1
|
Zhang C, Jia Q, Zhu L, Hou J, Wang X, Li D, Zhang J, Zhang Y, Yang S, Tu Z, Yan X, Yang W, Li S, Li X, Yin P. Suppressing UBE2N ameliorates Alzheimer's disease pathology through the clearance of amyloid beta. Alzheimers Dement 2024; 20:6287-6304. [PMID: 39015037 PMCID: PMC11497675 DOI: 10.1002/alz.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS We observed the elevated UBE2N during the amyloid beta (Aβ) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aβ generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aβ pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aβ) deposition in AD mouse and patients' brains. UBE2N exacerbated Aβ generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aβ pathology and cognitive deficiency.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jiawei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Yiran Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Zhuchi Tu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Xin Yan
- Department of Anatomy and NeurobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Weili Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Lenzi P, Lazzeri G, Ferrucci M, Scotto M, Frati A, Puglisi-Allegra S, Busceti CL, Fornai F. Is There a Place for Lewy Bodies before and beyond Alpha-Synuclein Accumulation? Provocative Issues in Need of Solid Explanations. Int J Mol Sci 2024; 25:3929. [PMID: 38612739 PMCID: PMC11011529 DOI: 10.3390/ijms25073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.
Collapse
Affiliation(s)
- Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Marco Scotto
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Alessandro Frati
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Roma, Italy
| | - Stefano Puglisi-Allegra
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| | - Carla Letizia Busceti
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
3
|
Puangmalai N, Sengupta U, Bhatt N, Gaikwad S, Montalbano M, Bhuyan A, Garcia S, McAllen S, Sonawane M, Jerez C, Zhao Y, Kayed R. Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimer's disease. J Biol Chem 2022; 298:101766. [PMID: 35202653 PMCID: PMC8942844 DOI: 10.1016/j.jbc.2022.101766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin-modified tau aggregates are abundantly found in human brains diagnosed with Alzheimer's disease (AD) and other tauopathies. Soluble tau oligomers (TauO) are the most neurotoxic tau species that propagate pathology and elicit cognitive deficits, but whether ubiquitination contributes to tau formation and spreading is not fully understood. Here, we observed that K63-linked, but not K48-linked, ubiquitinated TauO accumulated at higher levels in AD brains compared with age-matched controls. Using mass spectrometry analyses, we identified 11 ubiquitinated sites on AD brain-derived TauO (AD TauO). We found that K63-linked TauO are associated with enhanced seeding activity and propagation in human tau-expressing primary neuronal and tau biosensor cells. Additionally, exposure of tau-inducible HEK cells to AD TauO with different ubiquitin linkages (wild type, K48, and K63) resulted in enhanced formation and secretion of K63-linked TauO, which was associated with impaired proteasome and lysosome functions. Multipathway analysis also revealed the involvement of K63-linked TauO in cell survival pathways, which are impaired in AD. Collectively, our study highlights the significance of selective TauO ubiquitination, which could influence tau aggregation, accumulation, and subsequent pathological propagation. The insights gained from this study hold great promise for targeted therapeutic intervention in AD and related tauopathies.
Collapse
Affiliation(s)
- Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arijit Bhuyan
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie Garcia
- School of Dentistry, University of Texas Health Science Center, Houston, Texas, USA
| | - Salome McAllen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
4
|
Wysocka A, Palasz E, Steczkowska M, Niewiadomska G. Dangerous Liaisons: Tau Interaction with Muscarinic Receptors. Curr Alzheimer Res 2021; 17:224-237. [PMID: 32329686 PMCID: PMC7509759 DOI: 10.2174/1567205017666200424134311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
The molecular processes underlying neurodegenerative diseases (such as Alzheimer's Disease - AD) remain poorly understood. There is also an imperative need for disease-modifying therapies in AD since the present treatments, acetylcholinesterase inhibitors and NMDA antagonists, do not halt its progression. AD and other dementias present unique pathological features such as that of microtubule associated protein tau metabolic regulation. Tau has numerous binding partners, including signaling molecules, cytoskeletal elements and lipids, which suggests that it is a multifunctional protein. AD has also been associated with severe loss of cholinergic markers in the brain and such loss may be due to the toxic interaction of tau with cholinergic muscarinic receptors. By using specific antagonists of muscarinic receptors it was found in vitro that extracellular tau binds to M1 and M3 receptors and which the increase of intracellular calcium found in neuronal cells upon tau-binding. However, so far, the significance of tau signaling through muscarinic receptor in vivo in tauopathic models remains uncertain. The data reviewed in the present paper highlight the significant effect of M1 receptor/tau interaction in exacerbating tauopathy related pathological features and suggest that selective M1 agonists may serve as a prototype for future therapeutic development toward modification of currently intractable neurodegenerative diseases, such as tauopathies.
