1
|
Nascimento GC, Vivanco-Estela AN, Ferrié L, Figadere B, Raisman-Vozari R, Michel PP, Del Bel E. Anti-nociceptive effects of non-antibiotic derivatives of demeclocycline and doxycycline against formalin-induced pain stimulation. Eur J Pharmacol 2024; 984:177054. [PMID: 39393668 DOI: 10.1016/j.ejphar.2024.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
In previous studies, some tetracycline (TC) antibiotics showed potential as analgesic. We investigated here the analgesic activity of new non-antibiotic TC derivatives using the formalin-induced nociceptive pain model in adult C57BL/6 mice. Specifically, we tested the effects of i.p. injections of DDMC (5, 10, 20 mg kg-1) and DDOX (10, 20, 40 mg kg-1), which are non-antibiotic derivatives of demeclocycline and doxycycline, respectively. Repeated treatments with DDMC remarkably reduced nociceptive pain in both phases of the test, at 10 mg kg-1 its efficacy was comparable to that of 10 mg kg-1 of morphine. DDOX was also effective in this paradigm but intrinsically less potent than DDMC, exerting analgesic effects between 20 and 40 mg kg-1. Interestingly, a single injection of DDMC (10 mg kg-1) was sufficient to produce a robust anti-nociceptive effect similar to that of morphine. A single injection of DDOX (40 mg kg-1) also produced anti-nociceptive effects but only in the second phase of the test. Noticeably, male mice exhibited a better analgesic response to DDMC (10 mg kg-1) than females. A single injection of DDMC (10 mg kg-1) and morphine but not of DDOX (40 mg kg-1), powerfully inhibited formalin-induced spinal cord c-Fos expression whereas both TC derivatives restrained the activation of Iba-1-immunoreactive cells, indicating a potential indirect effect on inflamed microglial cells. In summary, the non-antibiotic TCs, DDMC and DDOX, demonstrated notable analgesic efficacy against formalin-induced pain, suggesting their potential as alternatives for analgesic treatment.
Collapse
Affiliation(s)
| | | | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
3
|
Khajah MA, Hawai S, Barakat A, Albaloushi A, Alkharji M, Masocha W. Minocycline synergizes with corticosteroids in reducing colitis severity in mice via the modulation of pro-inflammatory molecules. Front Pharmacol 2023; 14:1252174. [PMID: 38034999 PMCID: PMC10687282 DOI: 10.3389/fphar.2023.1252174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background: A few studies have highlighted the anti-inflammatory properties of minocycline in reducing colitis severity in mice, but its molecular mechanism is not fully understood. The aim of this study was to determine the anti-inflammatory properties of minocycline and the expression/activity profiles of molecules involved in pro-inflammatory signaling cascades, cytokines, and molecules involved in the apoptotic machinery. The synergistic effect between minocycline and corticosteroids was also evaluated. Methods: The effects of various treatment approaches were determined in mice using the dextran sulfate sodium (DSS) colitis model at gross and microscopic levels. The expression/activity profiles of various pro- or anti-inflammatory molecules were determined using Western blotting and polymerase chain reaction (PCR). Results: Minocycline treatment significantly reduced colitis severity using prophylactic and treatment approaches and produced a synergistic effect with budesonide and methylprednisolone in reducing the active state of colitis. This was mediated in part through reduced colonic expression/activity of pro-inflammatory molecules, cytokines, proteins involved in the apoptotic machinery, and increased expression of the anti-inflammatory cytokine IL-10. Conclusion: Minocycline synergizes with corticosteroids to reduce colitis severity, which could reduce their dose-dependent side effects and treatment cost. The reduction in colitis severity was achieved by modulating the expression/activity profiles of various pro- and anti-inflammatory signaling molecules, cytokines, and molecules involved in the apoptotic machinery.
