1
|
Park JS, Kang KC, Park SJ, Kim JK, Han K, Hong JY. The positive impact of smoking cessation on fracture risk in a nationwide cohort study. Sci Rep 2024; 14:9892. [PMID: 38688971 PMCID: PMC11061176 DOI: 10.1038/s41598-024-60301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
Many studies sought to demonstrate the association between smoking and fracture risk. However, the correlation between smoking and fractures remains controversial. This study aimed to examine the impact of smoking and smoking cessation on the occurrence of fractures using prospective nationwide cohort data. We enrolled those who underwent a National Health Insurance Service (NHIS) health checkup in 2009-2010 who had a previous health checkup 4-year prior (2005-2006). The study population of 4,028,559 subjects was classified into three groups (non-smoker, smoking cessation, current smoker). The study population was also analyzed according to fracture type (all fractures, vertebral fracture, hip fracture). Lastly, the smoking cessation group and current smoker group were divided into four subgroups based on a lifetime smoking amount cut-off of 20 pack-years (PY). Multivariate-adjusted hazard ratios (HRs) of fracture were examined through a Cox proportional hazards model. After multivariable adjustment, non-smokers showed the lowest risk of fracture (HR = 0.818, CI 0.807-0.828, p < 0.0001) and smoking cessation significantly lowered the risk of fracture (HR 0.938, 95% CI 0.917-0.959, p < 0.0001) compared to current smokers. Regardless of 20PY, all smoking cessation subgroups showed significantly less risk of fractures than current smokers with ≥ 20PYs. Smoking increases the risk of fracture, and smoking cessation lowers the risk of fracture.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Orthopedics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Kyung-Chung Kang
- Department of Orthopedics, Kyung Hee University Hospital, Kyung Hee University School of Medicine, 23 Kyungheedaero, Dongdaemun‑gu, Seoul, 02447, South Korea
| | - Se-Jun Park
- Department of Orthopedics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jeong-Keun Kim
- Department of Orthopedics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, South Korea
| | - Jae-Young Hong
- Department of Orthopedics, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon gu, Ansan, Gyeonggi, 15355, South Korea.
| |
Collapse
|
2
|
Olomu IN, Hoang V, Madhukar BV. Low levels of nicotine and cotinine but not benzo[a]pyrene induce human trophoblast cell proliferation. Reprod Toxicol 2024; 125:108572. [PMID: 38453095 DOI: 10.1016/j.reprotox.2024.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
E-cigarettes use constitutes a source of thirdhand nicotine exposure. The increasing use of electronic cigarettes in homes and public places increases the risk of exposure of pregnant women to thirdhand nicotine. The effects of exposure of pregnant women to very low levels of nicotine have not been studied in humans but detrimental in experimental animals. The objective of this study is to investigate the effect of nanomolar concentrations of nicotine and its metabolite cotinine on the proliferation of JEG-3, a human trophoblast cell line. We also studied the proliferative effect of nanomolar concentrations of benzo[a]pyrene (B[a]P), a polycyclic hydrocarbon in tobacco smoke, for comparison. We treated JEG-3 cells in culture with nanomolar concentrations of nicotine, cotinine, and B[a]P. Their effect on cell proliferation was determined, relative to untreated cells, by MTT assay. Western blotting was used to assess the mitogenic signaling pathways affected by nicotine and cotinine. In contrast to the inhibitory effects reported with higher concentrations, we showed that nanomolar concentrations of nicotine and cotinine resulted in significant JEG-3 cell proliferation and a rapid but transient increase in levels of phosphorylated ERK and AKT, but not STAT3. Biphasic, non-monotonic effect on cell growth is characteristic of endocrine disruptive chemicals like nicotine. The mitogenic effects of nicotine and cotinine potentially contribute to increased villous epithelial thickness, seen in placentas of some smoking mothers. This increases the diffusion distance for oxygen and nutrients between mother and fetus, contributing to intrauterine growth restriction in infants of smoking mothers.
