1
|
Qian J, Zheng L, Huang M, Zhao M. Potential Mechanisms of Casein Hexapeptide YPVEPF on Stress-Induced Anxiety and Insomnia Mice and Its Molecular Effects and Key Active Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6189-6202. [PMID: 38501577 DOI: 10.1021/acs.jafc.3c05718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The hexapeptide YPVEPF with strong sleep-enhancing effects could be detected in rat brain after a single oral administration as we previously proved. In this study, the mechanism and molecular effects of YPVEPF in the targeted stress-induced anxiety mice were first investigated, and its key active structure was further explored. The results showed that YPVEPF could significantly prolong sleep duration and improve the anxiety indexes, including prolonging the time spent in the open arms and in the center. Meanwhile, YPVEPF showed strong sleep-enhancing effects by significantly increasing the level of the GABA/Glu ratio, 5-HT, and dopamine in brain and serum and regulating the anabolism of multiple targets, but the effects could be blocked by bicuculline and WAY100135. Moreover, the molecular simulation results showed that YPVEPF could stably bind to the vital GABAA and 5-HT1A receptors due to the vital structure of Tyr-Pro-Xaa-Xaa-Pro-, and the electrostatic and van der Waals energy played dominant roles in stabilizing the conformation. Therefore, YPVEPF displayed sleep-enhancing and anxiolytic effects by regulating the GABA-Glu metabolic pathway and serotoninergic system depending on distinctive self-folding structures with Tyr and two Pro repeats.
Collapse
Affiliation(s)
- Jingjing Qian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
- Guangdong Huapeptides Biotechnology Co., Ltd, Zhaoqing 526000, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
2
|
Chowdhury VS. L-Citrulline: A novel hypothermic amino acid promoting thermotolerance in heat-exposed chickens. Anim Sci J 2023; 94:e13826. [PMID: 36938778 DOI: 10.1111/asj.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
With global warming becoming of increasing concern, poultry farms are experiencing a concomitant increase in heat stress. Chickens are very sensitive to high ambient temperature (HT), so the development of novel nutrients that will help deal with the challenge posed by heat stress is vital. We revealed that L-citrulline (L-Cit) can reduce body temperature in chickens. Orally administered L-Cit solution has been found to provide heat tolerance in chickens and to result in reduced food intake. Heat exposure and oral administration of L-Cit led to increased levels of plasma insulin, whereas heat stress led to a decline in plasma thyroxine. Dietary administration of L-Cit was also shown to be effective to reduce heat stress in broiler chickens. Moreover, L-Cit was found to be metabolized in the liver within 1 h of its administration, and in L-Cit-treated broiler chicks, the Cit-Arginine cycle and the Krebs cycle were found to be active. L-Cit has not yet been approved for inclusion in the poultry diet, so it is important to find alternative sources of L-Cit. Taken together, these findings suggest that L-Cit may serve as an important novel nutrient with the ability to produce heat tolerance in chickens under HT.
Collapse
Affiliation(s)
- Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Department of Animal and Marine Bioresource Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
L-Leucine In Ovo Administration Causes Growth Retardation and Modifies Specific Amino Acid Metabolism in Broiler Embryos. J Poult Sci 2021; 58:163-170. [PMID: 34447280 PMCID: PMC8371536 DOI: 10.2141/jpsa.0200086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
L-Leucine (L-Leu) in ovo administration was demonstrated to afford thermotolerance and modified amino acids metabolism in post-hatched broiler chicks under heat stress. This study aimed to investigate the changes in embryonic growth and amino acid metabolism after in ovo injection of L-Leu. Fertilized broiler eggs were subjected to in ovo injection of sterile water or L-Leu on embryonic day (ED) 7. The weight of embryos and yolk sacs were measured on ED 12, 14, 16, and 18. Plasma and livers were collected on ED 14 and 18 for free amino acid analysis. The weight and relative weight of embryos were significantly lowered by in ovo administration of L-Leu, but those of yolk sacs were not altered. Moreover, L-Leu in ovo injection significantly reduced the plasma proline concentration during embryogenesis and increased the plasma concentrations of tyrosine (Tyr) and lysine (Lys) in ED 18. Hepatic Lys concentration was also significantly increased by L-Leu in ovo injection. Interestingly, Leu concentrations in the plasma and liver were not affected by L-Leu administration. These results indicated that in ovo administered L-Leu was metabolized before ED 14 and affected embryonic growth and amino acid metabolism during embryogenesis.
