1
|
Shekhar S, Hirvi P, Maria A, Kotilahti K, Tuulari JJ, Karlsson L, Karlsson H, Nissilä I. Maternal prenatal depressive symptoms and child brain responses to affective touch at two years of age. J Affect Disord 2024; 356:177-189. [PMID: 38508459 DOI: 10.1016/j.jad.2024.03.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Touch is an essential form of mother-child interaction, instigating better social bonding and emotional stability. METHODS We used diffuse optical tomography to explore the relationship between total haemoglobin (HbT) responses to affective touch in the child's brain at two years of age and maternal self-reported prenatal depressive symptoms (EPDS). Affective touch was implemented via slow brushing of the child's right forearm at 3 cm/s and non-affective touch via fast brushing at 30 cm/s and HbT responses were recorded on the left hemisphere. RESULTS We discovered a cluster in the postcentral gyrus exhibiting a negative correlation (Pearson's r = -0.84, p = 0.015 corrected for multiple comparisons) between child HbT response to affective touch and EPDS at gestational week 34. Based on region of interest (ROI) analysis, we found negative correlations between child responses to affective touch and maternal prenatal EPDS at gestational week 14 in the precentral gyrus, Rolandic operculum and secondary somatosensory cortex. The responses to non-affective touch did not correlate with EPDS in these regions. LIMITATIONS The number of mother-child dyads was 16. However, by utilising high-density optode arrangements, individualised anatomical models, and video and accelerometry to monitor movement, we were able to minimize methodological sources of variability in the data. CONCLUSIONS The results show that maternal depressive symptoms during pregnancy may be associated with reduced child responses to affective touch in the temporoparietal cortex. Responses to affective touch may be considered as potential biomarkers for psychosocial development in children. Early identification of and intervention in maternal depression may be important already during early pregnancy.
Collapse
Affiliation(s)
- Shashank Shekhar
- Duke University School of Medicine, Department of Neurology, Durham, NC, USA; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Pauliina Hirvi
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland; Aalto University, Department of Mathematics and Systems Analysis, Finland
| | - Ambika Maria
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Kalle Kotilahti
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland
| | - Jetro J Tuulari
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; Turku Collegium for Science, Medicine and Technology, TCSMT, University of Turku, Finland
| | - Linnea Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; University of Turku and Turku University Hospital, Department of Paediatrics and Adolescent Medicine, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Ilkka Nissilä
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland.
| |
Collapse
|
2
|
Maria A, Hirvi P, Kotilahti K, Heiskala J, Tuulari JJ, Karlsson L, Karlsson H, Nissilä I. Imaging affective and non-affective touch processing in two-year-old children. Neuroimage 2022; 251:118983. [PMID: 35149231 DOI: 10.1016/j.neuroimage.2022.118983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022] Open
Abstract
Touch is an important component of early parent-child interaction and plays a critical role in the socio-emotional development of children. However, there are limited studies on touch processing amongst children in the age range from one to three years. The present study used frequency-domain diffuse optical tomography (DOT) to investigate the processing of affective and non-affective touch over left frontotemporal brain areas contralateral to the stimulated forearm in two-year-old children. Affective touch was administered by a single stroke with a soft brush over the child's right dorsal forearm at 3 cm/s, while non-affective touch was provided by multiple brush strokes at 30 cm/s. We found that in the insula, the total haemoglobin (HbT) response to slow brushing was significantly greater than the response to fast brushing (slow > fast). Additionally, a region in the postcentral gyrus, Rolandic operculum and superior temporal gyrus exhibited greater response to fast brushing than slow brushing (fast > slow). These findings confirm that an adult-like pattern of haemodynamic responses to affective and non-affective touch can be recorded in two-year-old subjects using DOT. To improve the accuracy of modelling light transport in the two-year-old subjects, we used a published age-appropriate atlas and deformed it to match the exterior shape of each subject's head. We estimated the combined scalp and skull, and grey matter (GM) optical properties by fitting simulated data to calibrated and coupling error corrected phase and amplitude measurements. By utilizing a two-compartment cerebrospinal fluid (CSF) model, the accuracy of estimation of GM optical properties and the localization of activation in the insula was improved. The techniques presented in this paper can be used to study neural development of children at different ages and illustrate that the technology is well-tolerated by most two-year-old children and not excessively sensitive to subject movement. The study points the way towards exciting possibilities in functional imaging of deeper functional areas near sulci in small children.