Collapse
Affiliation(s)
- I Nicholas Olomu
- Department of Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA; Division of Neonatology, Michigan State University, East Lansing, MI, USA.
| | - Vanessa Hoang
- Department of Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| | - Burra V Madhukar
- Department of Pediatrics & Human Development, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Maloney E, Villeneuve D, Jensen K, Blackwell B, Kahl M, Poole S, Vitense K, Feifarek D, Patlewicz G, Dean K, Tilton C, Randolph E, Cavallin J, LaLone C, Blatz D, Schaupp C, Ankley G. Evaluation of Complex Mixture Toxicity in the Milwaukee Estuary (WI, USA) Using Whole-Mixture and Component-Based Evaluation Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1229-1256. [PMID: 36715369 PMCID: PMC10775314 DOI: 10.1002/etc.5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/13/2022] [Accepted: 01/22/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed. Evaluations were carried out over 2 years (2017-2018) across 8-11 study sites in the Milwaukee Estuary (WI, USA). Whole mixtures were evaluated on a site-specific basis by deploying caged fathead minnows (Pimephales promelas) alongside composite samplers for 96 h and characterizing chemical composition, in vitro bioactivity of collected water samples, and in vivo effects in whole organisms. Chemicals were grouped based on structure/mode of action, bioactivity, and pharmacological activity. Priority chemicals and mixtures were identified based on their relative contributions to estimated mixture pressure (based on cumulative toxic units) and via predictive assessments (random forest regression). Whole mixture assessments identified target sites for further evaluation including two sites targeted for industrial/urban chemical mixture effects assessment; three target sites for pharmaceutical mixture effects assessment; three target sites for further mixture characterization; and three low-priority sites. Analyses identified 14 mixtures and 16 chemicals that significantly contributed to cumulative effects, representing high or medium priority targets for further ecotoxicological evaluation, monitoring, or regulatory assessment. Overall, our study represents an important complement to single-chemical prioritizations, providing a comprehensive evaluation of the cumulative effects of mixtures detected in a target watershed. Furthermore, it demonstrates how different tools and techniques can be used to identify diverse facets of mixture risk and highlights strategies that can be considered in future complex mixture assessments. Environ Toxicol Chem 2023;42:1229-1256. © 2023 SETAC.
Collapse
Affiliation(s)
| | - D.L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K.M. Jensen
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - B.R. Blackwell
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - M.D. Kahl
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - S.T. Poole
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - K. Vitense
- Scientific Computing and Data Curation Division, US EPA,
Duluth, MN, USA
| | - D.J. Feifarek
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G. Patlewicz
- Centre for Computational Toxicology and Exposure, US EPA,
Research Triangle Park, NC, USA
| | - K. Dean
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Tilton
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - E.C. Randolph
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - J.E. Cavallin
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C.A. LaLone
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - D. Blatz
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - C. Schaupp
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| | - G.T. Ankley
- Great Lakes Toxicology and Ecology Division, US EPA,
Duluth, MN, USA
| |
Collapse
|
4
|
Souza GS, Freitas IMM, Souza JC, Miraglia SM, Paccola CC. Transgenerational effects of maternal exposure to nicotine on structures of pituitary-gonadal axis of rats. Toxicol Appl Pharmacol 2023; 468:116525. [PMID: 37076090 DOI: 10.1016/j.taap.2023.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Smoking can lead to several diseases and cause a reduction in fertility in men and women. Among the various components of cigarettes harmful during pregnancy, nicotine stands out. It can cause a reduction in placental blood flow, compromising the development of the baby with neurological, reproductive and endocrine consequences. Thus, we aimed to evaluate the effects of nicotine on the pituitary-gonadal axis of rats exposed during pregnancy and breastfeeding (1st generation - F1), and whether the possible damage observed would reach the 2nd generation (F2). Pregnant Wistar rats received 2 mg/kg/day of nicotine throughout the entire gestation and lactation. Part of the offspring was evaluated on the first neonatal day (F1) for macroscopic, histopathological and immunohistochemical analyses of brain and gonads. Another part of the offspring was kept until 90 days-old for mating and obtainment of progenies that had the same parameters evaluated at the end of pregnancy (F2). The occurrence of malformations was more frequent and diversified in nicotine-exposed F2. Brain alterations, including reduced size and changes in cell proliferation and death, were seen in both generations of nicotine-exposed rats. Male and female gonads of F1 exposed rats were also affected. The F2 rats showed reduced cellular proliferation and increased cell death on the pituitary and ovaries, besides increased anogenital distance in females. The number of mast cells was not enough altered to indicate an inflammatory process in brain and gonads. We conclude that prenatal exposure to nicotine causes transgenerational alterations in the structures of pituitary-gonadal axis in rats.
