1
|
de Souza Dobuchak D, Stricker PEF, de Oliveira NB, Mogharbel BF, da Rosa NN, Dziedzic DSM, Irioda AC, Athayde Teixeira de Carvalho K. The Neural Multilineage Differentiation Capacity of Human Neural Precursors from the Umbilical Cord-Ready to Bench for Clinical Trials. MEMBRANES 2022; 12:873. [PMID: 36135892 PMCID: PMC9500740 DOI: 10.3390/membranes12090873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mesenchymal stem cells (MSC) are promising for regenerative medicine as they have a vast differentiation capacity, immunomodulatory properties and can be isolated from different tissues. Among them, the umbilical cord is considered a good source of MSC, as its collection poses no risk to donors and is unrelated to ethical issues. Furthermore, umbilical cord mesenchymal stem cells (UC-MSC) can differentiate into several cell lines, including neural lineages that, in the future, may become an alternative in the treatment of neurodegenerative diseases. This study used a natural functional biopolymer matrix (NFBX) as a membrane to differentiate UC-MSC into neurospheres and their Neural precursors without using neurogenic growth factors or gene transfection. Through the characterization of Neural precursors and differentiated cells, it was possible to demonstrate the broad potential for the differentiation of cells obtained through cultivation on this membrane. To demonstrate these Neural precursors' potential for future studies in neurodegenerative diseases, the Neural precursors from Wharton's jelly were differentiated into Schwann cells, oligodendrocytes, cholinergic-, dopaminergic- and GABAergic-like neurons.
Collapse
|
2
|
Yang L, Shen XM, Wang ZF, Li K, Wang W. The Notch signalling pathway and miRNA regulation play important roles in the differentiation of Schwann cells from adipose-derived stem cells. J Transl Med 2022; 102:320-328. [PMID: 34795395 DOI: 10.1038/s41374-021-00687-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022] Open
Abstract
An exploration of the underlying mechanisms is necessary to improve nerve myelin-forming cell Schwann cell (SC) differentiation from adipose-derived stem cells (ADSCs). Primary rat ADSCs were isolated and characterised for cell surface markers using flow cytometry analysis. After treatment with a mixture of glial growth factors, ADSCs were induced to differentiate and subsequently identified by immunofluorescence staining and western blotting. A miRNA microarray analysis was performed to explore the genes and signalling pathways regulating ADSC differentiation into SCs. ELISAs were conducted to measure the expression of neurotrophic factors and changes in the level of nerve cell adhesion factor. Dual luciferase reporter assays and RIP assays were performed to explore the potential mechanism of miR-21-5p in ADSC differentiation. The isolated ADSCs were positive for CD29 and CD44 but negative for CD49. After induction with specific cytokines, the differentiated ADSCs presented a spindle-like morphology similar to SCs and expressed S100. RNA-sequencing analyses revealed that 9821 mRNAs of protein-coding genes and 175 miRNAs were differentially expressed in differentiated SC-like cells compared to primary cultures of ADSCs. KEGG and Gene Ontology analyses revealed that the involvement of the Notch signalling pathway and miRNA negative regulation may be associated with the differentiation of ADSCs into SCs. Treatment with a Notch inhibitor promoted the differentiation of ADSCs. Furthermore, mechanistic studies showed that Jag1 bound to miR-21-5p and upregulated its target gene Jag1, thus affecting ADSC differentiation. These results revealed the mechanism underlying the important roles of miRNAs and the Notch signalling pathway in the differentiation of SCs from ADSCs, enabling potential therapeutic applications of ADSCs in peripheral nerve regeneration in the future.