Collapse
|
4
|
Shayan M, Mehri S, Razavi BM, Hosseinzadeh H. Minocycline Protects PC12 Cells Against Cadmium-Induced Neurotoxicity by Modulating Apoptosis. Biol Trace Elem Res 2023; 201:1946-1954. [PMID: 35661325 DOI: 10.1007/s12011-022-03305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
Abstract
Cadmium (Cd) is a well-known heavy metal and a neurotoxic agent. Minocycline (Mino) is an anti-microbial agent with a lipophilic structure that crosses the blood-brain barrier and enters the cerebral tissue. In recent studies, Mino has been introduced as an antioxidant and anti-apoptotic chemical compound, and therefore, it was examined as a protective candidate against Cd-induced neurotoxicity. In this study, PC12 cells were exposed to Cd alone, or after being pre-treated with Mino. Initially, the cell viability and oxidative stress were analyzed using the MTT assay and fluorimetry, respectively. Then, Cd-induced apoptosis and Mino anti-apoptotic effect were evaluated in both intrinsic and extrinsic pathways using western blot analysis. Exposing PC12 cells to Cd for 24 h decreased cell viability and increased production of reactive oxygen species in comparison with the control group. Cd (35 μM) also elevated the level of caspase-8, Bax/Bcl-2, and caspase-3 proteins in the cells. Mino pre-treatment for 2 h (100 nM) increased the number of viable cells and decreased the production of reactive oxygen species, and the level of all apoptotic markers in comparison to Cd-treated cells. Considering all the evidence, it appears that Mino holds promising antioxidant and anti-apoptotic activity and can protect cells against Cd-induced oxidative stress and prevent apoptotic cell death.
Collapse
Affiliation(s)
- Mersedeh Shayan
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Zhan MX, Tang L, Lu YF, Wu HH, Guo ZB, Shi ZM, Yang CL, Zou YQ, Yang F, Chen GZ. Ulinastatin Exhibits Antinociception in Rat Models of Acute Somatic and Visceral Pain Through Inhibiting the Local and Central Inflammation. J Pain Res 2021; 14:1201-1214. [PMID: 33976570 PMCID: PMC8106509 DOI: 10.2147/jpr.s303595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Ulinastatin, a broad-spectrum serine protease inhibitor, has been widely used to treat various diseases clinically. However, so far, the antinociceptive effect of ulinastatin remains less studied experimentally and the underlying mechanisms of ulinastatin for pain relief remain unclear. This study aimed to find evidence of the analgesic effect of ulinastatin on acute somatic and visceral pain. Methods The analgesic effect of ulinastatin on acute somatic and visceral pain was evaluated by using formalin and acetic acid-induced writhing test. The analgesic mechanism of ulinastatin was verified by detecting the peripheral inflammatory cell infiltration and spinal glial activation with hematoxylin-eosin (H&E) and immunohistochemistry staining. Results We found that both of intraperitoneal (i.p.) pre-administration and post-administration of ulinastatin could reduce the total number of flinching and the licking duration following intraplantar formalin injection in a dose-related manner. However, the inhibitory effect of ulinastatin existed only in the second phase (Phase 2) of formalin-induced spontaneous pain response, with no effect in the first phase (Phase 1). The formalin-induced edema and ulcer were also improved by i.p. administration of ulinastatin. Moreover, i.p. administration of ulinastatin was also able to delay the occurrence of acetic acid-induced writhing and reduced the total number of writhes dose-dependently. We further demonstrated that ulinastatin significantly decreased the local inflammatory cell infiltration in injured paw and peritoneum tissue under formalin and acetic acid test separately. The microglial and astrocytic activation in the spinal dorsal horn induced by intraplantar formalin and i.p. acetic acid injection were also dramatically inhibited by i.p. administration of ulinastatin. Conclusion Our results for the first time provided a new line of evidence showing that ulinastatin could attenuate acute somatic and visceral pain by inhibiting the peripheral and spinal inflammatory reaction.