Collapse
Affiliation(s)
- G S Souza
- Developmental Biology Laboratory, Department of Morphology and Genetic, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - I M M Freitas
- Developmental Biology Laboratory, Department of Morphology and Genetic, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - J C Souza
- Developmental Biology Laboratory, Department of Morphology and Genetic, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - S M Miraglia
- Developmental Biology Laboratory, Department of Morphology and Genetic, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - C C Paccola
- Developmental Biology Laboratory, Department of Morphology and Genetic, Federal University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Merii MH, Fardoun MM, El-Asmar K, Khalil MI, Eid A, Dhaini HR. Effect of BPA on CYP450s expression, and nicotine modulation, in fetal rat brain. Neurotoxicol Teratol 2022; 92:107095. [DOI: 10.1016/j.ntt.2022.107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
6
|
Rehman K, Haider K, Akash MSH. Cigarette smoking and nicotine exposure contributes for aberrant insulin signaling and cardiometabolic disorders. Eur J Pharmacol 2021; 909:174410. [PMID: 34375672 DOI: 10.1016/j.ejphar.2021.174410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023]
Abstract
Cigarette smoking- and nicotine-mediated dysregulation in insulin-signaling pathways are becoming leading health issues associated with morbidity and mortality worldwide. Many cardiometabolic disorders particularly insulin resistance, polycystic ovary syndrome (PCOS), central obesity and cardiovascular diseases are initiated from exposure of exogenous substances which augment by disturbances in insulin signaling cascade. Among these exogenous substances, nicotine and cigarette smoking are potential triggers for impairment of insulin-signaling pathways. Further, this aberrant insulin signaling is associated with many metabolic complications, which consequently give rise to initiation as well as progression of these metabolic syndromes. Hence, understanding the underlying molecular mechanisms responsible for cigarette smoking- and nicotine-induced altered insulin signaling pathways and subsequent participation in several health hazards are quite essential for prophylaxis and combating these complications. In this article, we have focused on the role of nicotine and cigarette smoking mediated pathological signaling; for instance, nicotine-mediated inhibition of nuclear factor erythroid 2-related factor 2 and oxidative damage, elevated cortisol that may promote central obesity, association PCOS and oxidative stress via diminished nitric oxide which may lead to endothelial dysfunction and vascular inflammation. Pathological underlying molecular mechanisms involved in mediating these metabolic syndromes via alteration of insulin signaling cascade and possible molecular mechanism responsible for these consequences on nicotine exposure have also been discussed.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kamran Haider
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
8
|
Guo J, Wu P, Cao J, Luo Y, Chen J, Wang G, Guo W, Wang T, He X. The PFOS disturbed immunomodulatory functions via nuclear Factor-κB signaling in liver of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2019; 91:87-98. [PMID: 31082517 DOI: 10.1016/j.fsi.2019.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Excessive perfluorooctane sulfonate (PFOS) in natural water ecosystem has the potential to detrimentally affect immune system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of PFOS on growth performance, organizational microstructure, activities of immune-related enzymes and expressions of immune-related genes in male zebrafish (Danio rerio) exposed to different concentrations of 0, 0.02, 0.04 and 0.08 mg/L of PFOS for 7, 14, and 21 days or cotreatment with PFOS and PDTC to investigate the effects of PFOS on immune system and the potential toxic mechanisms caused by PFOS. The results indicated that PFOS accumulated in livers after exposure, and remarkably elevations were found in three exposure groups compared with the control group at three stages. The growth of the adult zebrafish in the experiments was significantly inhibited, the microstructures of liver were serious damaged. The ROS levels were remarkably increased. The activities of ACP, AKP, and lysozyme were obviously decreased, while the activities of MPO and NF-κB were significantly increased. The expressions of immune-related mRNA were significantly affected. After co-treatment with PFOS and PDTC, the growth inhibition, the morphological damage, the ROS induction, and the expressions of immune-related mRNA were reversed. Taken together, the results indicated that PFOS can significantly inhibit the growth, disturb the immune system by changing the normal structure of liver, the activities of immune-related enzymes, and a series of gene transcriptions involved in immune regulation in liver of male zebrafish. PFOS-induced pro-inflammatory effect of hepatocytes was observed, and the involvement of NF-κB signaling pathway was participated in its action mechanism. These findings provide further evidence that PFOS interferes with the immune regulation of liver of male zebrafish under in vivo conditions.