Collapse
Affiliation(s)
- Liang Yang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410078, P.R. China
| | - Xiang-Min Shen
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Zhi-Fei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, Changsha, 410078, P.R. China
| | - Ke Li
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China
| | - Wei Wang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, P.R. China.
| |
Collapse
|
3
|
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep 2022; 18:544-558. [PMID: 34417730 PMCID: PMC8858329 DOI: 10.1007/s12015-021-10236-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries (PNIs) are common and debilitating, cause significant health care costs for society, and rely predominately on autografts, which necessitate grafting a nerve section non-locally to repair the nerve injury. One possible approach to improving treatment is bolstering endogenous regenerative mechanisms or bioengineering new nervous tissue in the peripheral nervous system. In this review, we discuss critical-sized nerve gaps and nerve regeneration in rats, and summarize the roles of adipose-derived stem cells (ADSCs) in the treatment of PNIs. Several regenerative treatment modalities for PNI are described: ADSCs differentiating into Schwann cells (SCs), ADSCs secreting growth factors to promote peripheral nerve growth, ADSCs promoting myelination growth, and ADSCs treatments with scaffolds. ADSCs' roles in regenerative treatment and features are compared to mesenchymal stem cells, and the administration routes, cell dosages, and cell fates are discussed. ADSCs secrete neurotrophic factors and exosomes and can differentiate into Schwann cell-like cells (SCLCs) that share features with naturally occurring SCs, including the ability to promote nerve regeneration in the PNS. Future clinical applications are also discussed.
Collapse
|
4
|
Cheng XQ, Liang XZ, Wei S, Ding X, Han GH, Liu P, Sun X, Quan Q, Tang H, Zhao Q, Shang AJ, Peng J. Protein microarray analysis of cytokine expression changes in distal stumps after sciatic nerve transection. Neural Regen Res 2020; 15:503-511. [PMID: 31571662 PMCID: PMC6921340 DOI: 10.4103/1673-5374.266062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A large number of chemokines, cytokines, other trophic factors and the extracellular matrix molecules form a favorable microenvironment for peripheral nerve regeneration. This microenvironment is one of the major factors for regenerative success. Therefore, it is important to investigate the key molecules and regulators affecting nerve regeneration after peripheral nerve injury. However, the identities of specific cytokines at various time points after sciatic nerve injury have not been determined. The study was performed by transecting the sciatic nerve to establish a model of peripheral nerve injury and to analyze, by protein microarray, the expression of different cytokines in the distal nerve after injury. Results showed a large number of cytokines were up-regulated at different time points post injury and several cytokines, e.g., ciliary neurotrophic factor, were downregulated. The construction of a protein-protein interaction network was used to screen how the proteins interacted with differentially expressed cytokines. Kyoto Encyclopedia of Genes and Genomes pathway and Gene ontology analyses indicated that the differentially expressed cytokines were significantly associated with chemokine signaling pathways, Janus kinase/signal transducers and activators of transcription, phosphoinositide 3-kinase/protein kinase B, and notch signaling pathway. The cytokines involved in inflammation, immune response and cell chemotaxis were up-regulated initially and the cytokines involved in neuronal apoptotic processes, cell-cell adhesion, and cell proliferation were up-regulated at 28 days after injury. Western blot analysis showed that the expression and changes of hepatocyte growth factor, glial cell line-derived neurotrophic factor and ciliary neurotrophic factor were consistent with the results of protein microarray analysis. The results provide a comprehensive understanding of changes in cytokine expression and changes in these cytokines and classical signaling pathways and biological functions during Wallerian degeneration, as well as a basis for potential treatments of peripheral nerve injury. The study was approved by the Institutional Animal Care and Use Committee of the Chinese PLA General Hospital, China (approval number: 2016-x9-07) in September 2016.
