1
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Dominkuš PP, Mesic A, Hudler P. PLK2 Single Nucleotide Variant in Gastric Cancer Patients Affects miR-23b-5p Binding. J Gastric Cancer 2022; 22:348-368. [PMID: 36316110 PMCID: PMC9633926 DOI: 10.5230/jgc.2022.22.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Chromosomal instability is a hallmark of gastric cancer (GC). It can be driven by single nucleotide variants (SNVs) in cell cycle genes. We investigated the associations between SNVs in candidate genes, PLK2, PLK3, and ATM, and GC risk and clinicopathological features. MATERIALS AND METHODS The genotyping study included 542 patients with GC and healthy controls. Generalized linear models were used for the risk and clinicopathological association analyses. Survival analysis was performed using the Kaplan-Meier method. The binding of candidate miRs was analyzed using a luciferase reporter assay. RESULTS The PLK2 Crs15009-Crs963615 haplotype was under-represented in the GC group compared to that in the control group (Pcorr=0.050). Male patients with the PLK2 rs963615 CT genotype had a lower risk of GC, whereas female patients had a higher risk (P=0.023; P=0.026). The PLK2 rs963615 CT genotype was associated with the absence of vascular invasion (P=0.012). The PLK3 rs12404160 AA genotype was associated with a higher risk of GC in the male population (P=0.015). The ATM Trs228589-Ars189037-Grs4585 haplotype was associated with a higher risk of GC (P<0.001). The ATM rs228589, rs189037, and rs4585 genotypes TA+AA, AG+GG, and TG+GG were associated with the absence of perineural invasion (P=0.034). In vitro analysis showed that the cancer-associated miR-23b-5p mimic specifically bound to the PLK2 rs15009 G allele (P=0.0097). Moreover, low miR-23b expression predicted longer 10-year survival (P=0.0066) in patients with GC. CONCLUSIONS PLK2, PLK3, and ATM SNVs could potentially be helpful for the prediction of GC risk and clinicopathological features. PLK2 rs15009 affects the binding of miR-23b-5p. MiR-23b-5p expression status could serve as a prognostic marker for survival in patients with GC.
Collapse
Affiliation(s)
- Pia Pužar Dominkuš
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Ljubljana, Slovenia
| | - Aner Mesic
- University of Sarajevo, Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina
| | - Petra Hudler
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Zhao C, Wang H, Qi W, Liu S. Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network. Methods 2022; 207:81-89. [PMID: 36167292 DOI: 10.1016/j.ymeth.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/01/2022] [Accepted: 09/18/2022] [Indexed: 10/31/2022] Open
Abstract
Drug discovery is a costly and time-consuming process, and most drugs exert therapeutic efficacy by targeting specific proteins. However, there are a large number of proteins that are not targeted by any drug. Recently, miRNA-based therapeutics are becoming increasingly important, since miRNA can regulate the expressions of specific genes and affect a variety of human diseases. Therefore, it is of great significance to study the associations between miRNAs and drugs to enable drug discovery and disease treatment. In this work, we propose a novel method named DMR-PEG, which facilitates drug-miRNA resistance association (DMRA) prediction by leveraging positional encoding graph neural network with layer attention (LAPEG) and multi-channel neural network (MNN). LAPEG considers both the potential information in the miRNA-drug resistance heterogeneous network and the specific characteristics of entities (i.e., drugs and miRNAs) to learn favorable representations of drugs and miRNAs. And MNN models various sophisticated relations and synthesizes the predictions from different perspectives effectively. In the comprehensive experiments, DMR-PEG achieves the area under the precision-recall curve (AUPR) score of 0.2793 and the area under the receiver-operating characteristic curve (AUC) score of 0.9475, which outperforms the most state-of-the-art methods. Further experimental results show that our proposed method has good robustness and stability. The ablation study demonstrates each component in DMR-PEG is essential for drug-miRNA drug resistance association prediction. And real-world case study presents that DMR-PEG is promising for DMRA inference.
Collapse
Affiliation(s)
- Chengshuai Zhao
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Haorui Wang
- School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Weiwei Qi
- Hubei Bailianhe Pumped-storage Power Station, Wuhan 430074, China
| | - Shichao Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
5
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
6
|
Gilyazova I, Ivanova E, Gilyazova G, Sultanov I, Izmailov A, Safiullin R, Pavlov V, Khusnutdinova E. Methylation and expression levels of microRNA-23b/-24-1/-27b, microRNA-30c-1/-30e, microRNA-301a and let-7g are dysregulated in clear cell renal cell carcinoma. Mol Biol Rep 2021; 48:5561-5569. [PMID: 34302585 DOI: 10.1007/s11033-021-06573-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Renal cell carcinoma is the most common form of kidney cancer in adults. DNA methylation of regulatory sequences at the genomic level and interaction between microRNAs and the messenger RNAs of target genes at the posttranscriptional level contribute to the dynamic regulation of gene activity. Aberrations in these mechanisms can result in impaired functioning of cell signaling pathways, such as that observed in malignant tumors. We hypothesized that microRNA genes methylation may be associated with renal cancer in patients. METHODS AND RESULTS We examined methylation levels of 22 microRNA genes in tumor and normal kidney tissue of 30 patients with TNM Stage III clear cell renal cell carcinoma using a pathway-specific real-time polymerase chain reaction array (EpiTect Methyl II PCR Arrays, Qiagen). MicroRNA expression analysis by quantitative polymerase chain reaction was also performed. Significant differences in methylation levels were found in two genes and in two clusters of microRNA genes. MicroRNA-23b/-24-1/-27b, microRNA -30c-1/-30e and let-7 g was hypermetylated in clear cell renal cell carcinoma tissue, microRNA -301a was hypomethylated in tumor compared with the adjacent normal tissues. Expression of microRNA-301a, microRNA-23b in the clear cell renal cell carcinoma tissues was significantly overexpressed when compared with the adjacent normal tissues and let-7 g was significantly downregulated in tumor. CONCLUSIONS Our results may indicate the contribution of microRNA-301a, microRNA-23b and let-7 g in the pathogenesis of renal cancer, but further studies are needed to determine the functional significance of the detected changes.
Collapse
Affiliation(s)
- I Gilyazova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - E Ivanova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054.
| | - G Gilyazova
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - I Sultanov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - A Izmailov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - R Safiullin
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - V Pavlov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - E Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| |
Collapse
|
7
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
8
|
Baker Y, Tang TM, Allen GI. Feature selection for data integration with mixed multiview data. Ann Appl Stat 2020. [DOI: 10.1214/20-aoas1389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Exosomal microRNA-23b-3p from bone marrow mesenchymal stem cells maintains T helper/Treg balance by downregulating the PI3k/Akt/NF-κB signaling pathway in intracranial aneurysm. Brain Res Bull 2020; 165:305-315. [PMID: 32956770 DOI: 10.1016/j.brainresbull.2020.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 01/07/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are involved in cancer initiation and metastasis, and sometimes mediate cell communication by releasing exosomes and delivering microRNAs (miRNAs). The study aims to investigate the effects of exosomal hsa-miR-23b-3p derived from human BMSCs on intracranial aneurysm (IA). Firstly, human BMSCs-derived exosomes were extracted by ultra-high speed centrifugation. After clinical specimen collection, imbalance of T helper (Th) 17/Treg was found in patients with IA. Then, basilar artery aneurysm models were established and BMSCs-derived exosomes were isolated and identified. The results showed that BMSCs-derived exosomes improved pathological remodeling of IA wall, upregulated the contractile phenotype and inhibited the secretory phenotype of smooth muscle cells and reduced the number of Th17 cells to maintain the balance of Th17/Treg. In addition, human BMSCs-derived exosomes inhibited the activation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway and maintained Th17/Treg balance, which in turn interfered with aneurysm formation. Finally, the targeting relationship between hsa-miR-23b-3p and KLF5 was confirmed. We further noted that BMSCs-derived exosomal hsa-miR-23b-3p inhibited IA formation by targeting KLF5 through suppression of the PI3k/Akt/NF-κB signaling pathway. All in all, our study concluded that BMSCs-derived exosomal hsa-miR-23b-3p could maintain Th17/Treg balance by targeting KLF5 through suppression of the PI3k/Akt/NF-κB signaling pathway, thus inhibit IA formation.