Collapse
|
4
|
Chowdhury VS, Han G, Eltahan HM, Haraguchi S, Gilbert ER, Cline MA, Cockrem JF, Bungo T, Furuse M. Potential Role of Amino Acids in the Adaptation of Chicks and Market-Age Broilers to Heat Stress. Front Vet Sci 2021; 7:610541. [PMID: 33490137 PMCID: PMC7820334 DOI: 10.3389/fvets.2020.610541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Increased average air temperatures and more frequent and prolonged periods of high ambient temperature (HT) associated with global warming will increasingly affect worldwide poultry production. It is thus important to understand how HT impacts poultry physiology and to identify novel approaches to facilitate improved adaptation and thereby maximize poultry growth, health and welfare. Amino acids play a role in many physiological functions, including stress responses, and their relative demand and metabolism are altered tissue-specifically during exposure to HT. For instance, HT decreases plasma citrulline (Cit) in chicks and leucine (Leu) in the embryonic brain and liver. The physiological significance of these changes in amino acids may involve protection of the body from heat stress. Thus, numerous studies have focused on evaluating the effects of dietary administration of amino acids. It was found that oral l-Cit lowered body temperature and increased thermotolerance in layer chicks. When l-Leu was injected into fertile broiler eggs to examine the cause of reduction of Leu in embryos exposed to HT, in ovo feeding of l-Leu improved thermotolerance in broiler chicks. In ovo injection of l-Leu was also found to inhibit weight loss in market-age broilers exposed to chronic HT, giving rise to the possibility of developing a novel biotechnology aimed at minimizing the economic losses to poultry producers during summer heat stress. These findings and the significance of amino acid metabolism in chicks and market-age broilers under HT are summarized and discussed in this review.
Collapse
Affiliation(s)
- Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Guofeng Han
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Hatem M Eltahan
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Takashi Bungo
- Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Dalangin R, Kim A, Campbell RE. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int J Mol Sci 2020; 21:E6197. [PMID: 32867295 PMCID: PMC7503967 DOI: 10.3390/ijms21176197] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Neurotransmission between neurons, which can occur over the span of a few milliseconds, relies on the controlled release of small molecule neurotransmitters, many of which are amino acids. Fluorescence imaging provides the necessary speed to follow these events and has emerged as a powerful technique for investigating neurotransmission. In this review, we highlight some of the roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss available fluorescence-based probes for amino acids that have been shown to be compatible for live cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes), and genetically encoded components. We aim to provide tool developers with information that may guide future engineering efforts and tool users with information regarding existing indicators to facilitate studies of amino acid dynamics.
Collapse
Affiliation(s)
- Rochelin Dalangin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Anna Kim
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.D.); (A.K.)
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. Amino Acids 2019; 51:1129-1152. [DOI: 10.1007/s00726-019-02762-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
|
7
|
Chowdhury VS. Heat Stress Biomarker Amino Acids and Neuropeptide Afford Thermotolerance in Chicks. J Poult Sci 2019; 56:1-11. [PMID: 32055190 PMCID: PMC6993887 DOI: 10.2141/jpsa.0180024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
With global warming, heat stress is becoming a pressing concern worldwide. In chickens, heat stress reduces food intake and growth, and increases body temperature and stress responses. Although it is believed that young chicks do not experience heat stress as they need a higher ambient temperature to survive, our series of studies in young chicks showed that they are sensitive to heat stress. This review summarizes current knowledge on amino acid metabolisms during heat stress, with special emphasis on the hypothermic functions of l-citrulline (l-Cit) and l-leucine (l-Leu), and the functions of neuropeptide Y (NPY) in terms of body temperature and heat stress regulation in chicks. Amino acid metabolism is severely affected by heat stress. For example, prolonged heat stress reduces plasma l-Cit in chicks and l-Leu in the brain and liver of embryos. l-Cit and l-Leu supplementation affords thermotolerance in young chicks. NPY expression is increased in the brains of heat-exposed chicks. NPY has a hypothermic action under control thermoneutral temperature and heat stress in chicks. The NPY-sub-receptor Y5 is a partial mediator of the hypothermic action of NPY. Further, NPY stimulates brain dopamine concentrations and acts as an anti-stress agent in heat-exposed fasted, but not fed chicks. In conclusion, young chicks can serve as a model animal for the study of heat stress in chickens. l-Cit, l-Leu, and NPY were identified as biomarkers of heat stress, with the potential to afford thermotolerance in chicks.
