1
|
Claeboe ET, Blake KL, Shah NR, Morris CW, Hens B, Atwood BK, Absalon S, Mosley AL, Doud EH, Baucum AJ. Proximity labeling and orthogonal nanobody pulldown (ID-oPD) approaches to map the spinophilin interactome uncover a putative role for spinophilin in protein homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634546. [PMID: 39896493 PMCID: PMC11785182 DOI: 10.1101/2025.01.23.634546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Spinophilin is a dendritic spine enriched scaffolding and protein phosphatase 1 targeting protein. To detail spinophilin interacting proteins, we created an Ultra-ID and ALFA-tagged spinophilin encoding construct that permits proximity labeling and orthogonal nanobody pulldown (ID-oPD) of spinophilin-associated protein complexes in heterologous cells. We identified 614 specific, and 312 specific and selective, spinophilin interacting proteins in HEK293 cells and validated a subset of these using orthogonal approaches. Many of these proteins are involved in mRNA processing and translation. In the brain, we determined that spinophilin mRNA is highly neuropil localized and that spinophilin may normally function to limit its own expression but promote the expression of other PSD-associated proteins. Overall, our use of an ID-oPD approach uncovers a novel putative role for spinophilin in mRNA translation and synaptic protein expression specifically within dendritic spines.
Collapse
Affiliation(s)
- Emily T. Claeboe
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
| | - Keyana L. Blake
- Post-Baccalaureate Research Education Program, Indiana University Indianapolis
| | - Nikhil R. Shah
- Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Cameron W. Morris
- Medical Neuroscience Graduate Program, Indiana University School of Medicine
| | - Basant Hens
- Pharmacology Graduate Training Program, University of Minnesota Medical School
| | - Brady K. Atwood
- Department of Pharmacology, University of Minnesota Medical School
| | - Sabrina Absalon
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
| | - Amber L. Mosley
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Center for Proteome Analysis Indiana University School of Medicine
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
- Stark Neurosciences Research Institute, Indiana University School of Medicine
| | - Emma H. Doud
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Center for Proteome Analysis Indiana University School of Medicine
| | - Anthony J. Baucum
- Department of Biochemistry, Molecular Biology, and Pharmacology, Indiana University School of Medicine
- Stark Neurosciences Research Institute, Indiana University School of Medicine
| |
Collapse
|
2
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Watkins DS, True JD, Mosley AL, Baucum AJ. Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization. Proteomes 2018; 6:proteomes6040053. [PMID: 30562941 PMCID: PMC6313900 DOI: 10.3390/proteomes6040053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamatergic projections from the cortex and dopaminergic projections from the substantia nigra or ventral tegmental area synapse on dendritic spines of specific GABAergic medium spiny neurons (MSNs) in the striatum. Direct pathway MSNs (dMSNs) are positively coupled to protein kinase A (PKA) signaling and activation of these neurons enhance specific motor programs whereas indirect pathway MSNs (iMSNs) are negatively coupled to PKA and inhibit competing motor programs. An imbalance in the activity of these two programs is observed following increased dopamine signaling associated with exposure to psychostimulant drugs of abuse. Alterations in MSN signaling are mediated by changes in MSN protein post-translational modifications, including phosphorylation. Whereas direct changes in specific kinases, such as PKA, regulate different effects observed in the two MSN populations, alterations in the specific activity of serine/threonine phosphatases, such as protein phosphatase 1 (PP1) are less well known. This lack of knowledge is due, in part, to unknown, cell-specific changes in PP1 targeting proteins. Spinophilin is the major PP1-targeting protein in striatal postsynaptic densities. Using proteomics and immunoblotting approaches along with a novel transgenic mouse expressing hemagglutainin (HA)-tagged spinophilin in dMSNs and iMSNs, we have uncovered cell-specific regulation of the spinophilin interactome following a sensitizing regimen of amphetamine. These data suggest regulation of spinophilin interactions in specific MSN cell types and may give novel insight into putative cell-specific, phosphatase-dependent signaling pathways associated with psychostimulants.
Collapse
Affiliation(s)
- Darryl S Watkins
- Stark Neurosciences Research Institute, Indiana University School of Medicine Medical Neuroscience Graduate Program, Indianapolis, IN 46278, USA.
| | - Jason D True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46278, USA.
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46278, USA.
