1
|
Tsukano H, Horie M, Ohga S, Takahashi K, Kubota Y, Hishida R, Takebayashi H, Shibuki K. Reconsidering Tonotopic Maps in the Auditory Cortex and Lemniscal Auditory Thalamus in Mice. Front Neural Circuits 2017; 11:14. [PMID: 28293178 PMCID: PMC5330090 DOI: 10.3389/fncir.2017.00014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The auditory thalamus and auditory cortex (AC) are pivotal structures in the central auditory system. However, the thalamocortical mechanisms of processing sounds are largely unknown. Investigation of this process benefits greatly from the use of mice because the mouse is a powerful animal model in which various experimental techniques, especially genetic tools, can be applied. However, the use of mice has been limited in auditory research, and thus even basic anatomical knowledge of the mouse central auditory system has not been sufficiently collected. Recently, optical imaging combined with morphological analyses has enabled the elucidation of detailed anatomical properties of the mouse auditory system. These techniques have uncovered fine AC maps with multiple frequency-organized regions, each of which receives point-to-point thalamocortical projections from different origins inside the lemniscal auditory thalamus, the ventral division of the medial geniculate body (MGv). This precise anatomy now provides a platform for physiological research. In this mini review article, we summarize these recent achievements that will facilitate physiological investigations in the mouse auditory system.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Shinpei Ohga
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Kuniyuki Takahashi
- Division of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Yamato Kubota
- Division of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University Niigata, Japan
| |
Collapse
|
2
|
Baba H, Tsukano H, Hishida R, Takahashi K, Horii A, Takahashi S, Shibuki K. Auditory cortical field coding long-lasting tonal offsets in mice. Sci Rep 2016; 6:34421. [PMID: 27687766 PMCID: PMC5043382 DOI: 10.1038/srep34421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Although temporal information processing is important in auditory perception, the mechanisms for coding tonal offsets are unknown. We investigated cortical responses elicited at the offset of tonal stimuli using flavoprotein fluorescence imaging in mice. Off-responses were clearly observed at the offset of tonal stimuli lasting for 7 s, but not after stimuli lasting for 1 s. Off-responses to the short stimuli appeared in a similar cortical region, when conditioning tonal stimuli lasting for 5–20 s preceded the stimuli. MK-801, an inhibitor of NMDA receptors, suppressed the two types of off-responses, suggesting that disinhibition produced by NMDA receptor-dependent synaptic depression might be involved in the off-responses. The peak off-responses were localized in a small region adjacent to the primary auditory cortex, and no frequency-dependent shift of the response peaks was found. Frequency matching of preceding tonal stimuli with short test stimuli was not required for inducing off-responses to short stimuli. Two-photon calcium imaging demonstrated significantly larger neuronal off-responses to stimuli lasting for 7 s in this field, compared with off-responses to stimuli lasting for 1 s. The present results indicate the presence of an auditory cortical field responding to long-lasting tonal offsets, possibly for temporal information processing.
Collapse
Affiliation(s)
- Hironori Baba
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan.,Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan
| | - Arata Horii
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan
| | - Sugata Takahashi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| |
Collapse
|
3
|
Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain. Sci Rep 2016; 6:22315. [PMID: 26924462 PMCID: PMC4770424 DOI: 10.1038/srep22315] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/12/2016] [Indexed: 11/08/2022] Open
Abstract
Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex.
Collapse
|
4
|
Identification of the somatosensory parietal ventral area and overlap of the somatosensory and auditory cortices in mice. Neurosci Res 2015; 99:55-61. [DOI: 10.1016/j.neures.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022]
|
5
|
Horie M, Tsukano H, Takebayashi H, Shibuki K. Specific distribution of non-phosphorylated neurofilaments characterizing each subfield in the mouse auditory cortex. Neurosci Lett 2015; 606:182-7. [PMID: 26342533 DOI: 10.1016/j.neulet.2015.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Recent imaging studies revealed the presence of functional subfields in the mouse auditory cortex. However, little is known regarding the morphological basis underlying the functional differentiation. Distribution of particular molecules is the key information that may be applicable for identifying auditory subfields in the post-mortem brain. Immunoreactive patterns using SMI-32 monoclonal antibody against non-phosphorylated neurofilament (NNF) have already been used to identify or parcellate various brain regions in various animals. In the present study, we investigated whether distribution of NNF is a reliable marker for identifying functional subfields in the mouse auditory cortex, and found that each auditory subfield has region-specific cellular and laminar patterns of immunoreactivity for NNF.
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences.
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Japan
| |
Collapse
|
6
|
Tsukano H, Horie M, Bo T, Uchimura A, Hishida R, Kudoh M, Takahashi K, Takebayashi H, Shibuki K. Delineation of a frequency-organized region isolated from the mouse primary auditory cortex. J Neurophysiol 2015; 113:2900-20. [PMID: 25695649 PMCID: PMC4416634 DOI: 10.1152/jn.00932.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/17/2015] [Indexed: 01/30/2023] Open
Abstract
The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice.
Collapse
Affiliation(s)
- Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan;
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Bo
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Arikuni Uchimura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaharu Kudoh
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Kuniyuki Takahashi
- Department of Otolaryngology, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|