Collapse
Affiliation(s)
- Mei-Xiang Zhan
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yun-Fei Lu
- Department of Anesthesiology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Huang-Hui Wu
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhi-Bin Guo
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Chen-Long Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China.,Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, Clinical Medical College, (900 Hospital of the Joint Logistic Support Force), Fujian Medical University, Fuzhou, Fujian, 350025, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, People's Republic of China
| |
Collapse
|
7
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
9
|
Dunn JS, Nagi SS, Mahns DA. Minocycline reduces experimental muscle hyperalgesia induced by repeated nerve growth factor injections in humans: A placebo‐controlled double‐blind drug‐crossover study. Eur J Pain 2020; 24:1138-1150. [DOI: 10.1002/ejp.1558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/28/2020] [Accepted: 03/11/2020] [Indexed: 11/09/2022]
Affiliation(s)
- James S. Dunn
- School of Medicine Western Sydney University Penrith NSW Australia
| | - Saad S. Nagi
- School of Medicine Western Sydney University Penrith NSW Australia
- Department of Biomedical and Clinical Sciences Center for Social and Affective Neuroscience Linköping University Linköping Sweden
| | - David A. Mahns
- School of Medicine Western Sydney University Penrith NSW Australia
| |
Collapse
|
10
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, Wu W, Ye DW. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134:305-310. [PMID: 30042091 DOI: 10.1016/j.phrs.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Chen G, Luo X, Qadri MY, Berta T, Ji RR. Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes. Neurosci Bull 2017; 34:98-108. [PMID: 28585113 DOI: 10.1007/s12264-017-0145-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that spinal microglia regulate pathological pain in males. In this study, we investigated the effects of several microglial and astroglial modulators on inflammatory and neuropathic pain following intrathecal injection in male and female mice. These modulators were the microglial inhibitors minocycline and ZVEID (a caspase-6 inhibitor) and the astroglial inhibitors L-α-aminoadipate (L-AA, an astroglial toxin) and carbenoxolone (a connexin 43 inhibitor), as well as U0126 (an ERK kinase inhibitor) and D-JNKI-1 (a c-Jun N-terminal kinase inhibitor). We found that spinal administration of minocycline or ZVEID, or Caspase6 deletion, reduced formalin-induced inflammatory and nerve injury-induced neuropathic pain primarily in male mice. In contrast, intrathecal L-AA reduced neuropathic pain but not inflammatory pain in both sexes. Intrathecal U0126 and D-JNKI-1 reduced neuropathic pain in both sexes. Nerve injury caused spinal upregulation of the astroglial markers GFAP and Connexin 43 in both sexes. Collectively, our data confirmed male-dominant microglial signaling but also revealed sex-independent astroglial signaling in the spinal cord in inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Gang Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xin Luo
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Yawar Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.,Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
12
|
Bergeson SE, Blanton H, Martinez JM, Curtis DC, Sherfey C, Seegmiller B, Marquardt PC, Groot JA, Allison CL, Bezboruah C, Guindon J. Binge Ethanol Consumption Increases Inflammatory Pain Responses and Mechanical and Cold Sensitivity: Tigecycline Treatment Efficacy Shows Sex Differences. Alcohol Clin Exp Res 2016; 40:2506-2515. [PMID: 27862022 PMCID: PMC5133157 DOI: 10.1111/acer.13252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
Background Physicians have long reported that patients with chronic pain show higher tendencies for alcohol use disorder (AUD), and AUD patients appear to have higher pain sensitivities. The goal of this study was to test 2 hypotheses: (i) binge alcohol consumption increases inflammatory pain and mechanical and cold sensitivities; and (ii) tigecycline is an effective treatment for alcohol‐mediated‐increased pain behaviors and sensitivities. Both female and male mice were used to test the additional hypothesis that important sex differences in the ethanol (EtOH)‐related traits would be seen. Methods “Drinking in the Dark” (DID) alcohol consuming and nondrinking control, female and male, adult C57BL/6J mice were evaluated for inflammatory pain behaviors and for the presence of mechanical and cold sensitivities. Inflammatory pain was produced by intraplantar injection of formalin (10 μl, 2.5% in saline). For cold sensation, a 20 μl acetone