Collapse
Affiliation(s)
- Adrianna Wysocka
- Neurobiology Center, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Ewelina Palasz
- Department of Applied Physiology, Mossakowski Medical Research Center, 02-093 Warsaw, Poland
| | - Marta Steczkowska
- Department of Applied Physiology, Mossakowski Medical Research Center, 02-093 Warsaw, Poland
| | - Grazyna Niewiadomska
- Neurobiology Center, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Silva MC, Haggarty SJ. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int J Mol Sci 2020; 21:ijms21238948. [PMID: 33255694 PMCID: PMC7728099 DOI: 10.3390/ijms21238948] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by the pathological accumulation of microtubule-associated protein tau (MAPT) in the form of neurofibrillary tangles and paired helical filaments in neurons and glia, leading to brain cell death. These diseases include frontotemporal dementia (FTD) and Alzheimer's disease (AD) and can be sporadic or inherited when caused by mutations in the MAPT gene. Despite an incredibly high socio-economic burden worldwide, there are still no effective disease-modifying therapies, and few tau-focused experimental drugs have reached clinical trials. One major hindrance for therapeutic development is the knowledge gap in molecular mechanisms of tau-mediated neuronal toxicity and death. For the promise of precision medicine for brain disorders to be fulfilled, it is necessary to integrate known genetic causes of disease, i.e., MAPT mutations, with an understanding of the dysregulated molecular pathways that constitute potential therapeutic targets. Here, the growing understanding of known and proposed mechanisms of disease etiology will be reviewed, together with promising experimental tau-directed therapeutics, such as recently developed tau degraders. Current challenges faced by the fields of tau research and drug discovery will also be addressed.
Collapse
|
6
|
Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2020; 28:439-454. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin signaling is a sequence of events driving the fate of a protein based on the type of ubiquitin modifications attached. In the case of neurodegenerative diseases, ubiquitin signaling is mainly associated with degradation signals to process aberrant proteins, which form aggregates often fatal for the brain cells. This signaling is often perturbed by the aggregates themselves and leads to the accumulation of toxic aggregates and inclusion bodies that are deleterious due to a toxic gain of function. Decrease in quality control pathways is often seen with age and is a critical onset for the development of neurodegeneration. Many aggregates are now thought to propagate in a prion-like manner, where mutated proteins acting like seeds are transitioning from cell to cell, converting normal proteins to toxic aggregates. Modulation of ubiquitin signaling, by stimulating ubiquitin ligase activation, is a potential therapeutic strategy to treat patients with neurodegeneration diseases.
Collapse
Affiliation(s)
- François Le Guerroué
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 453] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Ramesh M, Gopinath P, Govindaraju T. Role of Post-translational Modifications in Alzheimer's Disease. Chembiochem 2020; 21:1052-1079. [PMID: 31863723 DOI: 10.1002/cbic.201900573] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The global burden of Alzheimer's disease (AD) is growing. Valiant efforts to develop clinical candidates for treatment have continuously met with failure. Currently available palliative treatments are temporary and there is a constant need to search for reliable disease pathways, biomarkers and drug targets for developing diagnostic and therapeutic tools to address the unmet medical needs of AD. Challenges in drug-discovery efforts raise further questions about the strategies of current conventional diagnosis; drug design; and understanding of disease pathways, biomarkers and targets. In this context, post-translational modifications (PTMs) regulate protein trafficking, function and degradation, and their in-depth study plays a significant role in the identification of novel biomarkers and drug targets. Aberrant PTMs of disease-relevant proteins could trigger pathological pathways, leading to disease progression. Advancements in proteomics enable the generation of patterns or signatures of such modifications, and thus, provide a versatile platform to develop biomarkers based on PTMs. In addition, understanding and targeting the aberrant PTMs of various proteins provide viable avenues for addressing AD drug-discovery challenges. This review highlights numerous PTMs of proteins relevant to AD and provides an overview of their adverse effects on the protein structure, function and aggregation propensity that contribute to the disease pathology. A critical discussion offers suggestions of methods to develop PTM signatures and interfere with aberrant PTMs to develop viable diagnostic and therapeutic interventions in AD.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamilnadu, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
9
|
Papanikolopoulou K, Skoulakis EMC. Altered Proteostasis in Neurodegenerative Tauopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:177-194. [PMID: 32274757 DOI: 10.1007/978-3-030-38266-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation or mutations of the neuronal microtubule-binding protein Tau. Tauopathies are characterized by accumulation of hyperphosphorylated Tau leading to formation of a range of aggregates including macromolecular ensembles such as Paired Helical filaments and Neurofibrilary Tangles whose morphology characterizes and differentiates these disease states. Why nonphysiological Tau proteins elude the surveillance normal proteostatic mechanisms and eventually form these macromolecular assemblies is a central mostly unresolved question of cardinal importance for diagnoses and potential therapeutic interventions. We discuss the response of the Ubiquitin-Proteasome system, autophagy and the Endoplasmic Reticulum-Unfolded Protein response in Tauopathy models and patients, revealing interactions of components of these systems with Tau, but also of the effects of pathological Tau on these systems which eventually lead to Tau aggregation and accumulation. These interactions point to potential disease biomarkers and future potential therapeutic targets.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece.