Collapse
Affiliation(s)
- Xiao-Qing Cheng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xue-Zhen Liang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing; The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Shuai Wei
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ding
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Gong-Hai Han
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xun Sun
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Quan
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - He Tang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qing Zhao
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ai-Jia Shang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Institute of Orthopedics, Chinese PLA General Hospital, Beijing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SWP. Stem-cell-based therapies to enhance peripheral nerve regeneration. Muscle Nerve 2019; 61:449-459. [PMID: 31725911 DOI: 10.1002/mus.26760] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury remains a major cause of morbidity in trauma patients. Despite advances in microsurgical techniques and improved understanding of nerve regeneration, obtaining satisfactory outcomes after peripheral nerve injury remains a difficult clinical problem. There is a growing body of evidence in preclinical animal studies demonstrating the supportive role of stem cells in peripheral nerve regeneration after injury. The characteristics of both mesoderm-derived and ectoderm-derived stem cell types and their role in peripheral nerve regeneration are discussed, specifically focusing on the presentation of both foundational laboratory studies and translational applications. The current state of clinical translation is presented, with an emphasis on both ethical considerations of using stems cells in humans and current governmental regulatory policies. Current advancements in cell-based therapies represent a promising future with regard to supporting nerve regeneration and achieving significant functional recovery after debilitating nerve injuries.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joey Grochmal
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theodore A Kung
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rajiv Midha
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Liu Y, Dong R, Zhang C, Yang Y, Xu Y, Wang H, Zhang M, Zhu J, Wang Y, Sun Y, Zhang Z. Therapeutic effects of nerve leachate-treated adipose-derived mesenchymal stem cells on rat sciatic nerve injury. Exp Ther Med 2019; 19:223-231. [PMID: 31853293 PMCID: PMC6909684 DOI: 10.3892/etm.2019.8203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a common condition, often resulting from physical nerve injury and trauma. Successful repair of the peripheral nerve is dependent on the regenerative activity of Schwann cells (SCs). Application of SC-like adipose-derived mesenchymal stem cells (ADSCs) may be a suitable cell-based therapy for PNI. In the present study, nerve leachate derived from the rat sciatic nerve was used to induce the differentiation of ADSCs. These cells were placed in an acellular biological scaffold, which was then grafted to a rat sciatic nerve to bridge a 1-cm gap. Sprague-Dawley rats were divided into four groups: Scaffold only, untreated ADSCs + scaffold, nerve leachate-treated ADSCs + scaffold and autograft. Two-months post-transplant, the structure and function of the regenerated nerves and the recovery of the innervated muscles was analyzed. After transplant, there was a significant increase in the average area (15.86%; P<0.05), density (23.13%; P<0.05) and thickness (43.24%; P<0.05) of regenerated nerve fibers in the nerve leachate-treated ADSCs + scaffold group compared with the untreated ADSCs + scaffold group. The nerve conduction velocity in the nerve leachate-treated ADSCs + scaffold and autograft groups was superior to that in the other groups. In the nerve leachate-treated ADSCs + scaffold group, the cross-sectional area of the gastrocnemius increased by 39.28% (P<0.05) and the cross-sectional area of collagen fibers decreased by 29.87% (P<0.05) compared with the ADSCs + scaffold group. Moreover, the therapeutic effect of nerve leachate-treated ADSCs + scaffold on PNI was similar to that of an autograft. These results suggest that nerve leachate-treated ADSCs may promote the repair of PNI.
Collapse
Affiliation(s)
- Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Ruiqi Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Chunyan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yuxiang Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yaolu Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Haojie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Jiamin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China.,Engineering Research Center for Mutton Sheep Breeding of Henan Province, Luoyang, Henan 471023, P.R. China
| | - Yanhong Sun
- Department of Physiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P.R. China
| |
Collapse
|
7
|
Luo L, Hu DH, Yin JQ, Xu RX. Molecular Mechanisms of Transdifferentiation of Adipose-Derived Stem Cells into Neural Cells: Current Status and Perspectives. Stem Cells Int 2018; 2018:5630802. [PMID: 30302094 PMCID: PMC6158979 DOI: 10.1155/2018/5630802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Neurological diseases can severely compromise both physical and psychological health. Recently, adult mesenchymal stem cell- (MSC-) based cell transplantation has become a potential therapeutic strategy. However, most studies related to the transdifferentiation of MSCs into neural cells have had disappointing outcomes. Better understanding of the mechanisms underlying MSC transdifferentiation is necessary to make adult stem cells more applicable to treating neurological diseases. Several studies have focused on adipose-derived stromal/stem cell (ADSC) transdifferentiation. The purpose of this review is to outline the molecular characterization of ADSCs, to describe the methods for inducing ADSC transdifferentiation, and to examine factors influencing transdifferentiation, including transcription factors, epigenetics, and signaling pathways. Exploring and understanding the mechanisms are a precondition for developing and applying novel cell therapies.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - James Q. Yin