Collapse
Affiliation(s)
- Jinshu Guo
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Panhong Wu
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China.
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Acedemy of Fishery Science, Nanning, 530021, Guangxi, China.
| | - Jianjie Chen
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Guodong Wang
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Wenjing Guo
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Tianyu Wang
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| | - Xinjing He
- State Key Laboratory of Ecological Animal Husbandry and Environment Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, shanxi, China
| |
Collapse
|
9
|
Qi P, Ren S, Tang Z, Guo B, Xia H. Expression of zona pellucida 3 gene is regulated by 17α-ethinylestradiol in adult topmouth culter Culter alburnus. Comp Biochem Physiol C Toxicol Pharmacol 2018; 214:43-51. [PMID: 30189258 DOI: 10.1016/j.cbpc.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/04/2023]
Abstract
Estrogen could lead to abnormal modulation or disruption of physical development, reproduction and sexual behavior in aquatic wildlife, especially in fish. Information on the toxicity of estrogens to native species in that can be used in site-specific risk assessments is scarce. In the present study, one zona pellucida 3 (ZP3) homologue termed CaZP3 was firstly identified from topmouth culter Culter alburnus, following its structural characteristics, tissue distribution and transcriptional modulation to 17α-ethinylestradiol (EE2) exposure were investigated. Meanwhile, vitellogenin (VTG) gene was employed to provide a comparison of the reactive ability to EE2 induction. The CaZP3 characterized with analogical functional domains such as ZP domain, SP, IHP, EHP, 12 cysteine residues, one N-linked glycosylation site and two conserved O-linked glycosylation sites and equal number of eight exons and seven introns with ZP3 counterparts of higher species. CaZP3 mRNA predominantly expressed in ovary, besides, highly expressed in female heart and male muscle and relatively high expressed in testis. CaZP3 has the lower reactive ability to EE2 induction in comparison with VTG, however, CaZP3 transcripts were significantly induced in gonads of both male and female culter by EE2 and could be used as an alternative biomarker to monitor EE2 activity. The present results supplement the database for toxicity of EE2, especially for fish species endemic to China and provide some useful information for the monitoring of EE2 activity in aquatic environment.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan 316004, China.