| |
Collapse
|
10
|
Identification of linear polyubiquitin chain immunoreactivity in tau pathology of Alzheimer’s disease. Neurosci Lett 2019; 703:53-57. [DOI: 10.1016/j.neulet.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/22/2022]
|
11
|
Park S, Lee JH, Jeon JH, Lee MJ. Degradation or aggregation: the ramifications of post-translational modifications on tau. BMB Rep 2018; 51:265-273. [PMID: 29661268 PMCID: PMC6033068 DOI: 10.5483/bmbrep.2018.51.6.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/06/2023] Open
Abstract
Tau protein is encoded in the microtubule-associated protein tau (MAPT) gene and contributes to the stability of microtubules in axons. Despite of its basic isoelectric point and high solubility, tau is often found in intraneuronal filamentous inclusions such as paired helical filaments (PHFs), which are the primary constituent of neurofibrillary tangles (NFTs). This pathological feature is the nosological entity termed "tauopathies" which notably include Alzheimer's disease (AD). A proteinaceous signature of all tauopathies is hyperphosphorylation of the accumulated tau, which has been extensively studied as a major pharmacological target for AD therapy. However, in addition to phosphorylation events, tau undergoes a number of diverse posttranslational modifications (PTMs) which appear to be controlled by complex crosstalk. It remains to be elucidated which of the PTMs or their combinations have pro-aggregation or anti-aggregation properties. In this review, we outline the consequences of and communications between several key PTMs of tau, such as acetylation, phosphorylation, and ubiquitination, focusing on their roles in aggregation and degradation. We place emphasis on the structure of tau protofilaments from the human AD brain, which may be good targets to modulate etiological PTMs which cause tau aggregation. [BMB Reports 2018; 51(6): 265-273].
Collapse
Affiliation(s)
- Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080,
Korea
| |
Collapse
|
12
|
Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol 2017; 133:731-749. [PMID: 28083634 PMCID: PMC5390007 DOI: 10.1007/s00401-016-1663-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022]
Abstract
Dysregulated proteostasis is a key feature of a variety of neurodegenerative disorders. In Alzheimer’s disease (AD), progression of symptoms closely correlates with spatiotemporal progression of Tau aggregation, with “early” oligomeric Tau forms rather than mature neurofibrillary tangles (NFTs) considered to be pathogenetic culprits. The ubiquitin–proteasome system (UPS) controls degradation of soluble normal and abnormally folded cytosolic proteins. The UPS is affected in AD and is identified by genomewide association study (GWAS) as a risk pathway for AD. The UPS is determined by balanced regulation of ubiquitination and deubiquitination. In this work, we performed isobaric tags for relative and absolute quantitation (iTRAQ)-based Tau interactome mapping to gain unbiased insight into Tau pathophysiology and to identify novel Tau-directed therapeutic targets. Focusing on Tau deubiquitination, we here identify Otub1 as a Tau-deubiquitinating enzyme. Otub1 directly affected Lys48-linked Tau deubiquitination, impairing Tau degradation, dependent on its catalytically active cysteine, but independent of its noncanonical pathway modulated by its N-terminal domain in primary neurons. Otub1 strongly increased AT8-positive Tau and oligomeric Tau forms and increased Tau-seeded Tau aggregation in primary neurons. Finally, we demonstrated that expression of Otub1 but not its catalytically inactive form induced pathological Tau forms after 2 months in Tau transgenic mice in vivo, including AT8-positive Tau and oligomeric Tau forms. Taken together, we here identified Otub1 as a Tau deubiquitinase in vitro and in vivo, involved in formation of pathological Tau forms, including small soluble oligomeric forms. Otub1 and particularly Otub1 inhibitors, currently under development for cancer therapies, may therefore yield interesting novel therapeutic avenues for Tauopathies and AD.