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Ru-Xiang Xu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| |
Collapse
|
8
|
Abstract
BACKGROUND Peripheral nerve injuries remain a major clinical concern, as they often lead to chronic disability and significant health care expenditures. Despite advancements in microsurgical techniques to enhance nerve repair, biological approaches are needed to augment nerve regeneration and improve functional outcomes after injury. METHODS Presented herein is a review of the current literature on state-of-the-art techniques to enhance functional recovery for patients with nerve injury. Four categories are considered: (1) electroceuticals, (2) nerve guidance conduits, (3) fat grafting, and (4) optogenetics. Significant study results are highlighted, focusing on histologic and functional outcome measures. RESULTS This review documents the current state of the literature. Advancements in neuronal stimulation, tissue engineering, and cell-based therapies demonstrate promise with regard to augmenting nerve regeneration and appropriate rehabilitation. CONCLUSIONS The future of treating peripheral nerve injury will include multimodality use of electroconductive conduits, fat grafting, neuronal stimulation, and optogenetics. Further clinical investigation is needed to confirm the efficacy of these technologies on peripheral nerve recovery in humans, and how best to implement this treatment for a diverse population of nerve-injured patients.
Collapse
|
9
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
10
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
11
|
|
12
|
Yan YH, Li SH, Gao Z, Zou SF, Li HY, Tao ZY, Song J, Yang JX. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway. Life Sci 2016; 166:131-138. [PMID: 27720999 DOI: 10.1016/j.lfs.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
AIMS Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. MAIN METHODS BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. KEY FINDINGS We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. SIGNIFICANCE Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes.
Collapse
Affiliation(s)
- Yu-Hui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Shao-Heng Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Zhong Gao
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital, Dalian 116033, PR China
| | - Sa-Feng Zou
- Department of Interventional Therapy, Department of Rehabilitation, Dalian Municipal Central Hospital, Dalian 116033, PR China
| | - Hong-Yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Zhen-Yu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Jing-Xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China.
| |
Collapse
|
13
|
Faroni A, Smith RJ, Reid AJ. Adipose derived stem cells and nerve regeneration. Neural Regen Res 2014; 9:1341-6. [PMID: 25221589 PMCID: PMC4160863 DOI: 10.4103/1673-5374.137585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 12/25/2022] Open
Abstract
Injuries to peripheral nerves are common and cause life-changing problems for patients alongside high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacrificing a section of nerve from elsewhere in the body to provide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacrifice of a functional nerve. Stem cells are prime candidates as accelerators of regeneration in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Richard Jp Smith
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK ; Department of Plastic Surgery & Burns, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|
14
|
Tse KH, Novikov LN, Wiberg M, Kingham PJ. Intrinsic mechanisms underlying the neurotrophic activity of adipose derived stem cells. Exp Cell Res 2014; 331:142-151. [PMID: 25193075 DOI: 10.1016/j.yexcr.2014.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/24/2014] [Indexed: 01/14/2023]
Abstract
Adipose derived stem cells (ADSC) can be differentiated into Schwann cell-like cells which enhance nerve function and regeneration. However, the signalling mechanisms underlying the neurotrophic potential of ADSC remain largely unknown. In this study, we hypothesised that ADSC, upon stimulation with a combination of growth factors, could rapidly produce brain derived neurotrophic factor (BDNF) with a similar molecular mechanism to that functioning in the nervous system. Within 48 h of stimulation, ADSC demonstrated potent neurotrophic effects on dorsal root ganglion neurons, at a magnitude equivalent to that of the longer term differentiated Schwann cell-like cells. Stimulated ADSC showed rapid up-regulation of the neuronal activity dependent promoter BDNF exon IV along with an augmented expression of full length protein encoding BDNF exon IX. BDNF protein was secreted at a concentration similar to that produced by differentiated Schwann cell-like cells. Stimulation also activated the BDNF expression gating transcription factor, cAMP responsive element binding (CREB) protein. However, blocking phosphorylation of CREB with the protein kinase A small molecule inhibitor H89 did not suppress secretion of BDNF protein. These results suggest rapid BDNF production in ADSC is mediated through multiple compensatory pathways independent of, or in addition to, the CREB neuronal activation cascade.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden; Department of Surgical and Perioperative Sciences, Section of Hand & Plastic Surgery, Umeå University, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
15
|
Ghasemi N, Razavi S. Transdifferentiation potential of adipose-derived stem cells into neural lineage and their application. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2055-091x-1-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int 2013; 36:1161-70. [PMID: 22974058 DOI: 10.1042/cbi20120288] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.