Collapse
Affiliation(s)
- Ambika Maria
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Pauliina Hirvi
- Aalto University, Department of Neuroscience and Biomedical Engineering, P.O. Box 12200, AALTO FI-00076, Finland; Aalto University, Department of Mathematics and Systems Analysis, Finland
| | - Kalle Kotilahti
- Aalto University, Department of Neuroscience and Biomedical Engineering, P.O. Box 12200, AALTO FI-00076, Finland; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland
| | - Juha Heiskala
- HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki, University Hospital and University of Helsinki, Helsinki, Finland
| | - Jetro J Tuulari
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; Turku Collegium for Science, Medicine and Technology, TCSMT, University of Turku, Finland
| | - Linnea Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; University of Turku and Turku University Hospital, Department of Paediatrics and Adolescent Medicine, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Ilkka Nissilä
- Aalto University, Department of Neuroscience and Biomedical Engineering, P.O. Box 12200, AALTO FI-00076, Finland.
| |
Collapse
|
3
|
Lundblad LC, Olausson H, Wasling P, Jood K, Wysocka A, Hamilton JP, McIntyre S, Backlund Wasling H. Tactile direction discrimination in humans after stroke. Brain Commun 2020; 2:fcaa088. [PMID: 32954335 PMCID: PMC7472910 DOI: 10.1093/braincomms/fcaa088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Sensing movements across the skin surface is a complex task for the tactile sensory system, relying on sophisticated cortical processing. Functional MRI has shown that judgements of the direction of tactile stimuli moving across the skin are processed in distributed cortical areas in healthy humans. To further study which brain areas are important for tactile direction discrimination, we performed a lesion study, examining a group of patients with first-time stroke. We measured tactile direction discrimination in 44 patients, bilaterally on the dorsum of the hands and feet, within 2 weeks (acute), and again in 28 patients 3 months after stroke. The 3-month follow-up also included a structural MRI scan for lesion delineation. Fifty-nine healthy participants were examined for normative direction discrimination values. We found abnormal tactile direction discrimination in 29/44 patients in the acute phase, and in 21/28 3 months after stroke. Lesions that included the opercular parietal area 1 of the secondary somatosensory cortex, the dorsolateral prefrontal cortex or the insular cortex were always associated with abnormal tactile direction discrimination, consistent with previous functional MRI results. Abnormal tactile direction discrimination was also present with lesions including white matter and subcortical regions. We have thus delineated cortical, subcortical and white matter areas important for tactile direction discrimination function. The findings also suggest that tactile dysfunction is common following stroke.
Collapse
Affiliation(s)
- Linda C Lundblad
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Håkan Olausson
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Pontus Wasling
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Anna Wysocka
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - J Paul Hamilton
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Sarah McIntyre
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Helena Backlund Wasling
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
5
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
6
|
Failla MD, Peters BR, Karbasforoushan H, Foss-Feig JH, Schauder KB, Heflin BH, Cascio CJ. Intrainsular connectivity and somatosensory responsiveness in young children with ASD. Mol Autism 2017; 8:25. [PMID: 28630661 PMCID: PMC5470196 DOI: 10.1186/s13229-017-0143-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/17/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The human somatosensory system comprises dissociable paths for discriminative and affective touch, reflected in separate peripheral afferent populations and distinct cortical targets. Differences in behavioral and neural responses to affective touch may have an important developmental role in early social experiences, which are relevant for autism spectrum disorder (ASD). METHODS Using probabilistic tractography, we compared the structural integrity of white matter pathways for discriminative and affective touch in young children with ASD and their typically developing (TD) peers. We examined two tracts: (1) a tract linking the thalamus with the primary somatosensory cortex, which carries discriminative tactile information, and (2) a tract linking the posterior insula-the cortical projection target of unmyelinated tactile afferents mediating affective touch-with the anterior insula, which integrates sensory and visceral inputs to interpret emotional salience of sensory stimuli. We investigated associations between tract integrity and performance on a standardized observational assessment measuring tactile discrimination and affective responses to touch. RESULTS Both the thalamocortical and intrainsular tracts showed reduced integrity (higher mean diffusivity) in the ASD group compared to those in the TD group. Consistent with the previous findings, the ASD group exhibited impaired tactile discriminative ability, more tactile defensiveness, and more sensory seeking (e.g., enthusiastic play or repetitive engagement with a specific tactile stimulus). There was a significant relation between intrainsular tract integrity and tactile seeking. The direction of this relation differed between groups: higher intrainsular mean diffusivity (MD) (reflecting decreased tract integrity) was associated with increased tactile seeking in the TD group but with decreased tactile seeking in the ASD group. In the TD group, decreased tactile defensiveness was also associated with higher intrainsular MD, but there was no relation in the ASD group. Discriminative touch was not significantly associated with integrity of either tract in either group. CONCLUSIONS These results support previous findings suggesting a central role for the insula in affective response to touch. While both discriminative and affective touch and both somatosensory tracts are affected in ASD, the restriction of brain-behavior associations to the intrainsular tract and tactile seeking suggests more complex and perhaps higher-order influence on differences in tactile defensiveness and discrimination.