Collapse
|
13
|
Chen X, Petranovic D. Role of frameshift ubiquitin B protein in Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:300-13. [DOI: 10.1002/wsbm.1340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/10/2016] [Accepted: 03/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Chen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
| | - Dina Petranovic
- Systems and Synthetic Biology, Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
- Novo Nordisk Foundation Center for Biosustainability; Chalmers University of Technology; Göteborg Sweden
| |
Collapse
|
14
|
Shen WC, Li HY, Chen GC, Chern Y, Tu PH. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 2016; 11:685-700. [PMID: 25484089 DOI: 10.4161/auto.36098] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OPTN (optineurin) is an autophagy receptor and mutations in the OPTN gene result in familial glaucoma (E50K) and amyotrophic lateral sclerosis (ALS) (E478G). However, the mechanisms through which mutant OPTN leads to human diseases remain to be characterized. Here, we demonstrated that OPTN colocalized with inclusion bodies (IBs) formed by mutant HTT/huntingtin protein (mHTT) in R6/2 transgenic mice and IBs formed by 81QNmHTT (nuclear form), 109QmHTT (cytoplasmic form) or the truncated form of TARDBP/TDP-43 (TARDBP(ND251)) in Neuro2A cells. This colocalization required the ubiquitin (Ub)-binding domain (UbBD, amino acids 424 to 511) of OPTN. Overexpression of wild-type (WT) OPTN decreased IBs through K63-linked polyubiquitin-mediated autophagy. E50K or 210 to 410Δ (with amino acids 210 to 410 deleted) whose mutation or deletion was outside the UbBD decreased the IBs formed by 109QmHTT or TARDBP(ND251), as was the case with WT OPTN. In contrast, UbBD mutants, including E478G, D474N, UbBDΔ, 411 to 520Δ and 210 to 520Δ, increased accumulation of IBs. UbBD mutants (E478G, UbBDΔ) retained a substantial ability to interact with WT OPTN, and were found to colocalize with polyubiquitinated IBs, which might occur indirectly through their WT partner in a WT-mutant complex. They decreased autophagic flux evidenced by alteration in LC3 level and turnover and in the number of LC3-positive puncta under stresses like starvation or formation of IBs. UbBD mutants exhibited a weakened interaction with MYO6 (myosin VI) and TOM1 (target of myb1 homolog [chicken]), important for autophagosome maturation, in cells or sorted 109QmHtt IBs. Taken together, our data indicated that UbBD mutants acted as dominant-negative traps through the formation of WT-mutant hybrid complexes to compromise the maturation of autophagosomes, which in turn interfered with OPTN-mediated autophagy and clearance of IBs.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- Ab, antibody
- BafA1, bafilomycin A1
- CCD, coiled-coil domain
- Ef, FRET efficiency
- FT, filter-trap assay
- HD, Huntington disease
- IBs, inclusion bodies
- IP, immunoprecipitation
- K48, lysine 48
- K63, lysine 63
- LIR, LC3-interacting region
- MYO6, myosin VI
- OPTN, optineurin
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- TARDBP/TDP-43
- TARDBP/TDP-43, TAR DNA-binding protein
- TBK1, TANK-binding kinase 1
- TUBA, alpha tubulin
- UPS, ubiquitin-proteasome system
- Ub, ubiquitin B/C/D
- UbBD, ubiquitin-binding domain
- WB, western blot
- WT, wild type
- autophagy
- dominant-negative
- huntingtin
- mHTT, mutant huntingtin
- optineurin
Collapse
Affiliation(s)
- Wen-Chuan Shen
- a Taiwan International Graduate Program in Molecular Medicine; National Yang-Ming University and Academia Sinica ; Taipei , Taiwan
| | | | | | | | | |
Collapse
|
15
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
16
|
Lim GGY, Chew KCM, Ng XH, Henry-Basil A, Sim RWX, Tan JMM, Chai C, Lim KL. Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination. PLoS One 2013; 8:e73235. [PMID: 24023840 PMCID: PMC3759450 DOI: 10.1371/journal.pone.0073235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome) may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively) by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired.