| | - Shitai Ren
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan 316004, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhejiang, Zhoushan 316004, China
| | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan province, Hunan University of Arts and Science, Hunan, Changde 415000, China
| |
Collapse
|
10
|
Lyons DD, Morrison C, Philibert DA, Gamal El-Din M, Tierney KB. Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water. CHEMOSPHERE 2018; 206:405-413. [PMID: 29758497 DOI: 10.1016/j.chemosphere.2018.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Christie Morrison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
11
|
Santos D, Vieira R, Luzio A, Félix L. Zebrafish Early Life Stages for Toxicological Screening: Insights From Molecular and Biochemical Markers. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00007-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Ping F, Wang Y, Wang J, Chen J, Zhang W, Zhi H, Liu Y. Opioids increase hip fracture risk: a meta-analysis. J Bone Miner Metab 2017; 35:289-297. [PMID: 27023332 DOI: 10.1007/s00774-016-0755-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/24/2016] [Indexed: 01/30/2023]
Abstract
The relationship between hip fracture risk and opioid use remains controversial. Thus, we performed a meta-analysis to assess the risk of hip fracture among opioid users. PubMed and EMBASE were searched for studies published from the inception of the databases until June 2015. The information was extracted independently by two teams of authors. When the heterogeneity was significant, the random-effects model was used to calculate the overall pooled risk estimates. Ten studies with 697,011 patients were included in the final meta-analysis. The overall combined relative risk for the use of opioids and hip fracture was 1.54 [95 % confidence interval (CI) 1.34-1.77]. Subgroup analyses revealed sources of heterogeneity, and sensitivity analysis indicated stable results, and no publication bias was observed. This meta-analysis demonstrates that opioids significantly increase the risk of hip fracture.
Collapse
Affiliation(s)
- Fumin Ping
- Department of Operating Room, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Ying Wang
- Department of Pharmacy, Medical College of Hebei University of Engineering, Handan, China
| | - Jing Wang
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002, China
| | - Jie Chen
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002, China
| | - Wenxian Zhang
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002, China
| | - Hua Zhi
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002, China.
| | - Yugang Liu
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002, China.
| |
Collapse
|
13
|
Hsu LS, Chiou BH, Hsu TW, Wang CC, Chen SC. The regulation of transcriptome responses in zebrafish embryo exposure to triadimefon. ENVIRONMENTAL TOXICOLOGY 2017; 32:217-226. [PMID: 26790661 DOI: 10.1002/tox.22227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
The residue of triadimefon (TDF) (a pesticide) has become the pollutant in water due to its intensive use in agriculture and medicine, and its stability in water leaching from soil and vegetation. In this study, RNA-seq, a high-throughput method was performed, to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with TDF (10 μg/mL) from fertilization to 72 h post-fertilization (hpf) as compared with that in the control group (without TDF treatment). Two cDNA libraries were generated from treated and non-treated embryos, respectively. With the 79.4% and 78.8% of reads mapped to the reference, it was observed that many differential genes were expressed between the two libraries. The most 20 differentially expressed up-regulated or down-regulated genes were involving in the signaling transduction, the activation of many genes related to cytochrome P450 enzymes, and molecular metabolism. Validation of seven genes expression confirmed RNA-seq results. The transcriptome sequences were further subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and showed diverse biological functions and metabolic pathways. The data from this study contributed to a better understanding of the potential consequences of fish exposed to TDF, and to evaluate the potential threat of TDF to fish population in the aquatic environment. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 217-226, 2017.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Biochemistry, Microbiology, Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bin-Hao Chiou
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Tung-Wei Hsu
- Institute of Biochemistry, Microbiology, Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| |
Collapse
|
14
|
Wu ZJ, Zhao P, Liu B, Yuan ZC. Effect of Cigarette Smoking on Risk of Hip Fracture in Men: A Meta-Analysis of 14 Prospective Cohort Studies. PLoS One 2016; 11:e0168990. [PMID: 28036356 PMCID: PMC5201259 DOI: 10.1371/journal.pone.0168990] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/11/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Several observational studies have suggested an association between cigarette smoking and risk of hip fracture. However, no formal systematic review or meta-analysis was performed to summarize this risk in men. MATERIALS AND METHODS A search was applied to MEDLINE, EMBASE, and web of science (up to November 1 2016). All prospective cohort studies assessing risk of hip fracture with the factor of cigarette smoking in men without language restriction were reviewed, and qualities of all included studies were assessed using the Newcastle-Ottawa Scale. Two authors independently assessed literatures and extracted information eligibility, and any disagreement was resolved by consensus. Newcastle-Ottawa quality assessment scale was used to evaluate studies' quality in meta-analyses. We calculated the RR with 95% CIs in a random-effects model as well as the fixed-effects model using the metan command in the STATA version 12.0 (StataCorp, USA). RESULTS Fourteen prospective cohort studies were eligible for the present analysis. A meta-analysis of 12 prospective studies showed that the relative risk (RR) for current male smoking was 1.47 [95% confidence interval (CI) (1.28-1.66), p = 0.54; I2 = 0%]. Subgroup analyses show study characteristics (including geography region, length of follow-up, size of cohorts and study quality) did not substantially influence these positive associations. Eight studies reported the RRs for former smokers compared with never smokers and the pooled RR was 1.15 [95% CI, (0.97-1.34), (I2 = 0%, p = 0.975)]. CONCLUSIONS The present meta-analysis of 14 prospective studies suggests that, compared with never smokers, cigarette smoking increases risk of hip fracture in man, specifically in current smokers. However, further larger prospective cohorts with more power or meta-analysis of individual patient data are needed to confirm this association.