Collapse
|
10
|
Ge BH, Li GC. Long non-coding RNA SNHG17 promotes proliferation, migration and invasion of glioma cells by regulating the miR-23b-3p/ZHX1 axis. J Gene Med 2020; 22:e3247. [PMID: 32602607 DOI: 10.1002/jgm.3247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) small nucleolar RNA host gene 17 (SNHG17) is a carcinogenic lncRNA in diverse cancers. The expression pattern and mechanisms of SNHG17 in glioma still await verification. METHODS Paired glioma samples were enrolled. SNHG17, miR-23b-3p, and zinc-fingers and homeoboxes 1 (ZHX1) mRNA expression were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). SNHG17 short hairpin RNA (shRNA) and miR-23b-3p mimics were transfected into LN229 and U251 cell lines to repress SNHG17 and up-regulate miR-23b-3p expression, respectively. Proliferation, migration and invasion of LN229 and U251 cells were probed by a cell counting kit-8 assay and a Transwell assay. Bioinformatics prediction, dual-luciferase reporter assay, RNA immunoprecipitation assay, qRT-PCR and western blotting were applied to determine the regulatory relationships among SNHG17, miR-23b-3p and ZHX1. RESULTS SNHG17 expression was markedly raised in glioma tissues, which was positively correlated with ZHX1 expression and negatively associated with the expression of miR-23b-3p. After transfection of SNHG17 shRNAs into glioma cells, the proliferation, migration and invasion of cancer cells was markedly restrained. miR-23b-3p mimics the function of SHNG17 knockdown. Furthermore, miR-23b-3p was shown to be negatively modulated by SNHG17, and ZHX1 was identified as a target of miR-23b-3p. CONCLUSIONS SNHG17 is a "competing endogenous RNA" with respect to modulating ZHX1 expression by adsorbing miR-23b-3p and thereby promoting glioma progression.
Collapse
Affiliation(s)
- Bei-Hai Ge
- Department of Neurology, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| | - Guo-Cheng Li
- Department of Neurosurgery, Guangxi Zhuang Autonomous Region Brain Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
11
|
Satheesh NJ, Samuel SM, Büsselberg D. Combination Therapy with Vitamin C Could Eradicate Cancer Stem Cells. Biomolecules 2020; 10:biom10010079. [PMID: 31947879 PMCID: PMC7022456 DOI: 10.3390/biom10010079] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer remains one of the most feared and dreaded diseases in this era of modern medicine, claiming the lives of many, and affecting the quality of life of several others around the globe despite major advances in the diagnosis, treatment, palliative care and the immense resources invested into cancer research. While research in cancer has largely focused on the neoplasm/tumor and the cancerous cells that make up the tumor, more recently, the existence, proliferation, differentiation, migration and invasion of cancer stem cells (CSCs) and the role that CSCs play in tumor initiation, progression, metastasis, drug resistance and relapse/recurrence of the disease has gained widespread interest in cancer research. Although the conventional therapeutic approaches such as surgery, chemotherapy and radiation therapy are effective cancer treatments, very often these treatment modalities fail to target the CSCs, which then later become the source of disease recurrence. A majority of the anti-cancer agents target rapidly dividing cancer cells and normal cells and hence, have side effects that are not expected. Targeting CSCs remains a challenge due to their deviant nature with a low proliferation rate and increased drug resistance mechanism. Ascorbic acid/Vitamin C (Vit.C), a potent antioxidant, is a cofactor for several biosynthetic and gene regulatory enzymes and a vital contributor to immune defense of the body, and was found to be deficient in patients with advanced stages of cancer. Vit.C has gained importance in the treatment of cancer due to its ability to modulate the redox status of the cell and influence epigenetic modifications and significant roles in HIF1α signaling. Studies have reported that intravenous administration of Vit.C at pharmacological doses selectively kills tumor cells and targets CSCs when administered along with chemotherapeutic drugs. In the current article, we provide an in-depth review of how Vit.C plays an important role in targeting CSCs and its possible use as an adjuvant, neoadjuvant or co-treatment in the treatment of cancers.
Collapse
|
12
|
Hannafon BN, Cai A, Calloway CL, Xu YF, Zhang R, Fung KM, Ding WQ. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer 2019; 19:642. [PMID: 31253120 PMCID: PMC6599331 DOI: 10.1186/s12885-019-5839-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/17/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Altered expression of microRNAs (miRNAs) is known to contribute to cancer progression. miR-23b and miR-27b, encoded within the same miRNA cluster, are reported to have both tumor suppressive and oncogenic activity across human cancers, including breast cancer. METHODS To clarify this dichotomous role in breast cancer, miR-23b and miR-27b were knocked out using CRISPR/Cas9 gene knockout technology, and the role of endogenous miR-23b and miR-27b was examined in a breast cancer model system in vitro and in vivo. RESULTS Characterization of the knockout cells in vitro demonstrated that miR-23b and miR-27b are indeed oncogenic miRNAs in MCF7 breast cancer cells. miR-23b and miR-27b knockout reduced tumor growth in xenograft nude mice fed a standard diet, supporting their oncogenic role in vivo. However, when xenograft mice were provided a fish-oil diet, miR-27b depletion, but not miR-23b depletion, compromised fish-oil-induced suppression of xenograft growth, indicating a context-dependent nature of miR-27b oncogenic activity. CONCLUSIONS Our results demonstrate that miR-23b and miR-27b are primarily oncogenic in MCF7 breast cancer cells and that miR-27b may have tumor suppressive activity under certain circumstances.