Collapse
Affiliation(s)
- Grace G. Y. Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Katherine C. M. Chew
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Xiao-Hui Ng
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Adeline Henry-Basil
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Roy W. X. Sim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Jeanne M. M. Tan
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
| | - Chou Chai
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore, Singapore
- * E-mail:
| |
Collapse
|
17
|
Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 2013; 105:49-59. [PMID: 23528736 DOI: 10.1016/j.pneurobio.2013.03.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/03/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
The ubiquitin-proteasome system (UPS) and the autophagy-lysosome system are two major protein quality control mechanisms in eukaryotic cells. While the UPS has been considered for decades as the critical regulator in the degradation of various aggregate-prone proteins, autophagy has more recently been shown to be an important pathway implicated in neuronal health and disease. The two hallmark lesions of Alzheimer's disease (AD) are extracellular β-amyloid plaques and intracellular tau tangles. It has been suggested that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than β-amyloid plaques. Here, we review the UPS and autophagy-mediated tau clearance mechanisms and outline the biochemical connections between these two processes. In addition, we discuss pharmacological methods that target these degradation systems for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | | | | |
Collapse
|
18
|
Ihara Y, Morishima-Kawashima M, Nixon R. The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006361. [PMID: 22908190 PMCID: PMC3405832 DOI: 10.1101/cshperspect.a006361] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.
Collapse
Affiliation(s)
- Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Science, Doshisha University, Kyoto, Japan.
| | | | | |
Collapse
|
19
|
van Tijn P, Dennissen FJA, Gentier RJG, Hobo B, Hermes D, Steinbusch HWM, Van Leeuwen FW, Fischer DF. Mutant ubiquitin decreases amyloid β plaque formation in a transgenic mouse model of Alzheimer's disease. Neurochem Int 2012; 61:739-48. [PMID: 22797007 DOI: 10.1016/j.neuint.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022]
Abstract
The mutant ubiquitin UBB(+1) is a substrate as well as an inhibitor of the ubiquitin-proteasome system (UPS) and accumulates in the neuropathological hallmarks of Alzheimer's disease (AD). A role for the UPS has been suggested in the generation of amyloid β (Aβ) plaques in AD. To investigate the effect of UBB(+1) expression on amyloid pathology in vivo, we crossed UBB(+1) transgenic mice with a transgenic line expressing AD-associated mutant amyloid precursor protein (APPSwe) and mutant presenilin 1 (PS1dE9), resulting in APPPS1/UBB(+1) triple transgenic mice. In these mice, we determined the Aβ levels at 3, 6, 9 and 11 months of age. Surprisingly, we found a significant decrease in Aβ deposition in amyloid plaques and levels of soluble Aβ(42) in APPPS1/UBB(+1) transgenic mice compared to APPPS1 mice at 6 months of age, without alterations in UBB(+1) protein levels or proteasomal chymotrypsin activity. These lowering effects of UBB(+1) on Aβ deposition were transient, as this relative decrease in plaque load was not significant in APPPS1/UBB(+1) mice at 9 and 11 months of age. We also show that APPPS1/UBB(+1) mice exhibit astrogliosis, indicating that they may not be improved functionally compared to APPPS1 mice despite the Aβ reduction. The molecular mechanism underlying this decrease in Aβ deposition in APPPS1/UBB(+1) mice is more complex than previously assumed because UBB(+1) is also ubiquitinated at K63 opening the possibility of additional effects of UBB(+1) (e.g. kinase activation).
Collapse
Affiliation(s)
- Paula van Tijn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Heterozygosity for the proteasomal Psmc1 ATPase is insufficient to cause neuropathology in mouse brain, but causes cell cycle defects in mouse embryonic fibroblasts. Neurosci Lett 2012; 521:130-5. [PMID: 22677101 DOI: 10.1016/j.neulet.2012.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/14/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022]
Abstract
The ubiquitin proteasome system (UPS) is a fundamental cellular pathway, degrading most unwanted intracellular soluble proteins. Dysfunction of the UPS has been associated with normal aging as well as various age-related pathological conditions, including chronic human neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, leading to a significant interest in the involvement of this degradative system in neurones. We previously reported that the 26S proteasome was essential for neuronal homeostasis and survival in mouse brains following conditional genetic homozygous knockout of a key subunit of the multi-meric 26S proteasome (19S ATPase Psmc1). Here, we investigated the effects of Psmc1 heterozygosity in the mouse brain and primary mouse embryonic fibroblasts. Neuropathologically and biochemically, Psmc1 heterozygous (Psmc1(+/-)) knockout mice were indistinguishable from wild-type mice. However, we report a novel age-related accumulation of intraneuronal lysine 48-specific polyubiquitin-positive granular staining in both wild-type and heterozygous Psmc1 knockout mouse brain. In Psmc1(+/-) MEFs, we found a significant decrease in PSMC1 levels, altered 26S proteasome assembly and a notable G2/M cell cycle arrest that was not associated with an increase in the cell cycle regulatory protein p21. The disturbance in cell cycle progression may be responsible for the growth inhibitory effects in Psmc1(+/-) MEFs.
