II had no effect on the spontaneous glutamatergic excitatory postsynaptic currents (EPSCs) and did not alter the frequency and amplitude of miniature EPSCs at concentrations that facilitated IPSCs. Furthermore, Ang II decreased the firing activity of CeA neurons, and this effect was abolished by losartan and GDP-β-s. In addition, Ang II failed to inhibit CeA neurons in the presence of bicuculline. These data provide substantial new evidence that Ang II inhibits the CeA neurons by facilitation of GABAergic synaptic input efficacy through activation of postsynaptic AT1 receptors.
Collapse
|
10
|
Genaro K, Fabris D, Fachim HA, Prado WA. Angiotensin AT1 receptors modulate the anxiogenic effects of angiotensin (5-8) injected into the rat ventrolateral periaqueductal gray. Peptides 2017; 96:8-14. [PMID: 28851568 DOI: 10.1016/j.peptides.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/21/2017] [Accepted: 08/20/2017] [Indexed: 11/27/2022]
Abstract
Losartan and PD 123,319 are non-peptide angiotensin (Ang) receptor antagonists for the AT1 and AT2 subtypes of Ang II receptors, respectively. The tetrapeptide Ang (5-8) is the smallest Ang-peptide that elicits anxiogenic effects on unconditioned and conditioned experimental models upon injection into the ventrolateral column of the periaqueductal gray (vlPAG), and Ang (5-8) can be synthesized (from Ang II or Ang III) and inactivated in this mesencephalic structure. The vlPAG is also known to play a central role in mechanisms of fear and anxiety. We therefore utilized male Wistar rats to examine the effects of losartan and PD 123,319 injections, selective antagonists of the AT1 and AT2 receptors, respectively, into the vlPAG in the elevated plus-maze, a classic rat model of anxiety, and against the anxiogenic effect of Ang (5-8) (0.4 nmol/0.25μL) upon injection into the same region. The anxiolytic profile was dependent on the dose of intra-vlPAG losartan, whereas no effects on experimental anxiety were observed in the plus-maze following PD 123,319 injection. The anxiogenic effect of Ang (5-8) injection into the vlPAG remained unchanged in the PD 123,319-pretreated rats, but the effect did not occur in losartan-pretreated rats. The results led us to suggest that the anxiogenic effect of Ang (5-8) injection into the vlPAG may depend on the local activation of AT1, but not AT2 receptors. Activation of AT1 receptors in structures nearby vlPAG may be tonically involved in fear and experimental anxiety.
Collapse
Affiliation(s)
- Karina Genaro
- Universidade de São Paulo, Departamento de Neurociências, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Departamento de Psicologia, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | - Débora Fabris
- Universidade de São Paulo, Departamento de Neurociências, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Departamento de Psicologia, Ribeirão Preto, SP, Brazil
| | - Helene A Fachim
- Universidade de São Paulo, Departamento de Neurociências, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| | - Wiliam A Prado
- Universidade de São Paulo, Departamento de Farmacologia, Ribeirão Preto, SP, Brazil; Universidade de São Paulo, Departamento de Psicologia, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Angiotensin II centrally induces frequent detrusor contractility of the bladder by acting on brain angiotensin II type 1 receptors in rats. Sci Rep 2016; 6:22213. [PMID: 26908391 PMCID: PMC4764915 DOI: 10.1038/srep22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
Angiotensin (Ang) II plays an important role in the brain as a neurotransmitter and is involved in psychological stress reactions, for example through activation of the sympatho-adrenomedullary system. We investigated the effects of centrally administered Ang II on the micturition reflex, which is potentially affected by the sympatho-adrenomedullary system, and brain Ang II receptors in urethane-anesthetized (1.0 g/kg, intraperitoneally) male rats. Central administration of Ang II (0.01, 0.02, and 0.07 nmol per rat, intracerebroventricularly, icv) but not vehicle rapidly and dose-dependently decreased the urinary bladder intercontraction interval, without altering the bladder detrusor pressure. Central administration of antagonists of Ang II type 1 but not type 2 receptors inhibited the Ang II-induced shortening of intercontraction intervals. Administration of the highest dose of Ang II (0.07 nmol per rat, icv) but not lower doses (0.01 and 0.02 nmol per rat, icv) elevated the plasma concentration of adrenaline. Bilateral adrenalectomy reduced Ang II-induced elevation in adrenaline, but had no effect on the Ang II-induced shortening of the intercontraction interval. These data suggest that central administration of Ang II increases urinary frequency by acting on brain Ang II type 1 receptors, independent of activation of the sympatho-adrenomedullary system.
