1
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Sueksakit K, Thongboonkerd V. Protective effects of finasteride against testosterone-induced calcium oxalate crystallization and crystal-cell adhesion. J Biol Inorg Chem 2019; 24:973-983. [DOI: 10.1007/s00775-019-01692-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
|
3
|
Zhang C, Fan SJ, Sun AB, Liu ZZ, Liu L. Prenatal nicotine exposure induces depression‑like behavior in adolescent female rats via modulating neurosteroid in the hippocampus. Mol Med Rep 2019; 19:4185-4194. [PMID: 30942466 PMCID: PMC6471439 DOI: 10.3892/mmr.2019.10105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Prenatal nicotine exposure (PNE) is closely related to depression in offspring. However, the underlying mechanism is still unclear. We hypothesized that neurosteroid in the hippocampus may mediate PNE-induced depression-like behaviors. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice daily from gestational day (GD) 9 to 20. In adolescent offspring, PNE significantly increased immobility time and decreased the sucrose preference in female rats. The numbers of hippocampal neurons declined in the CA3 and DG regions. Steroidogenic acute regulatory protein (StAR) expression was suppressed in female rats. In fetal offspring, the neuronal numbers of CA3 regions in PNE female fetal hippocampal were significantly decreased, accompanied by the enhanced content of corticosterone and StAR expression. These data indicated that PNE induced depression-like behavior in adolescent female rats via the regulation of neurosteroid levels in the hippocampus.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Si-Jing Fan
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - An-Bang Sun
- Laboratory of Neuronal and Brain Disease Modulation, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhen-Zhen Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
4
|
Chen BH, Ahn JH, Park JH, Song M, Kim H, Lee TK, Lee JC, Kim YM, Hwang IK, Kim DW, Lee CH, Yan BC, Kang IJ, Won MH. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem Biol Interact 2018; 286:71-77. [DOI: 10.1016/j.cbi.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
|
5
|
Tian J, Luo Y, Chen W, Yang S, Wang H, Cui J, Lu Z, Lin Y, Bi Y. MeHg Suppressed Neuronal Potency of Hippocampal NSCs Contributing to the Puberal Spatial Memory Deficits. Biol Trace Elem Res 2016; 172:424-436. [PMID: 26743863 DOI: 10.1007/s12011-015-0609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
Hippocampal neurogenesis-related structural damage, particularly that leading to defective adult cognitive function, is considered an important risk factor for neurodegenerative and psychiatric diseases. Normal differentiation of neurons and glial cells during development is crucial in neurogenesis, which is particularly sensitive to the environmental toxicant methylmercury (MeHg). However, the exact effects of MeHg on hippocampal neural stem cell (hNSC) differentiation during puberty remain unknown. This study investigates whether MeHg exposure induces changes in hippocampal neurogenesis and whether these changes underlie cognitive defects in puberty. A rat model of methylmercury chloride (MeHgCl) exposure (0.4 mg/kg/day, PND 5-PND 33, 28 days) was established, and the Morris water maze was used to assess cognitive function. Primary hNSCs from hippocampal tissues of E16-day Sprague-Dawley rats were purified, identified, and cloned. hNSC proliferation and differentiation and the growth and morphology of newly generated neurons were observed by MTT and immunofluorescence assays. MeHg exposure induced defects in spatial learning and memory accompanied by a decrease in number of doublecortin (DCX)-positive cells in the dentate gyrus (DG). DCX is a surrogate marker for newly generated neurons. Proliferation and differentiation of hNSCs significantly decreased in the MeHg-treated groups. MeHg attenuated microtubule-associated protein-2 (MAP-2) expression in neurons and enhanced the glial fibrillary acidic protein (GFAP)-positive cell differentiation of hNSCs, thereby inducing degenerative changes in a dose-dependent manner. Moreover, MeHg induced deficits in hippocampus-dependent spatial learning and memory during adolescence as a consequence of decreased generation of DG neurons. Our findings suggested that MeHg exposure could be a potential risk factor for psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianying Tian
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Basic Medical School, Ningxia Medical University, 1160 Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China.
| | - Yougen Luo
- The Research Center of Neurodegenerative Diseases and Aging, Medical College of Jinggangshan University, Ji'an, Jiangxi, 343000, China
| | - Weiwei Chen
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Shengsen Yang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Hao Wang
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Jing Cui
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Zhiyan Lu
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yuanye Lin
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, Hubei, 430071, China.
| |
Collapse
|
6
|
In vitro evidence of the promoting effect of testosterone in kidney stone disease: A proteomics approach and functional validation. J Proteomics 2016; 144:11-22. [PMID: 27260493 DOI: 10.1016/j.jprot.2016.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Incidence of kidney stone disease in males is 2- to 4-fold greater than in females. This study aimed to determine effects of testosterone on kidney stone disease using a proteomics approach. MDCK renal tubular cells were treated with or without 20nM testosterone for 7days. Cellular proteins were extracted, resolved by 2-DE, and stained with Deep Purple fluorescence dye (n=5 gels derived from 5 independent samples/group). Spot matching, quantitative intensity analysis, and statistics revealed significant changes in levels of nine protein spots after testosterone treatment. These proteins were then identified by nanoLC-ESI-Qq-TOF MS/MS. Global protein network analysis using STRING software revealed α-enolase as the central node of protein-protein interactions. The increased level of α-enolase was then confirmed by Western blotting analysis, whereas immunofluorescence study revealed the increased α-enolase on cell surface and intracellularly. Functional analysis confirmed the potential role of the increased α-enolase in enhanced calcium oxalate monohydrate (COM) crystal-cell adhesion induced by testosterone. Finally, neutralization of surface α-enolase using anti-α-enolase antibody successfully reduced the enhanced COM crystal-cell adhesion to the basal level. Our data provided in vitro evidence of promoting effect of testosterone on kidney stone disease via enhanced COM crystal-cell adhesion by the increased surface α-enolase. BIOLOGICAL SIGNIFICANCE The incidence of kidney stone disease in male is 2- to 4-fold greater than in female. One of the possible factors of the male preference is the higher testosterone hormone level. However, precise molecular mechanisms that testosterone plays in kidney stone disease remained unclear. Our present study is the first exploratory investigation on such aspect using a proteomics approach. Our data also provide a novel mechanistic aspect of how testosterone can impact the risk of kidney stone formation (i.e. the discovery that testosterone increases alpha-enolase expression on the surface of renal tubular cells that is responsible, at least in part, for crystal-cell adhesion).