Collapse
|
21
|
Dennissen FJA, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 2012; 96:190-207. [PMID: 22270043 DOI: 10.1016/j.pneurobio.2012.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022]
Abstract
A shared hallmark for many neurodegenerative disorders is the accumulation of toxic protein species which is assumed to be the cause for these diseases. Since the ubiquitin proteasome system (UPS) is the most important pathway for selective protein degradation it is likely that it is involved in the aetiology neurodegenerative disorders. Indeed, impairment of the UPS has been reported to occur during neurodegeneration. Although accumulation of toxic protein species (amyloid β) are in turn known to impair the UPS the relationship is not necessarily causal. We provide an overview of the most recent insights in the roles the UPS plays in protein degradation and other processes. Additionally, we discuss the role of the UPS in clearance of the toxic proteins known to accumulate in the hallmarks of neurodegenerative diseases. The present paper will focus on critically reviewing the involvement of the UPS in specific neurodegenerative diseases and will discuss if UPS impairment is a cause, a consequence or both of the disease.
Collapse
Affiliation(s)
- F J A Dennissen
- Department of Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
22
|
Tatham MH, Matic I, Mann M, Hay RT. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci Signal 2011; 4:rs4. [PMID: 21693764 DOI: 10.1126/scisignal.2001484] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The small ubiquitin-like modifiers (SUMOs) alter the functions of diverse cellular proteins by covalent posttranslational modification and thus influence many cellular functions, including gene transcription, cell cycle, and DNA repair. Although conjugation by ubiquitin and SUMO-2/3 are largely functionally and mechanistically independent from one another, both appear to increase under conditions of proteasome inhibition. To better understand the relationship between SUMO and protein degradation by the proteasome, we performed a quantitative proteomic analysis of SUMO-2 substrates after short- and long-term inhibition of the proteasome with MG132. Comparisons with changes to the SUMO-2 conjugate subproteome in response to heat stress revealed qualitative and quantitative parallels between both conditions; however, in contrast to heat stress, the MG132-triggered increase in SUMO-2 conjugation depended strictly on protein synthesis, implying that the accumulation of newly synthesized, misfolded proteins destined for degradation by the proteasome triggered the SUMO conjugation response. Furthermore, proteasomal inhibition resulted in the accumulation of conjugated forms of all SUMO paralogs in insoluble protein inclusions and in the accumulation on SUMO-2 substrates of lysine-63-linked polyubiquitin chains, which are not thought to serve as signals for proteasome-mediated degradation. Together, these findings suggest multiple, proteasome-independent roles for SUMOs in the cellular response to the accumulation of misfolded proteins.
Collapse
Affiliation(s)
- Michael H Tatham
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
23
|
Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D, Gearing M, Rees H, Lah JJ, Levey AI, Rush J, Peng J. Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 2011; 286:10457-65. [PMID: 21278249 DOI: 10.1074/jbc.m110.149633] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyubiquitin chains on substrates are assembled through any of seven lysine residues or the N terminus of ubiquitin (Ub), generating diverse linkages in the chain structure. PolyUb linkages regulate the fate of modified substrates, but their abundance and function in mammalian cells are not well studied. We present a mass spectrometry-based method to measure polyUb linkages directly from total lysate of mammalian cells. In HEK293 cells, the level of polyUb linkages was found to be 52% (Lys(48)), 38% (Lys(63)), 8% (Lys(29)), 2% (Lys(11)), and 0.5% or less for linear, Lys(6), Lys(27), and Lys(33) linkages. Tissue specificity of these linkages was examined in mice fully labeled by heavy stable isotopes (i.e. SILAC mice). Moreover, we profiled the Ub linkages in brain tissues from patients of Alzheimer disease with or without concurrent Lewy body disease as well as three cellular models of proteolytic stress: proteasome deficiency, lysosome deficiency, and heat shock. The data support that polyUb chains linked through Lys(6), Lys(11), Lys(27), Lys(29), and Lys(48) mediate proteasomal degradation, whereas Lys(63) chains are preferentially involved in the lysosomal pathway. Mixed linkages, including Lys(48), may also contribute to lysosomal targeting, as both Lys(63) and Lys(48) linkages are colocalized in LC3-labeled autophagosomes. Interestingly, heat shock treatment augments Lys(11), Lys(48), and Lys(63) but not Lys(29) linkages, and this unique pattern is similar to that in the profiled neurodegenerative cases. We conclude that different polyUb linkages play distinct roles under the three proteolytic stress conditions, and protein folding capacity in the heat shock responsive pathway might be more affected in Alzheimer disease.