Collapse
|
12
|
Araiza-Saldaña CI, Pedraza-Priego EF, Torres-López JE, Rocha-González HI, Castañeda-Corral G, Hong-Chong E, Granados-Soto V. Fosinopril Prevents the Development of Tactile Allodynia in a Streptozotocin-Induced Diabetic Rat Model. Drug Dev Res 2015; 76:442-9. [DOI: 10.1002/ddr.21280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/22/2015] [Indexed: 01/01/2023]
Affiliation(s)
| | - Erick Fabián Pedraza-Priego
- División Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco Mexico
| | - Jorge Elías Torres-López
- División Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco Mexico
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación; Escuela Superior de Medicina, Instituto Politécnico Nacional; México D.F. Mexico
| | | | - Enrique Hong-Chong
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.; México D.F. Mexico
| | - Vinicio Granados-Soto
- Departamento de Farmacobiología; Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur.; México D.F. Mexico
| |
Collapse
|
13
|
Hu B, Qiao H, Sun B, Jia R, Fan Y, Wang N, Lu B, Yan JQ. AT1 receptor blockade in the central nucleus of the amygdala attenuates the effects of muscimol on sodium and water intake. Neuroscience 2015; 307:302-10. [PMID: 26344240 DOI: 10.1016/j.neuroscience.2015.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
The blockade of the central nucleus of the amygdala (CeA) with the GABAA receptor agonist muscimol significantly reduces hypertonic NaCl and water intake by sodium-depleted rats. In the present study we investigated the effects of previous injection of losartan, an angiotensin II type-1 (AT1) receptor antagonist, into the CeA on 0.3M NaCl and water intake reduced by muscimol bilaterally injected into the same areas in rats submitted to water deprivation-partial rehydration (WD-PR) and in rats treated with the diuretic furosemide (FURO). Male Sprague-Dawley rats with stainless steel cannulas bilaterally implanted into the CeA were used. Bilateral injections of muscimol (0.2 nmol/0.5 μl, n=8 rats/group) into the CeA in WD-PR-treated rats reduced 0.3M NaCl intake and water intake, and pre-treatment of the CeA with losartan (50 μg/0.5 μl) reversed the inhibitory effect of muscimol. The negative effect of muscimol on sodium and water intake could also be blocked by pretreatment with losartan microinjected into the CeA in rats given FURO (n=8 rats/group). However, bilateral injections of losartan (50 μg/0.5 μl) alone into the CeA did not affect the NaCl or water intake. These results suggest that the deactivation of CeA facilitatory mechanisms by muscimol injection into the CeA is promoted by endogenous angiotensin II acting on AT1 receptors in the CeA, which prevents rats from ingesting large amounts of hypertonic NaCl and water.
Collapse
Affiliation(s)
- B Hu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Prosthodontics, Xi'an Jiaotong University, College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - H Qiao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - R Jia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Y Fan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - N Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Lu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - J Q Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University, Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
14
|
Bali A, Singh N, Jaggi AS. Renin–angiotensin system in pain: Existing in a double life? J Renin Angiotensin Aldosterone Syst 2014; 15:329-40. [DOI: 10.1177/1470320313503694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| |
Collapse
|
15
|
V H P, Shetty K P, R N S, M K J, V A, P S V. Evaluation and comparison of anticonvulsant activity of telmisartan and olmesartan in experimentally induced animal models of epilepsy. J Clin Diagn Res 2014; 8:HC08-11. [PMID: 25478368 DOI: 10.7860/jcdr/2014/9455.5061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/10/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Epilepsy is one common neurological disorder requiring newer targets and newer drugs for its efficient management. In the recent days brain renin angiotensin system has gained immense importance because of its involvement in seizure regulation. OBJECTIVE To evaluate and compare antiepileptic activity of different doses olmesartan and telmisartan on MES and PTZ induced seizure models. MATERIALS AND METHODS Swiss albino mice weighing around 25-30g of either sex were divided into 6 groups: Control ( Distilled Water- 10ml/kg), Standard - Sodium valproate (40mg/kg), O1 - Olmesartan (2.5mg/kg), O2 - Olmesartan (5mg/kg), T1 - Telmisartan (5mg/kg), T2 - Telmisartan (10mg/kg). After 1hour of administration of control , test and standard drugs (orally), convulsions were induced by administering PTZ (70mg/kg - i.p.) in PTZ model. Seizure latency was the parameter recorded. In MES model, suppression of tonic hind limb extension was taken as measure of efficacy. RESULT The results were analysed by one-way-ANOVA followed by Bonferroni's multiple comparison test. In MES test, dose dependently olmesartan and telmisartan significantly reduced the duration of tonic hindlimb extension in comparison to control (p<0.05). T2 - 9 + 0.89secs significantly reduced the tonic hind limb extension compared to other test groups (p<0.05). The percentage inhibition of seizure was T2-44.3%, O2-28.2%, T1-17.5%, O1- 12.3% respectively. In PTZ test, dose dependently olmesartan and telmisartan produced significant increase in seizure latency (p<0.05). T2 - 206.6+9.83secs significantly increased seizure latency compared to other test groups (p<0.05). Percentage protection from seizure is T2-52.6%, O2- 45.13%, T1- 37.5%, O1- 38.4% respectively. CONCLUSION AT1 receptor antagonist, telmisartan and olmesartan in a dose dependent manner showed increase in antiepileptic activity. Temisartan at higher dose produced significant antiepileptic activity in comparison to olmesartan.