Collapse
Affiliation(s)
- Vishwajit S. Chowdhury
- Lab of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Central Injection of Glucose Modifies Behavior, Amino Acid and Monoamine Metabolism in Neonatal Chicks under Acute Stressful Conditions. J Poult Sci 2016; 53:82-92. [PMID: 32908369 PMCID: PMC7477244 DOI: 10.2141/jpsa.0150093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The effect of intracerebroventricular (i.c.v.) injection of a wide range of glucose concentrations on the behavioral response, central amino acid and monoamine contents was investigated in chicks exposed to a social isolation stressful condition. The chicks were given an i.c.v. injection of 0.21, 0.42, 0.84, and 1.68 µmol of D-glucose, and then behavioral changes were observed over 10 min. The behavioral stress response was dose-dependently decreased and calm behavior was increased by i.c.v. administration of glucose. In the diencephalon, glutamine was positively correlated, whereas glycine was negatively correlated with the dose of glucose. In the telencephalon, the dopamine metabolite and dopamine turnover rates were positively correlated, whereas dopamine was negatively correlated with doses of glucose. In the plasma, isoleucine and hydroxyproline were positively correlated with the dose of glucose, and several amino acids were also influenced by glucose levels. These results suggest that the possible pathways of the sedative effect of glucose include: (1) amino acids synthesized from injected glucose, which can induce the sedative and/or hypnotic effects; (2) amino acids modified by injected glucose transported in the brain from the peripheral tissues; and (3) injected glucose-induced decreases in brain dopamine levels. In conclusion, these changes induced by central glucose interact and induce the sedative effect in neonatal chicks.
Collapse
|
9
|
Furuse M. Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick models. Eur J Pharmacol 2015; 762:382-93. [DOI: 10.1016/j.ejphar.2015.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
|
10
|
Ito K, Erwan E, Nagasawa M, Furuse M, Chowdhury VS. Changes in free amino acid concentrations in the blood, brain and muscle of heat-exposed chicks. Br Poult Sci 2014; 55:644-52. [DOI: 10.1080/00071668.2014.957653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Oral Administration of D-aspartate, but not of L-aspartate, Reduces Food Intake in Chicks. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Hamasu K, Kabuki Y, Tomonaga S, Denbow DM, Furuse M. Changes in brain monoamine metabolism of neonatal chicks under two different acute stress conditions. Br Poult Sci 2012; 53:145-9. [PMID: 22404816 DOI: 10.1080/00071668.2012.662271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. The purpose of the present study was to clarify brain monoamine metabolism during two different conditions of acute stress by quantifying changes in the brain of neonatal chicks exposed to either restraint with isolation, or fasting stress. 2. Under restraint with isolation-induced stress, dopaminergic metabolism was clearly stimulated. 3. During fasting stress, dopaminergic activity, serotonergic and norepinephrinergic metabolisms were stimulated. 4. It was concluded that brain monoamine metabolism of chicks is differentially affected by stressors.
Collapse
Affiliation(s)
- K Hamasu
- Laboratory of Advanced Animal and Marine Bioresources, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
13
|
Erwan E, Tomonaga S, Yoshida J, Nagasawa M, Ogino Y, Denbow DM, Furuse M. Central administration of l- and d-aspartate attenuates stress behaviors by social isolation and CRF in neonatal chicks. Amino Acids 2012; 43:1969-76. [DOI: 10.1007/s00726-012-1272-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/13/2012] [Indexed: 11/28/2022]
|
14
|
Nagasawa M, Murakami T, Sato M, Takahata Y, Morimatsu F, Furuse M. Dietary animal proteins alter monoamine metabolism in the brain. Anim Sci J 2011; 83:493-8. [PMID: 22694334 DOI: 10.1111/j.1740-0929.2011.00987.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several amino acids have effects on mental function, including sedative, antidepressant-like and anxiolytic-like effects. However, the influence of integrated amino acid nutrition as protein constituents on mental function remains unclear. Therefore, the purpose of the present study was to compare the influence of chicken, pork and beef protein extracts on brain monoamine metabolism in mice. Changes in monoamine levels and their turnover rates in the brain were induced by different protein sources. In particular, chicken protein group showed the highest norepinephrine levels in the hippocampus and hypothalamus, and beef protein extract caused an activation of the serotonergic system in the hypothalamus, although there were no significant differences in amino acid compositions of these protein extracts. Therefore, it was revealed that amino acid compositions in dietary protein did not induce alteration in monoamine metabolism. However, there were differences in small molecular peptides, such as creatine, carnosine and anserine levels in animal protein extracts. In conclusion, monoamine metabolism was altered by dietary protein sources. However, it was indicated that the alteration in monoamine metabolism may be independent from amino acid compositions in dietary protein. In addition, alteration in monoamine metabolism depending on the dietary protein sources may be induced by small molecular peptides.
Collapse
Affiliation(s)
- Mao Nagasawa
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|