Collapse
Affiliation(s)
- Eric B Dammer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bedford L, Layfield R, Mayer RJ, Peng J, Xu P. Diverse polyubiquitin chains accumulate following 26S proteasomal dysfunction in mammalian neurones. Neurosci Lett 2011; 491:44-7. [PMID: 21215295 DOI: 10.1016/j.neulet.2010.12.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/23/2010] [Accepted: 12/31/2010] [Indexed: 11/30/2022]
Abstract
A generality has been that polyubiquitin chain linkage can differentially address proteins for various physiological processes. 26S proteasomal degradation is the most established function of ubiquitin signalling, classically linked to Lys48 polyubiquitin chains. The other well-characterised polyubiquitin linkage, via Lys63, mediates nonproteolytic functions. However, there are five other lysine residues and ubiquitin's amino terminus which can participate in polyubiquitination. Our 26S proteasome knockout mouse provides a unique opportunity to comprehensively investigate the ubiquitin signals in their physiological context in neurones following genetic inhibition of the proteasome, using quantitative mass spectrometry of ubiquitin linkage-specific signature peptides. We provide the first evidence for diverse polyubiquitin chains in mammalian neurones in vivo and show that polyubiquitin linked via Lys6, Lys11, Lys29 and Lys48, but not Lys63, accumulates upon 26S proteasome dysfunction. This adaptable nature of ubiquitin signals for proteasomal targeting could reflect the extensive cellular processes which are regulated by proteasome proteolysis and/or may involve specific ubiquitin linkage preferences for subsets of proteins in mammalian neurones. Our molecular pathological findings make a significant contribution to the understanding of ubiquitin signalling in ubiquitin-proteasome function.
Collapse
Affiliation(s)
- Lynn Bedford
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2010; 10:29-46. [PMID: 21151032 PMCID: PMC7097807 DOI: 10.1038/nrd3321] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ubiquitin is a highly conserved 76 amino-acid protein that covalently attaches to protein substrates targeted for degradation by the 26S proteasome. The coordinated effort of a series of enzymes, including an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3), uses ATP to ultimately form an isopeptide bond between ubiquitin and a substrate. Another class of enzymes called deubiquitylating enzymes (DUBs) deconstruct these linkages and also have an essential role in ubiquitin function. In addition, ubiquitin-like proteins (UBLs), including NEDD8, SUMO and ISG15, share a characteristic three-dimensional fold with ubiquitin but have their own dedicated enzyme cascades and distinct (although sometimes overlapping) biological functions. The ubiquitin–proteasome system (UPS) and UBL conjugation pathways have important roles in various human diseases, including numerous types of cancer, cardiovascular disease, viral diseases and neurodegenerative disorders. The proteasome inhibitor bortezomib (Velcade; Millennium Pharmaceuticals) is the first clinically validated drug to target the UPS and is approved for the treatment of multiple myeloma. This suggests that other diseases may conceivably be targeted by modulating components of the UPS and UBL conjugation pathways using small-molecule inhibitors. A significant hurdle to identifying drug-like inhibitors of enzyme targets within the UPS and UBL conjugation pathways is the limited understanding of the molecular mechanisms and biological consequences of UBL conjugation. Here, we provide an overview of the enzyme classes in the UPS and UBL pathways that are potential therapeutic targets, and highlight considerations that are important for drug discovery. We also discuss the progress in the development of small-molecule inhibitors, and review developments in understanding of the role of the components of the UPS and the UBL pathways in disease and their potential for therapeutic intervention.