Collapse
Affiliation(s)
- Michelle D. Failla
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | | | - Haleh Karbasforoushan
- Interdepartmental Neuroscience (NUIN) PhD Program, Northwestern University, Evanston, IL 60208 USA
| | - Jennifer H. Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mt. Sinai, New York, NY 10029 USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029 USA
| | | | - Brynna H. Heflin
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Carissa J. Cascio
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212 USA
- Vanderbilt Kennedy Center, Nashville, TN 37203 USA
| |
Collapse
|
7
|
Case LK, Laubacher CM, Richards EA, Spagnolo PA, Olausson H, Bushnell MC. Inhibitory rTMS of secondary somatosensory cortex reduces intensity but not pleasantness of gentle touch. Neurosci Lett 2017; 653:84-91. [PMID: 28529174 DOI: 10.1016/j.neulet.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
Research suggests that the discriminative and affective aspects of touch are processed differently in the brain. Primary somatosensory cortex is strongly implicated in touch discrimination, whereas insular and prefronal regions have been associated with pleasantness aspects of touch. However, the role of secondary somatosensory cortex (S2) is less clear. In the current study we used inhibitory repetitive transcranial magnetic stimulation (rTMS) to temporarily deactivate S2 and probe its role in touch perception. Nineteen healthy adults received two sessions of 1-Hz rTMS on separate days, one targeting right S2 and the other targeting the vertex (control). Before and after rTMS, subjects rated the intensity and pleasantness of slow and fast gentle brushing of the hand and performed a 2-point tactile discrimination task, followed by fMRI during additional brushing. rTMS to S2 (but not vertex) decreased intensity ratings of fast brushing, without altering touch pleasantness or spatial discrimination. MRI showed a reduced response to brushing in S2 (but not in S1 or insula) after S2 rTMS. Together, our results show that reducing touch-evoked activity in S2 decreases perceived touch intensity, suggesting a causal role of S2 in touch intensity perception.
Collapse
Affiliation(s)
- Laura K Case
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA.
| | - Claire M Laubacher
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Emily A Richards
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - P A Spagnolo
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M Catherine Bushnell
- National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Yeon J, Kim J, Ryu J, Park JY, Chung SC, Kim SP. Human Brain Activity Related to the Tactile Perception of Stickiness. Front Hum Neurosci 2017; 11:8. [PMID: 28163677 PMCID: PMC5247468 DOI: 10.3389/fnhum.2017.00008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios. Also, an acrylic sham stimulus was prepared to present a condition with no sticky sensation. From the two psychophysics experiments-the methods of constant stimuli and the magnitude estimation-we could classify the silicone stimuli into two groups according to whether a sticky perception was evoked: the Supra-threshold group that evoked sticky perception and the Infra-threshold group that did not. In the Supra-threshold vs. Sham contrast analysis of the fMRI data using the general linear model (GLM), the contralateral primary somatosensory area (S1) and ipsilateral dorsolateral prefrontal cortex (DLPFC) showed significant activations in subjects, whereas no significant result was found in the Infra-threshold vs. Sham contrast. This result indicates that the perception of stickiness not only activates the somatosensory cortex, but also possibly induces higher cognitive processes. Also, the Supra- vs. Infra-threshold contrast analysis revealed significant activations in several subcortical regions, including the pallidum, putamen, caudate and thalamus, as well as in another region spanning the insula and temporal cortices. These brain regions, previously known to be related to tactile discrimination, may subserve the discrimination of different intensities of tactile stickiness. The present study unveils the human neural correlates of the tactile perception of stickiness and may contribute to broadening the understanding of neural mechanisms associated with tactile perception.