Collapse
Affiliation(s)
- Zhen-Jie Wu
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Peng Zhao
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Bin Liu
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhen-Chao Yuan
- Department of Bone and Soft Tissue Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
15
|
Caballero-Gallardo K, Olivero-Verbel J, Freeman JL. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model. Curr Genomics 2016; 17:515-527. [PMID: 28217008 PMCID: PMC5282603 DOI: 10.2174/1389202917666160513105959] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Abstract
The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. Campus of Zaragocilla. School of Pharmaceutical Sciences.University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. Campus of Zaragocilla. School of Pharmaceutical Sciences.University of Cartagena, Cartagena, Colombia
| | | |
Collapse
|
16
|
Paccola CC, Miraglia SM. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats. Reproduction 2016; 151:117-33. [DOI: 10.1530/rep-15-0135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/10/2015] [Indexed: 12/17/2022]
Abstract
Nicotine is largely consumed in the world as a component of cigarettes. It can cross the placenta and reach the milk of smoking mothers. This drug induces apoptosis, affects sex hormone secretion, and leads to male infertility. To investigate the exposure to nicotine during the whole intrauterine and lactation phases in Sertoli cells, pregnant rats received nicotine (2 mg/kg per day) through osmotic minipumps. Male offsprings (30, 60, and 90 days old) had blood collected for hormonal analysis (FSH and LH) and their testes submitted for histophatological study, analysis of the frequency of the stages of seminiferous epithelium cycle, immunolabeling of apoptotic epithelial cells (TUNEL and Fas/FasL), analysis of the function and structure of Sertoli cells (respectively using transferrin and vimentin immunolabeling), and analysis of Sertoli-germ cell junctional molecule (β-catenin immunolabeling). The exposure to nicotine increased the FSH and LH plasmatic levels in adult rats. Although nicotine had not changed the number of apoptotic cells, neither in Fas nor FasL expression, it provoked an intense sloughing of epithelial cells and also altered the frequency of some stages of the seminiferous epithelium cycle. Transferrin and β-catenin expressions were not changed, but vimentin was significantly reduced in the early stages of the seminiferous cycle of the nicotine-exposed adult rats. Thus, we concluded that nicotine exposure during all gestational and lactation periods affects the structure of Sertoli cells by events causing intense germ cell sloughing observed in the tubular lumen and can compromise the fertility of the offspring.
Collapse
|
17
|
Jianjie C, Wenjuan X, Jinling C, Jie S, Ruhui J, Meiyan L. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 171:48-58. [PMID: 26748264 DOI: 10.1016/j.aquatox.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish.