The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis, and their functional importance in various diseases, including cancer, cardiovascular disease and neurodegenerative disorders, is now beginning to emerge. Brownell and colleagues review developments in understanding of the role of the components of the UPS and the UBL pathways in disease and their potential for therapeutic intervention. The ubiquitin–proteasome system (UPS) and ubiquitin-like protein (UBL) conjugation pathways are integral to cellular protein homeostasis. The growing recognition of the fundamental importance of these pathways to normal cell function and in disease has prompted an in-depth search for small-molecule inhibitors that selectively block the function of these pathways. However, our limited understanding of the molecular mechanisms and biological consequences of UBL conjugation is a significant hurdle to identifying drug-like inhibitors of enzyme targets within these pathways. Here, we highlight recent advances in understanding the role of some of these enzymes and how these new insights may be the key to developing novel therapeutics for diseases including immuno-inflammatory disorders, cancer, infectious diseases, cardiovascular disease and neurodegenerative disorders.
Collapse
Affiliation(s)
- Lynn Bedford
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK.
| | | | | | | | | |
Collapse
|
26
|
K63-linked ubiquitination and neurodegeneration. Neurobiol Dis 2010; 43:9-16. [PMID: 20696248 DOI: 10.1016/j.nbd.2010.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/28/2010] [Accepted: 08/01/2010] [Indexed: 11/23/2022] Open
Abstract
The proteasome, which identifies and destroys unwanted proteins rapidly, plays a vital role in maintaining cellular protein homeostasis. Proteins that are destined for proteasome-mediated degradation are usually tagged with a chain of ubiquitin linked via lysine (K) 48 that targets them to the proteolytic machinery. However, when the proteasome becomes compromised in its function, it is attractive to think that the cell may switch to an alternative, non-proteolytic form of ubiquitination that could help divert cargo proteins away from an otherwise overloaded proteasome. Of the several types of ubiquitin chain topologies, K63-linked ubiquitination is the only one known to fulfil diverse proteasome-independent roles, including DNA repair, endocytosis and NFκB signaling. By virtue of its apparent dissociation from the proteasome, we have originally proposed that K63-linked ubiquitination may be involved in cargo diversion during proteasomal stress and accordingly, in the biogenesis of inclusion bodies associated with neurodegenerative diseases. Here, we provide an overview of this non-classic form of ubiquitin modification, and discuss current evidence and controversies surrounding our proposed role for K63 polyubiquitin as a key regulator of inclusion dynamics that is relevant to neurodegeneration. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
|
27
|
Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:128-40. [PMID: 20674814 DOI: 10.1016/j.bbagrm.2010.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022]
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
28
|
Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 2010; 20:391-401. [PMID: 20427185 DOI: 10.1016/j.tcb.2010.03.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/15/2023]
Abstract
The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.
Collapse
|
29
|
Rogers N, Paine S, Bedford L, Layfield R. Review: the ubiquitin-proteasome system: contributions to cell death or survival in neurodegeneration. Neuropathol Appl Neurobiol 2010; 36:113-24. [PMID: 20202119 DOI: 10.1111/j.1365-2990.2010.01063.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The significance of the accumulation of ubiquitin-positive intraneuronal inclusions in the brains of those affected with different neurodegenerative diseases is currently unclear. While one interpretation is that the disease mechanism(s) involves dysfunction of an ubiquitin-mediated process, such as the ubiquitin-proteasome system, the inclusions are also found in surviving neurones, suggesting a possible neuroprotective role. Here we review recent evidence in support of these seemingly opposing notions gleaned from cell and animal models as well as investigations of patient samples, with particular emphasis on studies relevant to Parkinson's disease.
Collapse
Affiliation(s)
- N Rogers
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | | | | | | |
Collapse
|
30
|
Moscat J, Diaz-Meco MT, Wooten MW. Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death Differ 2009; 16:1426-37. [PMID: 19713972 DOI: 10.1038/cdd.2009.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The recent identification of a novel protein-protein interaction module, termed PB1, in critical signaling molecules such as p62 (also known as sequestosome1), the atypical PKCs, and Par-6, has unveiled the existence of a new set of signaling complexes, which can be central to several biological processes from development to cancer. In this review, we will discuss the most recent advances on the role that the different components of these complexes have in vivo and that are relevant to human disease. In particular, we will review what we are learning from new data from knockout mice, and the indications from human mutations on the real role of these proteins in the physiology and biology of human diseases. The role that PKCzeta, PKClambda/iota, and Par-4 have in lung and prostate cancer in vivo and in humans will be extensively covered in this article, as will the multifunctional role of p62 as a novel hub in cell signaling during cancer and inflammation, and the mechanistic details and controversial data published on its potential role in aggregate formation and signaling. All this published information is shedding new light on the proposed pathological implications of these PB1-regulators in disease and shows their important role in cell physiology.
Collapse
Affiliation(s)
- J Moscat
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| | | | | |
Collapse
|