Collapse
Affiliation(s)
- Bethany N. Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| | - Angela Cai
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| | - Cameron L. Calloway
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| | - Yi-Fan Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| | - Roy Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB401A, Oklahoma City, OK 73104 USA
| |
Collapse
|
13
|
Zhao Z, Guan JZ, Wu M, Lai GH, Zhu ZL. Downregulation of microRNA-23b protects against ischemia-reperfusion injury via p53 signaling pathway by upregulating MDM4 in rats. J Cell Biochem 2019; 120:4599-4612. [PMID: 30537038 DOI: 10.1002/jcb.27748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/31/2018] [Indexed: 11/08/2022]
Abstract
Total knee arthroplasty is a commonly performed safe procedure and typically executed in severe knee arthritis, but it also triggers ischemia-reperfusion injury (IRI). More recently, microRNAs (miRs) have been reported to play a contributory role in IRI through the key signaling pathway. Hence, the current study aimed to investigate the effect and specific mechanism of microRNA-23b (miR-23b), murine double minute 4 (MDM4), and the p53 signaling pathway in IRI rat models. First, the IRI model was established, and the expression pattern of miR-23b, MDM4, and the p53 signaling pathway-related genes was characterized in cartilaginous tissues. Then, miR-23b mimics or inhibitors were applied for the elevation or the depletion of the miR-23b expression and siRNA-MDM4 for the depletion of the MDM4 expression in the articular chondrocytes. By means of immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blot analysis, IRI rats exhibited increased miR-23b expression, activated p53 signaling pathway, and decreased MDM4 expression. MDM4 was verified as a target gene of miR-23b through. Downregulated miR-23b increased the expression of MDM4, AKT, and Bcl-2, but decreased the expression of p53, p21, and Bax. In addition, a series of cell experiments demonstrated that downregulated miR-23b promoted articular chondrocyte proliferation and cell cycle entry, but inhibited articular chondrocyte apoptosis. The absence of the effects of miR-23b was observed after MDM4 knocked down. Our results indicate that silencing miR-23b could act to attenuate IRI and reduce the apoptosis of articular chondrocytes through inactivation of the p53 signaling pathway by upregulating MDM4, which provide basic therapeutic considerations for a novel target against IRI.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Jian-Zhong Guan
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Min Wu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Gui-Hua Lai
- Department of Anatomy, Bengbu Medical College, Bengbu, China
| | - Zhong-Lian Zhu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Anhui Key Laboratory of Tissue Transplantation, Bengbu, China
| |
Collapse
|
14
|
Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 2019; 10:966-981. [PMID: 30847025 PMCID: PMC6398176 DOI: 10.18632/oncotarget.26629] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Circulating miRNAs (miRs) are increasingly recognized as potential biomarkers in cancer. We aimed to evaluate the differential expression of miR-23b and miR-190 which are involved in tumor dormancy, miR-21 involved in metastasis and miR-200b and miR-200c involved in epithelial-mesenchymal transition (EMT) and metastasis, in the plasma of patients with early and metastatic breast cancer (MBC). We also aimed to identify associations of the expression levels with patient and disease characteristics and outcomes in metastatic patients treated with first-line chemotherapy. Results miR-21 (p < 0.001), miR-23b (p = 0.033), miR-200b (p < 0.001) and miR-200c (p < 0.001) expression was higher in metastatic compared to early breast cancer. ROC curve analysis showed that miR-21 (AUC = 0.722; p < 0.001) and miR-200b (AUC = 0.720; p < 0.001) distinguished with high accuracy among the two disease states, whereas the combination of miR-21, miR-190, miR-200b and miR-200c, further improved accuracy (AUC = 0.797; p < 0.001). High miR-200b expression independently predicted for shorter OS (p = 0.026) in MBC. High expression of both miR23b and miR-190 emerged as a strong independent factor associated with shorter PFS (p = 0.001) in de novo metastatic patients and high miR-200b independently predicted for decreased OS in the HER2-negative subgroup (p = 0.007). Materials and Methods Blood samples were obtained from patients with early (n = 133) and MBC (n = 110) before adjuvant or first-line chemotherapy, respectively. Plasma miRNA expression levels were assessed by RT-qPCR and were classified as high or low according to the median values. Conclusions Our results are in support of the concept that circulating miRNAs represent a tool with significant diagnostic and prognostic implications in breast cancer.
Collapse
|
15
|
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Collapse
Affiliation(s)
- Michelle M J Mens
- Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Papadaki C, Stratigos M, Markakis G, Spiliotaki M, Mastrostamatis G, Nikolaou C, Mavroudis D, Agelaki S. Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res 2018; 20:72. [PMID: 29996899 PMCID: PMC6042266 DOI: 10.1186/s13058-018-1001-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 01/04/2023] Open
Abstract
Background In primary breast cancer metastases frequently arise from a state of dormancy that may persist for extended periods of time. We investigated the efficacy of plasma micro-RNA (miR)-21, miR-23b, miR-190, miR-200b and miR-200c, related to dormancy and metastasis, to predict the outcome of patients with early breast cancer. Methods miRNAs were evaluated by RT-qPCR in plasma obtained before adjuvant chemotherapy. miRNA expression, classified as high or low according to median values, correlated with relapse and survival. Receiver operating characteristic (ROC) curves were constructed to determine miRNA sensitivity and specificity. Results miR-21 (p < 0.001), miR-23b (p = 0.028) and miR-200c (p < 0.001) expression were higher and miR-190 was lower (p = 0.013) in relapsed (n = 49), compared to non-relapsed patients (n = 84). Interestingly, miR-190 was lower (p = 0.0032) in patients with early relapse (at < 3 years; n = 23) compared to those without early relapse (n = 110). On the other hand, miR-21 and miR-200c were higher (p = 0.015 and p < 0.001, respectively) in patients with late relapse (relapse at ≥ 5 years; n = 20) as compared to non-relapsed patients. High miR-200c was associated with shorter disease-free survival (DFS) (p = 0.005) and high miR-21 with both shorter DFS and overall survival (OS) (p < 0.001 and p = 0.033, respectively) compared to low expression. ROC curve analysis revealed that miR-21, miR-23b, miR-190 and miR-200c discriminated relapsed from non-relapsed patients. A combination of of miR-21, miR-23b and miR-190 showed higher sensitivity and specificity in ROC analyses compared to each miRNA alone; accuracy was further improved by adding lymph node infiltration and tumor grade to the panel of three miRs (AUC 0.873). Furthermore, the combination of miR-200c, lymph node infiltration, tumor grade and estrogen receptor predicted late relapse (AUC 0.890). Conclusions Circulating miRNAs are differentially expressed among relapsed and non-relapsed patients with early breast cancer and predict recurrence many years before its clinical detection. Our results suggest that miRNAs represent potential circulating biomarkers in early breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-1001-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece
| | - Michalis Stratigos
- Department of Medical Oncology, University General Hospital of Heraklion, 1352 PO BOX, 711 10, Heraklion, Crete, Greece
| | - Georgios Markakis
- Department of Agricultural, Technological Education Institute of Heraklion, 72100, Heraklion, Crete, Greece
| | - Maria Spiliotaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece
| | - Georgios Mastrostamatis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Computational Genomics Group, Department of Biology, University of Crete, 70013, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece.,Department of Medical Oncology, University General Hospital of Heraklion, 1352 PO BOX, 711 10, Heraklion, Crete, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, 71003, Heraklion, Crete, Greece. .,Department of Medical Oncology, University General Hospital of Heraklion, 1352 PO BOX, 711 10, Heraklion, Crete, Greece.
| |
Collapse
|
17
|
|
18
|
Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma. Oncotarget 2018; 8:6955-6969. [PMID: 28036298 PMCID: PMC5351682 DOI: 10.18632/oncotarget.14332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer of the liver with a very poor prognosis. The dysregulation of microRNAs (miRs) is indeed implicated in HCC onset and progression. In this study, we have evaluated the expression of miR-23b and miR-193a in a large cohort of 59 and 67 HCC patients, respectively. miR-23b and miR-193a resulted significantly down-regulated in primary HCCs compared to their matched peritumoral counterparts. Furthermore, patients with higher miR-193a expression exhibited longer OS and DFS, suggesting that miR-193a may be a molecular prognostic factor for HCC patients. Since the regulation of miRs by DNA methylation may occur in human cancers, we verified whether the down-modulation of miR-23b and miR-193a in HCC tissues could be related to DNA methylation. An inverse trend between miR-23b expression and DNA methylation was observed, indicating that miR-23b can be epigenetically regulated. By contrast, the down-regulation of miR-193a was not mediated by DNA methylation. To verify the potential role of miR-23b and miR-193a as responsive molecular targets in vitro, we used the inhibitor of DNA methylation 5-aza-dC to restore miR-23b expression level in combination with miR-193a transfection. The combined treatment led to a significant inhibition of cellular proliferation and migration. Taken together, our findings provide evidence that miR-23b and miR-193a may be molecular diagnostic and prognostic factors for HCC; furthermore, miR-23b and miR-193a are responsive molecular targets for limiting HCC cell aggressiveness in combination with the epigenetic drug 5-aza-dC. Moreover, our results provide new advances in the epigenetic regulation of these miRs in HCC.
Collapse
|
19
|
Epigenetic modification of miR-141 regulates SKA2 by an endogenous 'sponge' HOTAIR in glioma. Oncotarget 2017; 7:30610-25. [PMID: 27121316 PMCID: PMC5058705 DOI: 10.18632/oncotarget.8895] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of miR-141 has recently implicated in the occurrence and development of various types of malignant tumors. However whether the involvement of miR-141 in the pathogenesis of glioma remains unknown. Here, we showed that miR-141 was markedly downregulated in glioma tissues and cell lines compared with normal brain tissues, and its expression correlated with the pathological grading. Enforced expression of miR-141 in glioma cells significantly inhibited cell proliferation, migration and invasion, whereas knockdown of miR-141 exerted opposite effect. Mechanistic investigations revealed that HOTAIR might act as an endogenous 'sponge' of miR-141, thereby regulating the derepression of SKA2. Further, we explored the molecular mechanism by which miR-141 expression was regulated, and found that the miR-141 promoter was hypermethylated and that promoter methylation of miR-141 was mediated by DNMT1 in glioma cells. Finally, both overexpression of miR-141 and knockdown of HOTAIR in a mouse model of human glioma resulted in significant reduction of tumor growth in vivo. Collectively, these results suggest that epigenetic modification of miR-141 and the interaction of ceRNA regulatory network will provide a new approach for therapeutics against glioma.