Collapse
|
7
|
de Rezende Corrêa G, Soares VHP, de Araújo-Martins L, Dos Santos AA, Giestal-de-Araujo E. Ouabain and BDNF Crosstalk on Ganglion Cell Survival in Mixed Retinal Cell Cultures. Cell Mol Neurobiol 2015; 35:651-60. [PMID: 25651946 DOI: 10.1007/s10571-015-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known and well-studied neurotrophin. Most biological effects of BDNF are mediated by the activation of TrkB receptors. This neurotrophin regulates several neuronal functions as cell proliferation, viability, and differentiation. Ouabain is a steroid that binds to the Na(+)/K(+) ATPase, inducing the activation of several intracellular signaling pathways. Previous data from our group described that ouabain treatment increases retinal ganglion cells survival (RGC). The aim of the present study was to evaluate, if this cardiac glycoside can have a synergistic effect with BDNF, the classical trophic factor for retinal ganglion cells, as well as investigate the intracellular signaling pathways involved. Our work demonstrated that the activation of Src, PLC, and PKCδ participates in the signaling cascade mediated by 50 ng/mL BDNF, since their selective inhibitors completely blocked the trophic effect of BDNF. We also demonstrated a synergistic effect on RGC survival when we concomitantly used ouabain (0.75 nM) and BDNF (10 ng/mL). Moreover, the signaling pathways involved in this synergistic effect include Src, PLC, PKCδ, and JNK. Our results suggest that the synergism between ouabain and BDNF occurs through the activation of the Src pathway, JNK, PLC, and PKCδ.
Collapse
Affiliation(s)
- Gustavo de Rezende Corrêa
- Departamento de Neurobiologia, Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro, CEP 24020-140, Brazil,
| | | | | | | | | |
Collapse
|
8
|
Allen KM, Purves-Tyson TD, Fung SJ, Shannon Weickert C. The effect of adolescent testosterone on hippocampal BDNF and TrkB mRNA expression: relationship with cell proliferation. BMC Neurosci 2015; 16:4. [PMID: 25886766 PMCID: PMC4367905 DOI: 10.1186/s12868-015-0142-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/05/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Testosterone attenuates postnatal hippocampal neurogenesis in adolescent male rhesus macaques through altering neuronal survival. While brain-derived neurotropic factor (BDNF)/ tyrosine kinase receptor B (TrkB) are critical in regulating neuronal survival, it is not known if the molecular mechanism underlying testosterone's action on postnatal neurogenesis involves changes in BDNF/TrkB levels. First, (1) we sought to localize the site of synthesis of the full length and truncated TrkB receptor in the neurogenic regions of the adolescent rhesus macaque hippocampus. Next, (2) we asked if gonadectomy or sex hormone replacement altered hippocampal BDNF and TrkB expression level in mammalian hippocampus (rhesus macaque and Sprague Dawley rat), and (3) if the relationship between BDNF/TrkB expression was altered depending on the sex steroid environment. RESULTS We find that truncated TrkB mRNA+ cells are highly abundant in the proliferative subgranular zone (SGZ) of the primate hippocampus; in addition, there are scant and scattered full length TrkB mRNA+ cells in this region. Gonadectomy or sex steroid replacement did not alter BDNF or TrkB mRNA levels in young adult male rat or rhesus macaque hippocampus. In the monkey and rat, we find a positive correlation with cell proliferation and TrkB-TK+ mRNA expression, and this positive relationship was found only when sex steroids were present. CONCLUSIONS We suggest that testosterone does not down-regulate neurogenesis at adolescence via overall changes in BDNF or TrkB expression. However, BDNF/TrkB mRNA appears to have a greater link to cell proliferation in the presence of circulating testosterone.
Collapse
Affiliation(s)
- Katherine M Allen
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - Samantha J Fung
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia. .,Schizophrenia Research Laboratory, Neuroscience Research Australia, Barker Street, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
9
|
Environmental Health Factors and Sexually Dimorphic Differences in Behavioral Disruptions. Curr Environ Health Rep 2014; 1:287-301. [PMID: 25705580 DOI: 10.1007/s40572-014-0027-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mounting evidence suggests that environmental factors-in particular, those that we are exposed to during perinatal life-can dramatically shape the organism's risk for later diseases, including neurobehavioral disorders. However, depending on the environmental insult, one sex may demonstrate greater vulnerability than the other sex. Herein, we focus on two well-defined extrinsic environmental factors that lead to sexually dimorphic behavioral differences in animal models and linkage in human epidemiological studies. These include maternal or psychosocial stress (such as social stress) and exposure to endocrine-disrupting compounds (such as one of the most prevalent, bisphenol A [BPA]). In general, the evidence suggests that early environmental exposures, such as BPA and stress, lead to more pronounced behavioral deficits in males than in females, whereas female neurobehavioral patterns are more vulnerable to later in life stress. These findings highlight the importance of considering sex differences and developmental timing when examining the effects of environmental factors on later neurobehavioral outcomes.
Collapse
|