Collapse
Affiliation(s)
- Pushpa V H
- Associate Professor, Department of Pharmacology, JSS Medical College , Mysore, India
| | - Padmaja Shetty K
- PG Student, Department of Pharmacology, JSS Medical College , Mysore, India
| | - Suresha R N
- Professor, Department of Pharmacology, JSS Medical College , Mysore, India
| | - Jayanthi M K
- Professor, Department of Pharmacology, JSS Medical College , Mysore, India
| | - Ashwini V
- PG Student, Department of Pharmacology, JSS Medical College , Mysore, India
| | - Vaibhavi P S
- PG Student, Department of Pharmacology, JSS Medical College , Mysore, India
| |
Collapse
|
16
|
Bali A, Randhawa PK, Jaggi AS. Interplay between RAS and opioids: opening the Pandora of complexities. Neuropeptides 2014; 48:249-56. [PMID: 24877897 DOI: 10.1016/j.npep.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/05/2014] [Accepted: 05/09/2014] [Indexed: 11/22/2022]
Abstract
Angiotensin and endogenous opioids are important bioactive neuropeptides, which are widely distributed in the brain and peripheral regions to produce diverse biological and neurobiological activities. An endogenous opioid system includes proopiomelanocortin-derived enkephalin, dynorphin and endorphin that act on their specific receptors such as delta (δ), kappa (κ) and mu (μ) receptors. Research evidence demonstrates significant positive as well as negative interactions between renin angiotensin system (RAS) and endogenous opioids in the brain and periphery. The diverse actions of Ang II are possibly mediated indirectly through endogenous opioids, while opioids are also shown to activate RAS components suggesting the up-regulation of each system in concern with each other. On the contrary, there are reports suggesting a negative correlation between RAS and opioid system. Research evidence also supports the notion that Ang II acts as anti-opioid peptide to decrease the actions of opioids. Moreover, opioids-induced decline in angiotensin release and functioning has also been reported. Co-administration of ACE inhibitors with opioids exhibits significant interactions possibly due to decreased metabolism of opioids leading to potentiation of their actions. The present review describes the complexities of positive and negative interactions between RAS and opioids along with possible mechanisms responsible for these interactions.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|
17
|
Role of angiotensin-(1-7) and Mas-R-nNOS pathways in amplified neuronal activity of dorsolateral periaqueductal gray after chronic heart failure. Neurosci Lett 2014; 563:6-11. [PMID: 24472567 DOI: 10.1016/j.neulet.2014.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
Abstract
The midbrain periaqueductal gray (PAG) is an integrative neural site in regulating several physiological functions including cardiovascular activities driven by sympathetic nervous system. Specifically, activation of the dorsolateral PAG (dl-PAG) leads to increases in sympathetic nervous activity and arterial blood pressure. Our recent studies demonstrated that angiotensin-(1-7) [Ang-(1-7)] plays an inhibitory role in neuronal activity of the dl-PAG via a Mas-R [Ang-(1-7) receptor] and neuronal NO dependent signaling pathway (Mas-R-nNOS). Because sympathetic nervous activity is augmented in chronic heart failure (HF), the present study was to determine (1) the levels of Ang-(1-7) and Mas-R-nNOS expression within the dl-PAG of control rats and rats with HF and (2) the role for Ang-(1-7) in modulating activity of dl-PAG neurons in both groups. Results showed that chronic HF decreased the levels of Ang-(1-7) and attenuated Mas-R-nNOS pathways. Also, we demonstrated that the discharge rates of dl-PAG neurons of HF rats (5.52 ± 0.52 Hz, n=21, P<0.05 vs. control) were augmented as compared with control rats (4.03 ± 0.39 Hz, n=28) and an inhibitory role played by Ang-(1-7) in neuronal activity of the dl-PAG was significantly decreased in HF (51 ± 6%, P<0.05 vs. control) as compared with controls (72 ± 8%). Our findings suggest that the inhibitory effects of Ang-(1-7) on dl-PAG neurons are impaired in HF, likely due to attenuated Mas-R-nNOS signaling pathways.