Collapse
|
20
|
Varghese VK, Shukla V, Kabekkodu SP, Pandey D, Satyamoorthy K. DNA methylation regulated microRNAs in human cervical cancer. Mol Carcinog 2017; 57:370-382. [PMID: 29077234 DOI: 10.1002/mc.22761] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
Regulation of miRNA gene expression by DNA promoter methylation may represent a key mechanism to drive cervical cancer progression. In order to understand the impact of DNA promoter methylation on miRNAs at various stages of cervical carcinogenesis, we performed DNA methylation microarray on Normal Cervical Epithelium (NCE), Cervical Intraepithelial Neoplasia (CIN I-III) and Squamous Cell Carcinoma (SCC) tissues to identify differentially methylated miRNAs followed by validation by bisulfite sequencing. Further, expression of miRNAs was analyzed by qRT-PCR in clinical tissues and cervical cancer cell lines. Transcriptional activity was determined by luciferase assay. We identified a total of 69 hypermethylated and hypomethylated miRNA promoters encompassing 78 CpG islands in all except Y chromosome, among the three groups. The candidate DNA promoters of miR-424 were significantly hypermethylated and miR-200b and miR-34c were significantly hypomethylated in SCC compared to NCE (P < 0.05). Expression of miR-424, miR-200b, and miR-34c were inversely correlated with promoter DNA methylation in tissue samples. Treatment of cell lines with 5-aza-2'-deoxycytidine showed differential expression in all three miRNAs. We observed a decrease in miRNA promoter activity following in vitro SssI methylase treatment of miR-424, miR-200b, and miR-34c. Luciferase assay demonstrated that miR-200b and miR-424 functionally interacts with 3'-UTR of HIPK3 and RBBP6 respectively and decreased their activity in presence of miR-200b and miR-424 mimics transfected in SiHa cells. Taken together, we have identified deregulation of miRNAs by aberrant DNA promoter methylation, leading to its transcriptional silencing during cervical carcinogenesis, which can be potential targets for diagnosis and therapy.
Collapse
Affiliation(s)
- Vinay K Varghese
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, India
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, India
| | - Deeksha Pandey
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
21
|
Abstract
Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor.
Collapse
|
22
|
Wang W, Wang Y, Liu W, van Wijnen AJ. Regulation and biological roles of the multifaceted miRNA-23b (MIR23B). Gene 2017; 642:103-109. [PMID: 29101066 DOI: 10.1016/j.gene.2017.10.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are important short endogenous non-coding RNAs that have critical biological roles by acting as post-transcriptional regulators of gene expression. Chromosomal region 9q22.32 encodes the miR-23b/27b/24-1 cluster and produces miR-23b, which is a pleiotropic modulator in many developmental processes and pathological conditions. Expression of miR-23b is actively suppressed and induced in response to many different stimuli. We discuss the biological functions and transcriptional regulation of this multifaceted miRNA in different tumor types, during development, upon viral infection, as well as in various clinical disorders, immune responses, as well as cardiovascular and thyroid functions. The combined body of work suggests that miR-23b expression is modulated by a diverse array of stimuli in cells from different lineages and participates in multiple gene regulatory feedback loops. Elevation of miR-23b levels appears to instruct cells to limit their proliferative and migratory potential, while promoting the acquisition of specialized phenotypes or protection from invading viruses and parasites. In contrast, loss of miR-23b can deregulate normal tissue homeostasis by removing constraints on cell cycle progression and cell motility. Collectively, the findings on miR-23b indicate that it is a very potent post-transcriptional regulator of growth and differentiation during development, multiple cancers and other biological processes. Understanding the regulation and activity of miR-23b has significant diagnostic value in many biological disorders and may identify cellular pathways that are amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Wang
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopaedics, Changzhou No. 2 People's Hospital, Nanjing Medical University, 29 Xinglong Alley, Jiangsu, China
| | - Weijun Liu
- Department of Orthopeadics, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Viswanathan V, Damle S, Zhang T, Opdenaker L, Modarai S, Accerbi M, Schmidt S, Green P, Galileo D, Palazzo J, Fields J, Haghighat S, Rigoutsos I, Gonye G, Boman BM. An miRNA Expression Signature for the Human Colonic Stem Cell Niche Distinguishes Malignant from Normal Epithelia. Cancer Res 2017; 77:3778-3790. [PMID: 28487386 DOI: 10.1158/0008-5472.can-16-2388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 02/02/2023]
Abstract
Malignant transformation of tissue stem cells (SC) may be the root of most cancer. Accordingly, we identified miRNA expression patterns in the normal human colonic SC niche to understand how cancer stem cells (CSC) may arise. In profiling miRNA expression in SC-enriched crypt subsections isolated from fresh, normal surgical specimens, we identified 16 miRNAs that were differentially expressed in the crypt bottom, creating an SC signature for normal colonic epithelia (NCE). A parallel analysis of colorectal cancer tissues showed differential expression of 83 miRNAs relative to NCE. Within the 16 miRNA signature for the normal SC niche, we found that miR-206, miR-007-3, and miR-23b individually could distinguish colorectal cancer from NCE. Notably, miR-23b, which was increased in colorectal cancer, was predicted to target the SC-expressed G protein-coupled receptor LGR5. Cell biology investigations showed that miR-23b regulated CSC phenotypes globally at the level of proliferation, cell cycle, self-renewal, epithelial-mesenchymal transition, invasion, and resistance to the colorectal cancer chemotherapeutic agent 5-fluorouracil. In mechanistic experiments, we found that miR-23b decreased LGR5 expression and increased ALDH+ CSCs. CSC analyses confirmed that levels of LGR5 and miR-23b are inversely correlated in ALDH+ CSCs and that distinct subpopulations of LGR5+ and ALDH+ CSCs exist. Overall, our results define a critical function for miR-23b, which, by targeting LGR5, contributes to overpopulation of ALDH+ CSCs and colorectal cancer. Cancer Res; 77(14); 3778-90. ©2017 AACR.
Collapse
Affiliation(s)
- Vignesh Viswanathan
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Department of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shirish Damle
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Tao Zhang
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Lynn Opdenaker
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Shirin Modarai
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Monica Accerbi
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware
| | - Skye Schmidt
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware
| | - Pamela Green
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware
| | - Deni Galileo
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Juan Palazzo
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | | | - Sepehr Haghighat
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| | - Greg Gonye
- Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania.,Nanostring Technologies, Seattle, Washington
| | - Bruce M Boman
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Newark, Delaware. .,Department of Biological Sciences, University of Delaware, Newark, Delaware.,Thomas Jefferson University and Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Hassan A, Mosley J, Singh S, Zinn PO. A Comprehensive Review of Genomics and Noncoding RNA in Gliomas. Top Magn Reson Imaging 2017; 26:3-14. [PMID: 28079712 DOI: 10.1097/rmr.0000000000000111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glioblastoma (GBM) is the most malignant primary adult brain tumor. In spite of our greater understanding of the biology of GBMs, clinical outcome of GBM patients remains poor, as their median survival with best available treatment is 12 to 18 months. Recent efforts of The Cancer Genome Atlas (TCGA) have subgrouped patients into 4 molecular/transcriptional subgroups: proneural, neural, classical, and mesenchymal. Continuing efforts are underway to provide a comprehensive map of the heterogeneous makeup of GBM to include noncoding transcripts, genetic mutations, and their associations to clinical outcome. In this review, we introduce key molecular events (genetic and epigenetic) that have been deemed most relevant as per studies such as TCGA, with a specific focus on noncoding RNAs such as microRNAs (miRNA) and long noncoding RNAs (lncRNA). One of our main objectives is to illustrate how miRNAs and lncRNAs play a pivotal role in brain tumor biology to define tumor heterogeneity at molecular and cellular levels. Ultimately, we elaborate how radiogenomics-based predictive models can describe miRNA/lncRNA-driven networks to better define heterogeneity of GBM with clinical relevance.