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Stark Neurosciences Research Institute Indianapolis, Indianapolis, IN 46202, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Edler MC, Salek AB, Watkins DS, Kaur H, Morris CW, Yamamoto BK, Baucum AJ. Mechanisms Regulating the Association of Protein Phosphatase 1 with Spinophilin and Neurabin. ACS Chem Neurosci 2018; 9:2701-2712. [PMID: 29786422 DOI: 10.1021/acschemneuro.8b00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein phosphorylation is a key mediator of signal transduction, allowing for dynamic regulation of substrate activity. Whereas protein kinases obtain substrate specificity by targeting specific amino acid sequences, serine/threonine phosphatase catalytic subunits are much more promiscuous in their ability to dephosphorylate substrates. To obtain substrate specificity, serine/threonine phosphatases utilize targeting proteins to regulate phosphatase subcellular localization and catalytic activity. Spinophilin and its homologue neurabin are two of the most abundant dendritic spine-localized protein phosphatase 1 (PP1) targeting proteins. The association between spinophilin and PP1 is increased in the striatum of animal models of Parkinson's disease (PD). However, mechanisms that regulate the association of spinophilin and neurabin with PP1 are unclear. Here, we report that the association between spinophilin and PP1α or PP1γ1 was increased by CDK5 expression and activation in a heterologous cell system. This increased association is at least partially due to phosphorylation of PP1. Conversely, CDK5 expression and activation decreased the association of PP1 with neurabin. As with dopamine depletion, methamphetamine (METH) abuse causes persistent alterations in dopamine signaling which influence striatal medium spiny neuron function and biochemistry. Moreover, both METH toxicity and dopamine depletion are associated with deficits in motor control and motor learning. Pathologically, we observed a decreased association of spinophilin with PP1 in rat striatum evaluated one month following a binge METH paradigm. Behaviorally, we found that loss of spinophilin recapitulates rotarod pathology previously observed in dopamine-depleted and METH-treated animals. Together, these data have implications in multiple disease states associated with altered dopamine signaling such as PD and psychostimulant drug abuse and delineate a novel mechanism by which PP1 interactions with spinophilin and neurabin may be differentially regulated.
Collapse
|
5
|
Ferreras S, Fernández G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, Krapacher FA, Mlewski EC, Mascó DH, Arias C, Pozzo-Miller L, Paglini MG. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons. Front Cell Neurosci 2017; 11:372. [PMID: 29225566 PMCID: PMC5705944 DOI: 10.3389/fncel.2017.00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.
Collapse
Affiliation(s)
- Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - María V Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luján Masseroni
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Favio A Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Estela C Mlewski
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel H Mascó
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - María G Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Virology Institute "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Sands SA, Tsau S, LeVine SM. The habenula and iron metabolism in cerebral mouse models of multiple sclerosis. Neurosci Lett 2015; 606:204-8. [PMID: 26362814 DOI: 10.1016/j.neulet.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022]
Abstract
Iron accumulates in the CNS of patients with multiple sclerosis, but our understanding of the mechanism accounting for this accumulation is unclear. Mouse models of cerebral experimental autoimmune encephalomyelitis (EAE) in C57BL/6 and SJL mice were used together with a histochemical stain for iron and immunohistochemical stains for transferrin receptor, synaptophysin, iron regulatory protein 1 (IRP1) and/or IRP2 to investigate the role of disease activity on CNS iron metabolism. The expression of transferrin receptor, but not IRP1 or IRP2, increased in the medial habenula, which is adjacent to the third ventricle, in response to both types of cerebral EAE. In the habenula, the elevated expression of transferrin receptor in C57BL/6 mice with cerebral EAE was generally restricted to the medial habenula while the expression in SJL mice with cerebral EAE was more diffusely expressed. Iron levels were increased in all regions of the habenula in C57BL/6 mice with cerebral EAE, and in the medial and medial lateral but not the lateral habenula in SJL mice with cerebral EAE. Synaptophysin, which has been observed previously in endocytic vesicles together with the transferrin receptor, was concentrated at the medial habenula, but its levels did not increase with disease in C57BL/6 mice with cerebral EAE. Our results support the model that the medial habenula responds to disease activity by upregulating transferrin receptor to facilitate the movement of iron into the brain from the third ventricle, raising the possibility that a similar mechanism accounts for iron accumulation in deep gray matter structures in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Scott A Sands
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Elia J, Wilson Z, La Porta LS, Algon SA, Prowler ML, Cartwright ST, McKenna PA, Laracy S, Takeda T, Borgmann-Winter K. Methylphenidate transdermal system: clinical applications for attention-deficit/hyperactivity disorder. Expert Rev Clin Pharmacol 2014; 4:311-28. [DOI: 10.1586/ecp.11.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Elia J, Laracy S, Allen J, Nissley-Tsiopinis J, Borgmann-Winter K. Epigenetics: genetics versus life experiences. Curr Top Behav Neurosci 2012; 9:317-340. [PMID: 21728139 DOI: 10.1007/7854_2011_144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Epigenetics is the field of research that examines alterations in gene expression caused by mechanisms other than changes in DNA sequence. ADHD is highly heritable; however, epigenetics are considered relevant in potentially explaining the variance not accounted for by genetic influence. In this chapter, some of the well-known processes of epigenetics, such as chromosome organization, DNA methylation, and effects of transcriptional factors are reviewed along with studies examining the role of these processes in the pathophysiology of ADHD. Potential epigenetic factors conferring risk for ADHD at various developmental stages, such as alcohol, tobacco, toxins, medications, and psychosocial stressor are discussed. Animal studies investigating ADHD medications and changes in CNS Gene/Protein Expression are also explored since they provide insight into the neuronal pathways involved in ADHD pathophysiology. The current limited data suggest that identification of the epigenetic processes involved in ADHD is extremely important and may lead to potential interventions that may be applied to modify the expression of deleterious, as well as protective, genes.