Collapse
Affiliation(s)
- Chen Jianjie
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xue Wenjuan
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Cao Jinling
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Song Jie
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jia Ruhui
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Li Meiyan
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
18
|
Stewart AM, Grossman L, Collier AD, Echevarria DJ, Kalueff AV. Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:112-20. [DOI: 10.1016/j.pbb.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
|
19
|
Jiang J, Wu S, Wang Y, An X, Cai L, Zhao X, Wu C. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol In Vitro 2015; 29:1473-81. [DOI: 10.1016/j.tiv.2015.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/16/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022]
|
20
|
Shen GS, Li Y, Zhao G, Zhou HB, Xie ZG, Xu W, Chen HN, Dong QR, Xu YJ. Cigarette smoking and risk of hip fracture in women: a meta-analysis of prospective cohort studies. Injury 2015; 46:1333-40. [PMID: 25956674 DOI: 10.1016/j.injury.2015.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/22/2015] [Accepted: 04/06/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Whether cigarette smoking can increase the risk of hip fracture in women is unclear. This meta-analysis, which pooled results from 10 prospective cohort studies, was performed to derive a more precise estimation between cigarette smoking and the risk of hip fracture in women. MATERIALS AND METHODS Pubmed, Cochrane Central Register of Controlled Trials and ISI Web of Science were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association among 10 studies. The pooled risk estimates were calculated by using both random- and fixed-effects model. Heterogeneity among articles and their publications bias were also tested. All of the statistical analyses were performed using the software programs STATA (version 12.0). RESULTS Relative risk was significantly increased in current female smokers (pooled RR, 1.30; 95%CI, 1.16-1.45). The association was significant among the high-dose smokers (more than 15 cigarettes per day) while not among the low-does smokers (less than 15 cigarettes per day). Omission of any single study had little effect on the pooled risk estimate. Former smokers had a similar RR of hip fracture (RR, 1.02; 95%CI, 0.93-1.11) to published papers. Smoking cessation for ≥10 years leads to a significant decline in risk. CONCLUSIONS Smoking is associated with an increased hip fracture risk in women. Cessation of smoking for ≥10 years had a decreased impact on risk of hip fracture. Given the inconsistency among the studies in the choice of adjustments, the associations between cigarette smoking and risk of hip fracture in women await further investigation.
Collapse
Affiliation(s)
- Guang Si Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yong Li
- Department of Image, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - GuoYang Zhao
- Department of Orthopaedics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hai Bin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zong Gang Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Wei Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Hai Nan Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qi Rong Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - You Jia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Lundin JI, Ton TG, LaCroix AZ, Longstreth W, Franklin GM, Swanson PD, Smith-Weller T, Racette BA, Checkoway H. Formulations of hormone therapy and risk of Parkinson's disease. Mov Disord 2014; 29:1631-6. [PMID: 25255692 PMCID: PMC4216612 DOI: 10.1002/mds.26037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 11/10/2022] Open
Abstract
Hormone therapy (HT) is a class of medications widely prescribed to women in the Western world. Evidence from animal models and in vitro studies suggests that estrogen may protect against nigrostriatal system injury and increase dopamine synthesis, metabolism, and transport. Existing epidemiologic research indicates a possible reduced risk of Parkinson's disease (PD) associated with HT use. The objective of this study was to evaluate PD risk associated with specific HT formulations. Neurologist-confirmed cases and age-matched controls were identified from Group Health Cooperative (GHC) of Washington State. Final analysis included 137 female cases and 227 controls. Hormone therapy use was ascertained from the GHC pharmacy database, further classified as conjugated estrogens, esterified estrogens, and progestin. Ever use of HT formulation demonstrated a suggested elevated risk with esterified estrogen use (odds ratio [OR], 3.1; 95% confidence interval [CI], 1.0-9.8), and no risk associated with conjugated estrogen use (OR, 0.6; 95% CI, 0.6-1.3). Restricting this analysis to prescriptions that included progestin further elevated the risk associated with esterified estrogen use (OR, 6.9; 95% CI, 2.1-22.9); again, no risk was associated with conjugated estrogen use (OR, 1.7; 95% CI, 0.6-5.0). The findings from this study suggest an increase in PD risk associated with esterified estrogen use combined with progestin, and no risk associated with conjugated estrogen with progestin. These findings could have important implications for choice of HT in clinical practice.