Collapse
Affiliation(s)
- Ahmed Hassan
- *Department of Diagnostic Radiology †Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center ‡Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | | | | | | |
Collapse
|
25
|
miR clusters target cellular functional complexes by defining their degree of regulatory freedom. Cancer Metastasis Rev 2017; 35:289-322. [PMID: 26970968 DOI: 10.1007/s10555-016-9617-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using the two paralog miR-23∼27∼24 clusters as an example and combining experimental and clinical data in a systematical approach to microRNA (miR) function and dysregulation, a complex picture of their roles in cancer is drawn. Various findings appear to be contradictory to a larger extent and cannot be fully explained by the classical regulatory network models and feedback loops that are mainly considered by one-to-one regulatory interactions of the involved molecules. Here, we propose an extended model of the regulatory role of miRs that, at least, supplements the usually considered single/oligo-target regulation of certain miRs. The cellular availability of the participating miR members in this model reflects an upper hierarchy level of intracellular and extracellular environmental influences, such as neighboring cells, soluble factors, hypoxia, chemotherapeutic drugs, and irradiation, among others. The novel model is based on the understanding of cellular functional complexes, such as for apoptosis, migration, and proliferation. These complexes consist of many regulatory components that can be targeted by miR cluster members to a different extent but may affect the functional complex in different ways. We propose that the final miR-related effect is a result of the possible degree of regulatory freedom provided by the miR effects on the whole functional complex structure. This degree of regulatory freedom defines to which extent the cellular functional complex can react in response to regulatory triggers, also understood as sensitization (more regulatory response options) or de-sensitization (less regulatory response options) of the system rather than single molecules.
Collapse
|
26
|
Kou CH, Zhou T, Han XL, Zhuang HJ, Qian HX. Downregulation of mir-23b in plasma is associated with poor prognosis in patients with colorectal cancer. Oncol Lett 2016; 12:4838-4844. [PMID: 28101227 DOI: 10.3892/ol.2016.5265] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that act as regulators of gene expression. Circulating blood miRNAs have potential as cancer biomarkers. The main objective of the present study was to assess the effect of miRNA-23b (miR-23b) expression in plasma on the diagnosis and prognosis of colorectal cancer (CRC). Reverse transcription-quantitative polymerase chain reaction (PCR) was used to measure miR-23b expression levels, and methylation-specific PCR was used to test the promoter methylation status. Subsequently, the expression level of miR-23b in plasma samples was compared between CRC patients and healthy control individuals. The miR-23b expression levels were significantly lower in CRC cells and primary CRC tissues than in nonmalignant colorectal tissues (P<0.001). It was also shown that miR-23b expression is downregulated by promoter methylation and can be restored by demethylation agent treatment. miR-23b was significantly decreased in plasma samples from CRC patients compared with the healthy control individuals (P<0.001). The value of the area under the receiver operating characteristic curve was 0.842 (sensitivity, 84.38%; specificity, 77.08%; 95% confidence interval, 0.763-0.922). Low plasma miR-23b expression was significantly associated with clinical stage, tumor depth, distant metastasis and tumor recurrence. CRC patients with low miR-23b expression in plasma exhibited a shorter recurrence-free survival time and poorer overall survival rate. The present results suggested that the downregulation of miR-23b in the plasma has the potential to be a diagnostic and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Chang-Hua Kou
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Tian Zhou
- Department of Gastroenterology, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Xi-Lin Han
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Hui-Jie Zhuang
- Department of Oncological Surgery, The Central Hospital of Xuzhou, Xuzhou, Jiangsu 221009, P.R. China
| | - Hai-Xin Qian
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
27
|
Liu Y, Han N, Li Q, Li Z. Regulatory mechanisms underlying sepsis progression in patients with tumor necrosis factor-α genetic variations. Exp Ther Med 2016; 12:323-328. [PMID: 27347057 DOI: 10.3892/etm.2016.3308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/18/2015] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to investigate the regulatory mechanisms underlying sepsis progression in patients with tumor necrosis factor (TNF)-α genetic variations. The GSE5760 expression profile data, which was downloaded from the Gene Expression Omnibus database, contained 30 wild-type (WT) and 28 mutation (MUT) samples. Differentially expressed genes (DEGs) between the two types of samples were identified using the Student's t-test, and the corresponding microRNAs (miRNAs) were screened using WebGestalt software. An integrated miRNA-DEG network was constructed using the Cytoscape software, based on the interactions between the DEGs, as identified using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and the correlation between miRNAs and their target genes. Furthermore, Gene Ontology and pathway enrichment analyses were conducted for the DEGs using the Database for Annotation, Visualization and Integrated Discovery and the KEGG Orthology Based Annotation System, respectively. A total of 390 DEGS between the WT and MUT samples, along with 11 -associated miRNAs, were identified. The integrated miRNA-DEG network consisted of 38 DEGs and 11 miRNAs. Within this network, COPS2 was found to be associated with transcriptional functions, while FUS was found to be involved in mRNA metabolic processes. Other DEGs, including FBXW7 and CUL3, were enriched in the ubiquitin-mediated proteolysis pathway. In addition, miR-15 was predicted to target COPS2 and CUL3. The results of the present study suggested that COPS2, FUS, FBXW7 and CUL3 may be associated with sepsis in patients with TNF-α genetic variations. In the progression of sepsis, FBXW7 and CUL3 may participate in the ubiquitin-mediated proteolysis pathway, whereas COPS2 may regulate the phosphorylation and ubiquitination of the FUS protein. Furthermore, COPS2 and CUL3 may be novel targets of miR-15.
Collapse
Affiliation(s)
- Yangzhou Liu
- Emergency Trauma Department, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Ning Han
- Emergency Trauma Department, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Qinchuan Li
- Emergency Trauma Department, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Zengchun Li
- Emergency Trauma Department, Shanghai East Hospital, Shanghai 200120, P.R. China
| |
Collapse
|
28
|
Fulciniti M, Amodio N, Bandi RL, Cagnetta A, Samur MK, Acharya C, Prabhala R, D'Aquila P, Bellizzi D, Passarino G, Adamia S, Neri A, Hunter ZR, Treon SP, Anderson KC, Tassone P, Munshi NC. miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth. Blood Cancer J 2016; 6:e380. [PMID: 26771806 PMCID: PMC4742623 DOI: 10.1038/bcj.2015.106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Deregulated microRNA (miR)/transcription factor (TF)-based networks represent a hallmark of cancer. We report here a novel c-Myc/miR-23b/Sp1 feed-forward loop with a critical role in multiple myeloma (MM) and Waldenstrom's macroglobulinemia (WM) cell growth and survival. We have found miR-23b to be downregulated in MM and WM cells especially in the presence of components of the tumor bone marrow milieu. Promoter methylation is one mechanism of miR-23b suppression in myeloma. In gain-of-function studies using miR-23b mimics-transfected or in miR-23b-stably expressing MM and WM cell lines, we observed a significant decrease in cell proliferation and survival, along with induction of caspase-3/7 activity over time, thus supporting a tumor suppressor role for miR-23b. At the molecular level, miR-23b targeted Sp1 3'UTR and significantly reduced Sp1-driven nuclear factor-κB activity. Finally, c-Myc, an important oncogenic transcription factor known to stimulate MM cell proliferation, transcriptionally repressed miR-23b. Thus MYC-dependent miR-23b repression in myeloma cells may promote activation of oncogenic Sp1-mediated signaling, representing the first feed-forward loop with critical growth and survival role in myeloma.