Collapse
|
18
|
Yan JB, Sun HL, Wang Q, Chen K, Sun B, Song L, Yan W, Zhao XL, Zhao SR, Zhang Y, Qiao H, Hu B, Yan JQ. Natriorexigenic effect of DAMGO is decreased by blocking AT1 receptors in the central nucleus of the amygdala. Neuroscience 2013; 262:9-20. [PMID: 24389419 DOI: 10.1016/j.neuroscience.2013.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 11/17/2022]
Abstract
μ-Opioid receptor (μ-OR) activation with agonist [D-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin (DAMGO) in the central nucleus of the amygdala (CeA) induces sodium (0.3M NaCl) intake in rats. The purpose of this study was to examine the effects of pre-injections of losartan (AT1 angiotensin receptor antagonist) into the CeA on 0.3 M NaCl and water intake induced by DAMGO injected bilaterally in the same area in rats submitted to water deprivation-partial rehydration (WD-PR) and in rats treated with the diuretic furosemide (FURO) combined with a low dose of the angiotensin-converting enzyme inhibitor captopril (CAP) injected subcutaneously (FURO/CAP). Male Sprague-Dawley rats with stainless steel cannulas implanted bilaterally into the CeA were used. In WD-PR rats, bilateral injections of DAMGO (2 nmol in 0.5 μL) into the CeA induced 0.3 M NaCl and water intake, and pre-treatment with losartan (108 nmol in 0.5 μL) injected into the CeA reduced 0.3 M NaCl and water intake induced by DAMGO. In FURO/CAP rats, pre-treatment with losartan (108 nmol in 0.5 μL) injected into the CeA attenuated the increase in 0.3M NaCl and water intake induced by DAMGO (2 nmol in 0.5 μL) injected into the same site. The results suggest that the natriorexigenic effect of DAMGO injected into the CeA is facilitated by endogenous angiotensin II acting on AT1 receptors in the CeA, which drives rats to ingest large amounts of hypertonic NaCl.
Collapse
Affiliation(s)
- J-B Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Physiology, Medical College of Henan University of Science and Technology, 263# Kaiyuan Avenue, Luoyang, Henan 471023, PR China
| | - H-L Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Oral Biology, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Q Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - K Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Sun
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - L Song
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - W Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - X-L Zhao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - S-R Zhao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - H Qiao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - B Hu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - J-Q Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Oral Biology, Xi'an Jiaotong University College of Stomatology, 98# Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
19
|
Genaro K, Juliano MA, Prado WA, Brandão ML, Martins AR. Effects of angiotensin (5-8) microinfusions into the ventrolateral periaqueductal gray on defensive behaviors in rats. Behav Brain Res 2013; 256:537-44. [PMID: 24041538 DOI: 10.1016/j.bbr.2013.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Peptides of the renin-angiotensin system modulate blood pressure and hydro-electrolyte composition. Angiotensin (Ang) receptors are localized in brain areas related to the regulation of autonomic and endocrine control and involved in sensory perception, memory process and behavioral responses. Among these areas, the ventrolateral periaqueductal gray (vlPAG) is one of the most important structures of the neuronal circuitry controlling the autonomic and behavioral components of emotional states. Although Ang II metabolism in the vlPAG forms several Ang-peptides including Ang (5-8), the role of this tetrapeptide in the organization of defensive responses has not yet been described. To address this issue, the purpose of the present study was to determine the effects of intra-vlPAG injections of Ang (5-8) (0.2, 0.4 and 0.8 nmol/0.25 μL) in rats submitted to the elevated plus-maze (EPM) test. Additionally, it was evaluated the effects of intra-vlPAG Ang (5-8) on the expression of conditioned fear, assessed by the fear-potentiated startle and contextual conditioned freezing tests. The results showed that Ang (5-8) produced an intense, dose-related reduction in the entries into and time spent in the open arms of the EPM, decreased direct exploration and increased risk assessment behaviors. Moreover, intra-vlPAG injections of Ang (5-8) before the test session promoted pro-aversive effects in the FPS and enhanced contextual freezing. Taken together, these results point out to an important anxiogenic-like action for Ang (5-8) in the mediation of defensive behaviors organized in the vlPAG.