Collapse
Affiliation(s)
- Jessica I. Lundin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Thanh G.N. Ton
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Andrea Z. LaCroix
- Department of Family and Preventive Medicine, University of California San Diego, La Jolla, CA, USA
| | - W.T. Longstreth
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Gary M. Franklin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Phillip D. Swanson
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Terri Smith-Weller
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Brad A. Racette
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| | - Harvey Checkoway
- Department of Family and Preventive Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
23
|
Yu L, Chen M, Liu Y, Gui W, Zhu G. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 138-139:35-42. [PMID: 23685399 DOI: 10.1016/j.aquatox.2013.04.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 05/12/2023]
Abstract
The widely used triazole fungicides have the potential to disrupt endocrine system, but little is known of such effects or underlying mechanisms of hexaconazole (HEX) and tebuconazole (TEB) in fish. In the present study, zebrafish (Danio rerio) embryos were exposed to various concentrations of HEX (0.625, 1.25 and 2.5 mg/L) and TEB (1, 2 and 4 mg/L) from fertilization to 120 h post-fertilization (hpf). The whole body content of thyroid hormone and transcription of genes in the hypothalamic-pituitary-thyroid (HPT) axis were analyzed. The results showed that thyroxine (T4) levels were significantly decreased, while triiodothyronine (T3) concentrations were significantly increased after exposure to HEX and TEB, indicating thyroid endocrine disruption. Exposure to HEX significantly induced the transcription of all the measured genes (i.e., corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSHβ), sodium/iodide symporter (NIS), transthyretin (TTR), uridine diphosphate glucuronosyltransferase (UGT1ab), thyronine deiodinase (Dio1 and Dio2), thyroid hormone receptors (TRα and TRβ) in the HPT axis, but did not affect the transcription of thyroglobulin (TG). However, TEB exposure resulted in the upregulation of all the measured genes, excepting that TG, Dio1and TRα had not changed significantly. The overall results indicated that exposure to HEX and TEB could alter thyroid hormone levels as well as gene transcription in the HPT axis in zebrafish larvae.
Collapse
Affiliation(s)
- Liang Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
24
|
Yuan C, Zhang Y, Hu G, Li M, Zheng Y, Gao J, Yang Y, Zhou Y, Wang Z. Expression of two zona pellucida genes is regulated by 17α-ethinylestradiol in adult rare minnow Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:1-9. [PMID: 23603245 DOI: 10.1016/j.cbpc.2013.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/01/2013] [Accepted: 04/10/2013] [Indexed: 12/20/2022]
Abstract
Zona pellucida (ZP) proteins are glycoproteins synthesized in liver, ovary or in both tissues in fish. In the present study, we aimed to determine the responsiveness of ZP2 and ZP3 to 17α-ethinylestradiol (EE2) in adult rare minnow Gobiocypris rarus. The full length of ZP3 cDNA was firstly characterized and its tissue distribution revealed that ZP3 mRNA was predominantly expressed in ovary of G. rarus. The gene expression profiles of ZP2, ZP3 and vitellogenin (VTG) were analyzed in gonad and liver of adult G. rarus exposed to EE2 at 1, 5, 25, and 125 ng/L for 3 and 6 days. The results show that ZP2 is more sensitive than ZP3 in gonads of both genders, and VTG in liver is extremely sensitive to EE2 in male fish. However, at lower concentrations (1 and 5 ng/L), the ZP2 in testes shows higher responsiveness to EE2 compared with VTG in rare minnow. The 5' flanking regions of ZP2 and ZP3 were isolated and the comparison of transcription factors in the regions of ZP2 and ZP3 suggested that the disparity for the responsiveness of ZP2 and ZP3 to EE2 could partly be a result of differential cis-elements such as oocyte-specific protein (Osp1) binding sites or/and sex-determining region Y (SRY) binding site.
Collapse
Affiliation(s)
- Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
| | | | | | | | | | | | | | | | | |
Collapse
|