Collapse
Affiliation(s)
- M Fulciniti
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - N Amodio
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - R L Bandi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Cagnetta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M K Samur
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Acharya
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R Prabhala
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| | - P D'Aquila
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - D Bellizzi
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - G Passarino
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - S Adamia
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Neri
- Department of Medical Sciences, University of Milan, Hematology 1, IRCCS Policlinico Foundation, Milan, Italy
| | - Z R Hunter
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S P Treon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Salvatore Venuta Campus, Catanzaro, Italy
| | - N C Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Campos-Viguri GE, Jiménez-Wences H, Peralta-Zaragoza O, Torres-Altamirano G, Soto-Flores DG, Hernández-Sotelo D, Alarcón-Romero LDC, Jiménez-López MA, Illades-Aguiar B, Fernández-Tilapa G. miR-23b as a potential tumor suppressor and its regulation by DNA methylation in cervical cancer. Infect Agent Cancer 2015; 10:42. [PMID: 26622315 PMCID: PMC4663735 DOI: 10.1186/s13027-015-0037-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Background The aberrant expression of miR-23b is involved in the development and progression of cancer. The aim of this study was to evaluate the potential role of methylation in the silencing of miR-23b in cervical cancer cell lines and to determine its expression in stages of malignant progression and in cervical cancer tissues HPV16-positive. Methods The methylation of the miR-23b promoter was determined in HeLa, SiHa, CaSki and C33A cells using a Human Cancer miRNA EpiTectMethyl II Signature PCR Array®. The cells were treated with 5-Aza-2′-deoxycytidine, and the expression of miR-23b, uPa, c-Met and Zeb1 was determined by qRT-PCR. miR-92a and GAPDH were used as controls. The expression of miR-23b was determined in cervical scrapes and biopsies of women without squamous intraepithelial lesions, with precursor lesions and with cervical cancer, all were HPV16-positive. The Fisher exact and Mann–Whitney tests were used to compare the differences of the expression of miR-23b, uPa, c-Met and Zeb1 among cell groups, and the difference among patients, respectively. The association between the expression of miR-23b and cervical cancer was determined by logistic regression with a confidence level of 95 %. A value of p < 0.05 was considered statistically significant. Results In C33A, HeLa and CaSki cells, methylation was associated with decreased expression of miR-23b. After treatment with 5-Aza-CdR, the expression of miR-23b increased in all cell lines and the expression of c-Met decreased in HeLa cells, while uPa and Zeb1 decreased in C33A and CaSki cells. In SiHa cells the expression of uPa, c-Met and Zeb1 increased. The expression of miR-23b decreased in relation to the increase in the severity of the lesion and was significantly lower in cervical cancer. In women with premalignant lesions HPV16-positive, decreased levels of miR-23b increased the risk of cervical cancer (OR = 36, 95 % CI = 6.7-192.6, p < 0.05). Conclusions The results suggest that the expression of miR-23b is regulated by the methylation of its promoter and is possible that this microRNA influence the expression of uPa, c-Met and Zeb1 in cervical cancer cells lines. In women with premalignant lesions and cervical cancer infected with HPV16, the expression level of miR-23b agree with a tumor suppressor gene.
Collapse
Affiliation(s)
- Gabriela Elizabeth Campos-Viguri
- Laboratorio de Investigación Clínica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación Clínica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| | - Oscar Peralta-Zaragoza
- Instituto Nacional de Salud Pública, Avenida Universidad No. 655, Colonia, Santa María Ahuacatitlán, Cuernavaca, Morelos C.P. 62100 México
| | - Gricenda Torres-Altamirano
- Laboratorio de Investigación Clínica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| | - Diana Guillermina Soto-Flores
- Laboratorio de Investigación Clínica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| | - Daniel Hernández-Sotelo
- Laboratorio de Virología y Epigenética del Cáncer, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| | - Marco Antonio Jiménez-López
- Instituto Estatal de Cancerología "Dr. Arturo Beltrán Ortega", Av. Adolfo Ruiz Cortines No. 128-A, Colonia Alta Progreso, Acapulco de Juárez, Guerrero C.P. 39570 México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero C.P. 39089 México
| | - Gloria Fernández-Tilapa
- Laboratorio de Investigación Clínica, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, C.P. 39089 Chilpancingo, Guerrero México
| |
Collapse
|
30
|
Walker ND, Patel J, Munoz JL, Hu M, Guiro K, Sinha G, Rameshwar P. The bone marrow niche in support of breast cancer dormancy. Cancer Lett 2015; 380:263-71. [PMID: 26546045 DOI: 10.1016/j.canlet.2015.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/13/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment.
Collapse
Affiliation(s)
- Nykia D Walker
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Jimmy Patel
- Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Jessian L Munoz
- Ob/Gyn and Women's Health Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Madeleine Hu
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Khadidiatou Guiro
- Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Garima Sinha
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Graduate School of Biomedical Sciences at New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
31
|
Garg M. Emerging role of microRNAs in cancer stem cells: Implications in cancer therapy. World J Stem Cells 2015; 7:1078-1089. [PMID: 26435768 PMCID: PMC4591786 DOI: 10.4252/wjsc.v7.i8.1078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/27/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
A small subset of cancer cells that act as tumor initiating cells or cancer stem cells (CSCs) maintain self-renewal and growth promoting capabilities of cancer and are responsible for drug/treatment resistance, tumor recurrence and metastasis. Due to their potential clinical importance, many researchers have put their efforts over decades to unravel the molecular mechanisms that regulate CSCs functions. MicroRNAs (miRNAs) which are 21-23 nucleotide long, endogenous non-coding RNAs, regulate gene expression through gene silencing at post-transcriptional level by binding to the 3’-untranslated regions or the open reading frames of target genes, thereby result in target mRNA degradation or its translational repression and serve important role in several cellular, physiological and developmental processes. Aberrant miRNAs expression and their implication in CSCs regulation by controlling asymmetric cell division, drug/treatment resistance and metastasis make miRNAs a tool of great therapeutic potential against cancer. Recent advancements on the biological complexities of CSCs, modulation in CSCs properties by miRNA network and development of miRNA based treatment strategies specifically targeting the CSCs as an attractive therapeutic targets for clinical application are being critically analysed.
Collapse
|
32
|
Begum S, Hayashi M, Ogawa T, Jabboure FJ, Brait M, Izumchenko E, Tabak S, Ahrendt SA, Westra WH, Koch W, Sidransky D, Hoque MO. An integrated genome-wide approach to discover deregulated microRNAs in non-small cell lung cancer: Clinical significance of miR-23b-3p deregulation. Sci Rep 2015; 5:13236. [PMID: 26314549 PMCID: PMC4551983 DOI: 10.1038/srep13236] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
In spite of significant technical advances, genesis and progression of non-small cell lung cancer (NSCLC) remain poorly understood. We undertook an integrated genetic approach to discover novel microRNAs that were deregulated in NSCLCs. A total 119 primary NSCLCs with matched normal were analyzed for genome-wide copy number changes. We also tested a subset of matched samples by microRNA expression array, and integrated them to identify microRNAs positioned in allelic imbalance area. Our findings support that most of the identified deregulated microRNAs (miR-21, miR-23b, miR-31, miR-126, miR-150, and miR-205) were positioned in allelic imbalance areas. Among microRNAs tested in independent 114 NSCLCs, overexpression of miR-23b was revealed to be a significantly poor prognostic factor of recurrence free survival (HR = 2.40, P = 0.005, 95%CI: 1.32–4.29) and overall survival (HR = 2.35, P = 0.005, 95%CI: 1.30–4.19) in multivariable analysis. In addition, overexpression of miR-23b in H1838 cell line significantly increased cell proliferation, while inhibition of miR-23b in H1437 and H1944 cell lines significantly decreased cell doubling time. In summary, integration of genomic analysis and microRNA expression profiling could identify novel cancer-related microRNAs, and miR-23b could be a potential prognostic marker for early stage NSCLCs. Further biological studies of miR-23b are warranted for the potential development of targeted therapy.