Collapse
Affiliation(s)
- Karina Genaro
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas, Uberaba, MG, Brazil; Universidade de São Paulo, Departamento de Farmacologia, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento, INeC, Ribeirão Preto, SP, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Xing J, Kong J, Lu J, Li J. Angiotensin-(1-7) inhibits neuronal activity of dorsolateral periaqueductal gray via a nitric oxide pathway. Neurosci Lett 2012; 522:156-61. [PMID: 22728059 DOI: 10.1016/j.neulet.2012.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023]
Abstract
The midbrain periaqueductal gray (PAG) is a neural site for several physiological functions related to cardiovascular regulation, pain modulation and behavioral reactions. Recently, angiotensin-(1-7) [Ang-(1-7)] has been considered as an important biologically active component of the renin-angiotensin system in the CNS. The purpose of this study was to determine (1) existence of Ang-(1-7) receptor, Mas-R, within the dorsolateral PAG (dl-PAG), (2) the role for Ang-(1-7) in modulating activity of dl-PAG neurons, and (3) the mechanisms by which Ang-(1-7) plays a regulatory role. Western blot analysis showed that Mas-R appears within the dl-PAG. Whole cell patch-clamp recording demonstrated that the discharge rates of dl-PAG neurons were decreased from 4.35±0.32 Hz of control to 1.06±0.34 Hz (P<0.05, vs. control) by 100 nM of Ang-(1-7). With pretreatment of A-779, a Mas-R inhibitor, the discharge rate was 4.66±0.62 Hz (P>0.05, vs. control) during infusion of Ang-(1-7). Additionally, neuronal nitric oxide synthase (nNOS) was largely localized within the dl-PAG among the three isoforms. The effects of Ang-(1-7) on neuronal activity of the PAG were attenuated in the presence of S-methyl-L-thiocitrulline (SMTC), a nNOS inhibitor. The discharge rates were 4.21±0.39 Hz in control and 4.09±0⋅47 Hz (P>0.05, vs. control) when Ang-(1-7) was applied with pretreatment of SMTC. Those findings suggest that Ang-(1-7) plays an inhibitory role in the dl-PAG via a NO dependent signaling pathway. This offers the basis for the physiological role of Ang-(1-7) and Mas R in the regulation of various functions in the CNS.
Collapse
Affiliation(s)
- Jihong Xing
- The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | | | | | | |
Collapse
|
21
|
Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress. Behav Brain Res 2012; 232:84-92. [PMID: 22503782 DOI: 10.1016/j.bbr.2012.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 01/12/2023]
Abstract
Centrally acting Angiotensin II AT(1) receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 μg/kg) with or without 3 days of pretreatment with the ARB candesartan (1mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ(1) receptors and reduced mRNA expression of the GABA(A) receptor γ(2) subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ(1) receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ(1) binding, and decreased γ(2) subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF(1) receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF(2) receptor binding was undetectable, but CRF(2) mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ(1) receptor expression; and that the stress-induced BZ(1) receptor expression is under the control of AT(1) receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ(1) receptors.
Collapse
|
22
|
Natriorexigenic effect of baclofen is reduced by AT1 receptor blockade in the lateral parabrachial nucleus. Brain Res Bull 2011; 86:348-54. [DOI: 10.1016/j.brainresbull.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/01/2011] [Accepted: 09/04/2011] [Indexed: 11/19/2022]
|
23
|
Da Silva CZC, Menani JV, Callera JC. AT1 receptor blockade in the lateral parabrachial nucleus reduces the effects of muscimol on sodium intake. Brain Res 2011; 1403:28-36. [DOI: 10.1016/j.brainres.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 11/29/2022]
|