Collapse
Affiliation(s)
- Jiwon Yeon
- Brain-Computer Interface Lab, Department of Human Factors Engineering, Ulsan National Institute of Science and Technology Ulsan, South Korea
| | - Junsuk Kim
- Brain-Computer Interface Lab, Department of Human Factors Engineering, Ulsan National Institute of Science and TechnologyUlsan, South Korea; Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| | - Jaekyun Ryu
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwon, South Korea; Department of Biomedical Engineering, Magnetic Resonance Advanced Imaging Research Lab, Sungkyunkwan UniversitySuwon, South Korea
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwon, South Korea; Department of Biomedical Engineering, Magnetic Resonance Advanced Imaging Research Lab, Sungkyunkwan UniversitySuwon, South Korea
| | - Soon-Cheol Chung
- School of Biomedical Engineering, Konkuk University Chungju, South Korea
| | - Sung-Phil Kim
- Brain-Computer Interface Lab, Department of Human Factors Engineering, Ulsan National Institute of Science and Technology Ulsan, South Korea
| |
Collapse
|
9
|
Case LK, Laubacher CM, Olausson H, Wang B, Spagnolo PA, Bushnell MC. Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex. J Neurosci 2016; 36:5850-60. [PMID: 27225773 PMCID: PMC4879201 DOI: 10.1523/jneurosci.1130-15.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. SIGNIFICANCE STATEMENT Growing interest in affective touch has identified a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, cast doubt on the separation of touch discrimination and affect. We used functional magnetic resonance imaging and repetitive transcranial magnetic stimulation to demonstrate the representation of touch discrimination and intensity in S1, but the representation of pleasantness in the anterior cingulate cortex, not S1. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. Our study contributes to growing delineation of the affective touch system, a crucial step in understanding its dysregulation in numerous clinical conditions such as autism, eating disorders, depression, and chronic pain.
Collapse
Affiliation(s)
- Laura K Case
- National Center for Complementary and Integrative Health and
| | | | - Håkan Olausson
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Binquan Wang
- National Center for Complementary and Integrative Health and
| | - Primavera A Spagnolo
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, and
| | | |
Collapse
|
10
|
Keuken MC, Müller-Axt C, Langner R, Eickhoff SB, Forstmann BU, Neumann J. Brain networks of perceptual decision-making: an fMRI ALE meta-analysis. Front Hum Neurosci 2014; 8:445. [PMID: 24994979 PMCID: PMC4063192 DOI: 10.3389/fnhum.2014.00445] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/02/2014] [Indexed: 01/24/2023] Open
Abstract
In the recent perceptual decision-making literature, a fronto-parietal network is typically reported to primarily represent the neural substrate of human perceptual decision-making. However, the view that only cortical areas are involved in perceptual decision-making has been challenged by several neurocomputational models which all argue that the basal ganglia play an essential role in perceptual decisions. To consolidate these different views, we conducted an Activation Likelihood Estimation (ALE) meta-analysis on the existing neuroimaging literature. The results argue in favor of the involvement of a frontal-parietal network in general perceptual decision-making that is possibly complemented by the basal ganglia, and modulated in substantial parts by task difficulty. In contrast, expectation of reward, an important aspect of many decision-making processes, shows almost no overlap with the general perceptual decision-making network.
Collapse
Affiliation(s)
- Max C Keuken
- Faculty of Social and Behavioural Science, Cognitive Science Center Amsterdam, University of Amsterdam Amsterdam, Netherlands ; Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Christa Müller-Axt
- Faculty of Social and Behavioural Science, Cognitive Science Center Amsterdam, University of Amsterdam Amsterdam, Netherlands
| | - Robert Langner
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf Düsseldorf, Germany ; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1) Jülich, Germany
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf Düsseldorf, Germany ; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1) Jülich, Germany
| | - Birte U Forstmann
- Faculty of Social and Behavioural Science, Cognitive Science Center Amsterdam, University of Amsterdam Amsterdam, Netherlands ; Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Jane Neumann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Leipzig University Medical Center, IFB Adiposity Diseases Leipzig, Germany
| |
Collapse
|