Collapse
|
17
|
Bossio C, Mastrangelo R, Morini R, Tonna N, Coco S, Verderio C, Matteoli M, Bianco F. A simple method to generate adipose stem cell-derived neurons for screening purposes. J Mol Neurosci 2013; 51:274-81. [PMID: 23468184 DOI: 10.1007/s12031-013-9985-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023]
Abstract
Strategies involved in mesenchymal stem cell (MSC) differentiation toward neuronal cells for screening purposes are characterized by quality and quantity issues. Differentiated cells are often scarce with respect to starting undifferentiated population, and the differentiation process is usually quite long, with high risk of contamination and low yield efficiency. Here, we describe a novel simple method to induce direct differentiation of MSCs into neuronal cells, without neurosphere formation. Differentiated cells are characterized by clear morphological changes, expression of neuronal specific markers, showing functional response to depolarizing stimuli and electrophysiological properties similar to those of developing neurons. The method described here represents a valuable tool for future strategies aimed at personalized screening of therapeutic agents in vitro.
Collapse
|
18
|
Faroni A, Terenghi G, Reid AJ. Adipose-derived stem cells and nerve regeneration: promises and pitfalls. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:121-36. [PMID: 24083433 DOI: 10.1016/b978-0-12-410499-0.00005-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In order to improve the outcome of nerve regeneration following peripheral trauma injuries, the development of bioengineered nerve grafts has attracted great attention in the field of tissue engineering. Adult stem cells constitute the ideal alternative to Schwann cells (SCs) as transplantable cells in bioartificial nerve grafts. Among the various sources of stem cells with potential applications for regenerative medicine, the adipose tissue has been proven to be one of the most promising. Adipose-derived stem cells (ASCs) are easily obtained, rapidly expanded, show low immunogenicity, and can be differentiated into SCs in vitro. This chapter will focus on recent advances in the use of differentiated and undifferentiated ASCs for peripheral nerve regeneration, with a critical attention for the clinical exploitability of ASC in nerve repair strategies.
Collapse
Affiliation(s)
- Alessandro Faroni
- Faculty of Medical and Human Sciences, The University of Manchester, Blond McIndoe Laboratories, Regenerative Medicine, Institute of Inflammation and Repair, Manchester, United Kingdom.
| | | | | |
Collapse
|
19
|
Higuchi A, Chuang CW, Ling QD, Huang SC, Wang LM, Chen H, Chang Y, Wang HC, Bing JT, Chang Y, Hsu ST. Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2010.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of Notch signaling/target genes in vertebrates. Cell Mol Life Sci 2010; 67:2957-68. [PMID: 20458516 PMCID: PMC11115867 DOI: 10.1007/s00018-010-0391-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/10/2010] [Accepted: 04/26/2010] [Indexed: 12/27/2022]
Abstract
Evolutionarily conserved Notch signaling orchestrates diverse physiological mechanisms during metazoan development and homeostasis. Classically, ligand-activated Notch receptors transduce the signaling cascade through the interaction of DNA-bound CBF1-co-repressor complex. However, recent reports have demonstrated execution of a CBF1-independent Notch pathway through signaling cross-talks in various cells/tissues. Here, we have tried to congregate the reports that describe the non-canonical/CBF1-independent Notch signaling and target gene activation in vertebrates with specific emphasis on their functional relevance.
Collapse
Affiliation(s)
- Rajendran Sanalkumar
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala India
| | - Sivadasan Bindu Dhanesh
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala India
| | - Jackson James
- Neuro-Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala India
| |
Collapse
|