Collapse
Affiliation(s)
- Josephine Elia
- The Children's Hospital of Philadelphia, Science Center, 3440 Market St, Philadelphia, PA, 19104, USA,
| | | | | | | | | |
Collapse
|
9
|
Kawano F, Oke Y, Nomura S, Fujita R, Ohira T, Nakai N, Ohira Y. Responses of HSC70 expression in diencephalon to iron deficiency anemia in rats. J Physiol Sci 2011; 61:445-56. [PMID: 21811788 PMCID: PMC10717792 DOI: 10.1007/s12576-011-0164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 11/28/2022]
Abstract
A powdered diet containing 100 or 3 ppm Fe was fed to rats starting at the age of 3 weeks. The voluntary activity level was checked using a wheel in the cage during the 17th week after the beginning of supplementation. Significantly less activity was seen in the 3 ppm Fe group during both light and dark periods. After 20 weeks, the blood and diencephalon were sampled from both groups. Lower hematocrit and blood hemoglobin content was observed in the 3 ppm Fe group. The level of 70 kDa heat shock cognate (HSC70) expression was greater in the diencephalon of the 3 ppm Fe group. In addition, the distribution of HSC70 was determined by proximity ligation assay. More HSC70-positive as well as total cells were noted in several areas of the diencephalon of the iron-deficient rats. The altered expression and distribution of HSC70 might play some role in the neurological changes.
Collapse
Affiliation(s)
- Fuminori Kawano
- Section of Applied Physiology, Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Yoshihiko Oke
- Section of Applied Physiology, Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Sachiko Nomura
- Section of Applied Physiology, Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Ryo Fujita
- Section of Applied Physiology, Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Takashi Ohira
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Naoya Nakai
- Section of Applied Physiology, Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Yoshinobu Ohira
- Section of Applied Physiology, Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043 Japan
| |
Collapse
|
10
|
Cheng XR, Yang Y, Zhou WX, Zhang YX. Expression of VGLUTs contributes to degeneration and acquisition of learning and memory. Neurobiol Learn Mem 2011; 95:361-75. [PMID: 21295146 DOI: 10.1016/j.nlm.2011.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/16/2011] [Accepted: 01/25/2011] [Indexed: 12/27/2022]
Abstract
Vesicular glutamate transporters (VGLUTs), which include VGLUT1, VGLUT2 and VGLUT3, are responsible for the uploading of L-glutamate into synaptic vesicles. The expression pattern of VGLUTs determines the level of synaptic vesicle filling (i.e., glutamate quantal size) and directly influences glutamate receptors and glutamatergic synaptic transmission; thus, VGLUTs may play a key role in learning and memory in the central nervous system. To determine whether VGLUTs contribute to the degeneration or acquisition of learning and memory, we used an animal model for the age-related impairment of learning and memory, senescence-accelerated mouse/prone 8 (SAMP8). KM mice were divided into groups based on their learning and memory performance in a shuttle-box test. The expression of VGLUTs and synaptophysin (Syp) mRNA and protein in the cerebral cortex and hippocampus were investigated with real-time fluorescence quantitative PCR and western blot, respectively. Our results demonstrate that, in the cerebral cortex, protein expression of VGLUT1, VGLUT2, VGLUT3 and Syp was decreased in SAMP8 with age and increased in KM mice, which displayed an enhanced capacity for learning and memory. The protein expression of VGLUT2 and Syp was decreased in the hippocampus of SAMP8 with aging. The expression level of VGLUT1 and VGLUT2 proteins were highest in KM mouse group with a 76-100% avoidance score in the shuttle-box test. These data demonstrate that protein expression of VGLUT1, VGLUT2 and Syp decreases age-dependently in SAMP8 and increases in a learning- and memory-dependent manner in KM mice. Correlation analysis indicated the protein expression of VGLUT1, VGLUT2 and Syp has a positive correlation with the capacity of learning and memory.
Collapse
Affiliation(s)
- Xiao-Rui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | |
Collapse
|