Collapse
Affiliation(s)
- Shahnaz Begum
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Takenori Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Fayez J Jabboure
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Sarit Tabak
- Rosetta Genomics Ltd. 10 Plaut St., Rehovot, Israel, 76706
| | - Steven A Ahrendt
- Department of Surgery, Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213 USA
| | - William H Westra
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Wayne Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, 21231 USA.,Department of Urology, Johns Hopkins University, Baltimore, Maryland, 21231 USA.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland, 21231 USA
| |
Collapse
|
33
|
An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, Nie Y, Zhao Q. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis 2015; 6:e1766. [PMID: 25996293 PMCID: PMC4669702 DOI: 10.1038/cddis.2015.123] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
Chemotherapy is an important treatment modality for gastric cancer (GC); however, it usually fails because of drug resistance, especially multidrug resistance (MDR). Previously, we found a novel subset of MDR-associated microRNAs (miRNAs) through high-throughput functional screening. In this report, we investigated the exact roles and mechanisms of miR-23b-3p in the MDR of GC. Using gain or loss-of-function in in vitro and in vivo experiments, we found that overexpression of miR-23b-3p reversed cancer cell resistance to multiple chemotherapeutics in vitro and sensitize tumors to chemotherapy in vivo. Reporter gene assay and western blot analysis showed that ATG12 and HMGB2 were the direct targets of miR-23b-3p. Meanwhile, ATG12 and HMGB2 were positively associated with the occurrence of autophagy. Reducing the expression of these target genes by siRNA or inhibition of autophagy both sensitized GC cells to chemotherapy. These findings suggest that a miR-23b-3p/ATG12/HMGB2/autophagy-regulatory loop has a critical role in MDR in GC. In addition, miR-23b-3p could be used as a prognostic factor for overall survival in GC. In conclusion, our data demonstrated that miR-23b-3p inhibited autophagy mediated by ATG12 and HMGB2 and sensitized GC cells to chemotherapy, and suggested the potential application of miR-23b-3p in drug resistance prediction and treatment.
Collapse
Affiliation(s)
- Y An
- 1] State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China [2] Department of General Surgery, General Hospital of Jinan Military Command, Jinan, China [3] Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Z Zhang
- 1] State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China [2] Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - Y Shang
- 1] State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China [2] Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - X Jiang
- 1] State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China [2] Department of Biochemistry and Molecular Biology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, China
| | - J Dong
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China
| | - P Yu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China
| | - Y Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China
| | - Q Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
34
|
MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours. Stem Cells Int 2015; 2015:141793. [PMID: 26064134 PMCID: PMC4433683 DOI: 10.1155/2015/141793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/19/2015] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
CNS tumours occur in both pediatric and adult patients and many of these tumours are associated with poor clinical outcome. Due to a paradigm shift in thinking for the last several years, these tumours are now considered to originate from a small population of stem-like cells within the bulk tumour tissue. These cells, termed as brain tumour initiating cells (BTICs), are perceived to be regulated by microRNAs at the posttranscriptional/translational levels. Proliferation, stemness, differentiation, invasion, angiogenesis, metastasis, apoptosis, and cell cycle constitute some of the significant processes modulated by microRNAs in cancer initiation and progression. Characterization and functional studies on oncogenic or tumour suppressive microRNAs are made possible because of developments in sequencing and microarray techniques. In the current review, we bring recent knowledge of the role of microRNAs in BTIC formation and therapy. Special attention is paid to two highly aggressive and well-characterized brain tumours: gliomas and medulloblastoma. As microRNA seems to be altered in the pathogenesis of many human diseases, “microRNA therapy” may now have potential to improve outcomes for brain tumour patients. In this rapidly evolving field, further understanding of miRNA biology and its contribution towards cancer can be mined for new therapeutic tools.
Collapse
|
35
|
Wu M, Gu JT, Yi B, Tang ZZ, Tao GC. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Exp Ther Med 2015; 9:1125-1132. [PMID: 25780398 PMCID: PMC4353782 DOI: 10.3892/etm.2015.2224] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
miR-23b is a multifunctional microRNA that contributes to the regulation of multiple signaling pathways. It has been reported that miR-23b prevents multiple autoimmune diseases through the regulation of inflammatory cytokine pathways. In addition, the function and underlying mechanisms of miR-23b on sepsis are currently being investigated. In the present study, miR-23b inhibitor and mimics sequences were transfected into human vascular endothelial cells to inhibit and upregulate the expression of miR-23b, respectively. In addition, respective negative control (NC) sequences were transfected. The expression of miR-23b was found to be downregulated in the cells transfected with the mimics NC or inhibitor NC sequences following stimulation with lipopolysaccharide (LPS; P<0.01); however, higher expression levels were maintained in the cells transfected with the mimics sequence and very low levels were observed in the cells transfected with the inhibitor sequence. In addition, the expression levels of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-6, intercellular adhesion molecule (ICAM)-1, E-selectin and vascular cell adhesion molecule (VCAM)-1 were shown to increase following induction by LPS in the cells transfected with inhibitor/mimics NC sequences (P<0.05). However, the expression levels of these inflammatory factors decreased in the cells transfected with the mimics sequence, and increased to a greater degree in the cells transfected with the inhibitor sequence, as compared with the inhibitor NC sequences (P<0.05). Therefore, miR-23b may play a significant role in the pathogenesis and progression of sepsis by inhibiting the expression of inflammatory factors, including NF-κB, TNF-α, IL-6, ICAM-1, E-selectin and VCAM-1.
Collapse
Affiliation(s)
- Ming Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian-Teng Gu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhong-Zhi Tang
- Department of Emergency, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Guo-Cai Tao
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
36
|
The miRNA23b-regulated signaling network as a key to cancer development--implications for translational research and therapeutics. J Mol Med (Berl) 2014; 92:1129-38. [PMID: 25301113 DOI: 10.1007/s00109-014-1208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023]
Abstract
A growing body of evidence indicates that microRNA23b (miR23b) is pleiotropic-it plays important roles in regulating physiological functions of cells, in regulating differentiation of cells and in regulating cellular immune responses. Our review of the literature showed that dysregulation of miR23b expression is implicated in the disruption of these cellular mechanisms and development of diseases such as cancer. MiR23b dysregulation appears to do this by modulating the expression level of candidate gene products involved in a network of signaling pathways including TGF-beta and Notch pathways that govern malignant properties of cancer cells such as motility and invasiveness. More recently, miR23b regulation of gene expression has also been associated with cancer stem cells and chemoresistance. Our review covers miR23b's role in immunity, endothelial function, differentiation, and cancer as well as its potential for translation into future cancer diagnostics and therapeutics.