drop was used. Mechanical withdrawal threshold was measured by an electronic von Frey anesthesiometer. Efficacy of tigecycline (80 mg/kg i.p.) to reduce DID‐related pain responses and sensitivity was tested. Results DID EtOH consumption increased inflammatory pain behavior, while it also produced sustained mechanical and cold sensitivities in both females and males. Tigecycline produced antinociceptive effects in males; a pro‐nociceptive effect was seen in females in the formalin test. Likewise, the drug reduced both mechanical and cold sensitivities in males, but females showed an increase in sensitivity in both tests. Conclusions Our results demonstrated that binge drinking increases pain, touch, and thermal sensations in both sexes. In addition, we have identified sex‐specific effects of tigecycline on inflammatory pain, as well as mechanical and cold sensitivities. The development of tigecycline as an AUD pharmacotherapy may need consideration of its pro‐nociceptive action in females. Further studies are needed to investigate the mechanism underlying the sex‐specific differences in nociception.
Collapse
Affiliation(s)
- Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Henry Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Caitlyn Sherfey
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Brandon Seegmiller
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Christian Bezboruah
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
13
|
Sorge RE, Totsch SK. Sex Differences in Pain. J Neurosci Res 2016; 95:1271-1281. [PMID: 27452349 DOI: 10.1002/jnr.23841] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/23/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
Females greatly outnumber males as sufferers of chronic pain. Although social and psychological factors certainly play a role in the differences in prevalence and incidence, biological differences in the functioning of the immune system likely underlie these observed effects. This Review examines the current literature on biological sex differences in the functioning of the innate and adaptive immune systems as they relate to pain experience. With rodent models, we and others have observed that male mice utilize microglia in the spinal cord to mediate pain, whereas females preferentially use T cells in a similar manner. The difference can be traced to differences in cell populations, differences in suppression by hormones, and disparate cellular responses in males and females. These sex differences also translate into human cellular responses and may be the mechanism by which the disproportionate chronic pain experience is based. Recognition of the evidence underlying sex differences in pain will guide development of treatments and provide better options for patients that are tailored to their physiology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stacie K Totsch
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Abstract
The number of approved new molecular entity drugs has been decreasing as the pharmaceutical company investment in research and development is increasing. As we face this painful crisis, called an innovation gap, there is increasing awareness that development of new uses of existing drugs may be a powerful tool to help overcome this obstacle because it takes too long, costs too much and can be risky to release drugs developed de novo. Consequently, drug repositioning is emerging in different therapeutic areas, including the pain research area. Worldwide, pain is the main reason for seeking healthcare, and pain relief represents an unmet global clinical need. Therefore, development of analgesics with better efficacy, safety and cost effectiveness is of paramount importance. Despite the remarkable advancement in research on cellular and molecular mechanisms underlying pain pathophysiology over the past three decades, target-based therapeutic opportunities have not been pursued to the same extent. Phenotypic screening remains a more powerful tool for drug development than target-based screening so far. It sounds somewhat heretical, but some multi-action drugs, rather than very selective ones, have been developed intentionally. In the present review, we first critically discuss the utility of drug repositioning for analgesic drug development and then show examples of 'old' drugs that have been successfully repositioned or that are under investigation for their analgesic actions. We conclude that drug repositioning should be more strongly encouraged to help build a bridge between basic research and pain relief worldwide.
Collapse
Affiliation(s)
- Leandro Francisco Silva Bastos
- Laboratório de Imunofarmacologia, sala O4-202, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, CEP 31.270-901, Brazil,
| | | |
Collapse
|