Collapse
|
37
|
Zhao B, Bian EB, Li J, Li J. New advances of microRNAs in glioma stem cells, with special emphasis on aberrant methylation of microRNAs. J Cell Physiol 2014; 229:1141-7. [PMID: 24374932 DOI: 10.1002/jcp.24540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022]
Abstract
Malignant brain tumors are thought to be originate from a small population of cells that display stem cell properties, including the capacity of self-renewal, multipotent differentiation, initiation of tumor tissues. Cancer stem cells (CSCs) have been identified in gliomas in which they are named as glioma stem cells (GSCs). GSCs, sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas and the recurrence of malignant gliomas after current conventional therapy. Recently, increasing evidences have showed that miRNAs play a central role in GSCs. In this review we focus on the role of GSCs in gliomas and in the abnomal expression of miRNAs in GSCs. Furthermore, we also discuss epigenetic dysregulation of tumor-suppressor miRNAs by promoter DNA methylation is involved in the regulation of GSCs biology. Recent advances in understanding dysregulated expression of miRNAs and methylation of tumor-suppressor miRNAs in GSCs and their possible use as new therapeutic targets of gliomas.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | | | | | | |
Collapse
|
38
|
Donadelli M, Dando I, Fiorini C, Palmieri M. Regulation of miR-23b expression and its dual role on ROS production and tumour development. Cancer Lett 2014; 349:107-13. [DOI: 10.1016/j.canlet.2014.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 01/07/2023]
|
39
|
Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K, Ochiya T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014; 7:ra63. [PMID: 24985346 DOI: 10.1126/scisignal.2005231] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer patients often develop metastatic disease years after resection of the primary tumor. The patients are asymptomatic because the disseminated cells appear to become dormant and are undetectable. Because the proliferation of these cells is slowed, dormant cells are often unresponsive to traditional chemotherapies that exploit the rapid cell cycling of most cancer cells. We generated a bone marrow-metastatic human breast cancer cell line (BM2) by tracking and isolating fluorescent-labeled MDA-MB-231 cells that disseminated to the bone marrow in mice. Coculturing BM2 cells with bone marrow mesenchymal stem cells (BM-MSCs) isolated from human donors revealed that BM-MSCs suppressed the proliferation of BM2 cells, decreased the abundance of stem cell-like surface markers, inhibited their invasion through Matrigel Transwells, and decreased their sensitivity to docetaxel, a common chemotherapy agent. Acquisition of these dormant phenotypes in BM2 cells was also observed by culturing the cells in BM-MSC-conditioned medium or with exosomes isolated from BM-MSC cultures, which were taken up by BM2 cells. Among various microRNAs (miRNAs) increased in BM-MSC-derived exosomes compared with those from adult fibroblasts, overexpression of miR-23b in BM2 cells induced dormant phenotypes through the suppression of a target gene, MARCKS, which encodes a protein that promotes cell cycling and motility. Metastatic breast cancer cells in patient bone marrow had increased miR-23b and decreased MARCKS expression. Together, these findings suggest that exosomal transfer of miRNAs from the bone marrow may promote breast cancer cell dormancy in a metastatic niche.
Collapse
Affiliation(s)
- Makiko Ono
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Naoomi Tominaga
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Fumitaka Takeshita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryou-u Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hitoshi Tsuda
- Department of Pathology, National Defense Medical College, Saitama 359-0042, Japan
| | - Kenji Tamura
- Breast and Medical Oncology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Recent advances in the role of cancer stem cells (CSCs) in glioblastoma will be reviewed. RECENT FINDINGS In the decade since the description of brain tumor CSCs, the potential significance of these cells in tumor growth, therapeutic resistance, and spread has become evident. Most recently, the interplay between CSCs, tumor genetics, and the microenvironment has offered potential nodes of fragility under therapeutic development. The CSC phenotype is informed by specific receptor signaling, and study of the regulation of stem cell genes by transcription factors and microRNAs has identified a number of new targets amenable to treatment. Like normal stem cells, CSCs display specific epigenetic landscapes and metabolic profiles. SUMMARY Brain cancers activate core stem cell regulatory pathways to empower self-renewal, maintenance of an organ system (albeit an aberrant one), and survival under stress that collectively permits tumor growth, therapeutic resistance, invasion, and angiogenesis. These properties have implicated CSCs as contributors in GBM progression and recurrence, spurring a search for anti-CSC therapies that do not disrupt normal stem cell maintenance. The last year has witnessed a rapid evolution in the understanding of CSC biology to inform preclinical targeting.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Recent advances in the role of cancer stem cells (CSCs) in glioblastoma will be reviewed. RECENT FINDINGS In the decade since the description of brain tumor CSCs, the potential significance of these cells in tumor growth, therapeutic resistance, and spread has become evident. Most recently, the interplay between CSCs, tumor genetics, and the microenvironment has offered potential nodes of fragility under therapeutic development. The CSC phenotype is informed by specific receptor signaling, and study of the regulation of stem cell genes by transcription factors and microRNAs has identified a number of new targets amenable to treatment. Like normal stem cells, CSCs display specific epigenetic landscapes and metabolic profiles. SUMMARY Brain cancers activate core stem cell regulatory pathways to empower self-renewal, maintenance of an organ system (albeit an aberrant one), and survival under stress that collectively permits tumor growth, therapeutic resistance, invasion, and angiogenesis. These properties have implicated CSCs as contributors in GBM progression and recurrence, spurring a search for anti-CSC therapies that do not disrupt normal stem cell maintenance. The last year has witnessed a rapid evolution in the understanding of CSC biology to inform preclinical targeting.
Collapse
|
42
|
CHEN LUYUE, ZHANG KAILIANG, SHI ZHENDONG, ZHANG ANLING, JIA ZHIFAN, WANG GUANGXIU, PU PEIYU, KANG CHUNSHENG, HAN LEI. A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo. Oncol Rep 2014; 31:1573-80. [DOI: 10.3892/or.2014.3012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
|
43
|
Abstract
About 20 years have passed since the discovery of the first microRNA (miRNA) and by now microRNAs are implicated in a variety of physiological and pathological processes. Since the discovery of the powerful effect miRNAs have on biological processes, it has been suggested that mutations affecting miRNA function may play a role in the pathogenesis of human diseases. Over the past several years microRNAs have been found to play a major role in various human diseases. In addition, many studies aim to apply miRNAs for diagnostic and therapeutic applications in human diseases. In this chapter, we summarize the role of miRNAs in pathological processes and discuss how miRNAs could be used as disease biomarkers.
Collapse
Affiliation(s)
- Kemal Uğur Tüfekci
- Department of Neuroscience, Institute of Health Science, University of Dokuz Eylul, Izmir, Turkey
| | | | | | | |
Collapse
|
44
|
Donadelli M, Palmieri M. Roles for microRNA 23b in regulating autophagy and development of pancreatic adenocarcinoma. Gastroenterology 2013; 145:936-8. [PMID: 24070722 DOI: 10.1053/j.gastro.2013.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Massimo Donadelli
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| | | |
Collapse
|
45
|
Li M, Li J, Liu L, Li W, Yang Y, Yuan J. MicroRNA in Human Glioma. Cancers (Basel) 2013; 5:1306-31. [PMID: 24202447 PMCID: PMC3875941 DOI: 10.3390/cancers5041306] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023] Open
Abstract
Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.
Collapse
Affiliation(s)
- Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-20-87332748; Fax: +86-20-87331209
| | - Jun Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Liu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Yang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080, China; E-Mails: (J.L.); (L.L.); (W.L.); (Y.Y.); (J.Y.)
- Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080, China
| |
Collapse
|
46
|
Jiang J, Yang J, Wang Z, Wu G, Liu F. TFAM is directly regulated by miR-23b in glioma. Oncol Rep 2013; 30:2105-10. [PMID: 24002170 DOI: 10.3892/or.2013.2712] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM), a high-mobility group (HMG) protein, plays a central role in mitochondrial DNA (mtDNA) replication, transcription and inheritance. It has been shown that TFAM is associated with tumorigenesis. However, little is known regarding the posttranscriptional regulation of TFAM in glioma. In the present study, we found that the protein levels of TFAM were gradually increased, while the expression of miRNA-23b was gradually downregulated with the malignancy of glioma. Luciferase assay data demonstrated that miRNA-23b directly regulated TFAM. Furthermore, forced overexpression of miRNA-23b in U251 cells markedly inhibited the proliferation, cell cycle progression, migration and colony formation, while overexpression of TFAM significantly enhanced these biological processes. We further examined the related molecular mechanism, and found that the activity of the PI3K/Akt signaling pathway, critical for cell proliferation and migration, was suppressed in miRNA-23b-overexpressing U251 cells but was upregulated in TFAM-overexpressing cells. In addition, the expression levels of invasion-related MMP2 and MMP9 were decreased in miRNA-23b-overexpressing U251 cells but were increased in TFAM-overexpressing cells. Taken together, the present study provides a new regulatory mechanism as well as a promising therapy target for glioma.
Collapse
Affiliation(s)
- Jiaode Jiang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | | | | | | | | |
Collapse
|