1
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Baghdadi MB, Kim TH. The multiple roles of enteric glial cells in intestinal homeostasis and regeneration. Semin Cell Dev Biol 2023:S1084-9521(23)00005-8. [PMID: 36658046 DOI: 10.1016/j.semcdb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
The gastrointestinal tract is innervated by the enteric nervous system (ENS), a complex network of neurons and glial cells, also called the "second brain". Enteric glial cells, one of the major cell types in the ENS, are located throughout the entire gut wall. Accumulating evidence has demonstrated their critical requirement for gut physiology. Notably, recent studies have shown that enteric glial cells control new aspects of gut function such as regulation of intestinal stem cell behavior and immunity. In addition, the emergence of single-cell genomics technologies has revealed enteric glial cell heterogeneity and plasticity. In this review, we discuss established and emerging concepts regarding the roles of mammalian enteric glial cells and their heterogeneity in gut development, homeostasis, and regeneration.
Collapse
Affiliation(s)
- Meryem B Baghdadi
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
3
|
Shi CJ, Lian JJ, Zhang BW, Cha JX, Hua QH, Pi XP, Hou YJ, Xie X, Zhang R. TGFβR-1/ALK5 inhibitor RepSox induces enteric glia-to-neuron transition and influences gastrointestinal mobility in adult mice. Acta Pharmacol Sin 2023; 44:92-104. [PMID: 35794374 DOI: 10.1038/s41401-022-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Promoting adult neurogenesis in the enteric nervous system (ENS) may be a potential therapeutic approach to cure enteric neuropathies. Enteric glial cells (EGCs) are the most abundant glial cells in the ENS. Accumulating evidence suggests that EGCs can be a complementary source to supply new neurons during adult neurogenesis in the ENS. In the brain, astrocytes have been intensively studied for their neuronal conversion properties, and small molecules have been successfully used to induce the astrocyte-to-neuron transition. However, research on glia-to-neuron conversion in the ENS is still lacking. In this study, we used GFAP-Cre:Rosa-tdTomato mice to trace glia-to-neuron transdifferentiation in the ENS in vivo and in vitro. We showed that GFAP promoter-driven tdTomato exclusively labelled EGCs and was a suitable marker to trace EGCs and their progeny cells in the ENS of adult mice. Interestingly, we discovered that RepSox or other ALK5 inhibitors alone induced efficient transdifferentiation of EGCs into neurons in vitro. Knockdown of ALK5 further confirmed that the TGFβR-1/ALK5 signalling pathway played an essential role in the transition of EGCs to neurons. RepSox-induced neurons were Calbindin- and nNOS-positive and displayed typical neuronal electrophysiological properties. Finally, we showed that administration of RepSox (3, 10 mg· kg-1 ·d-1, i.g.) for 2 weeks significantly promoted the conversion of EGCs to neurons in the ENS and influenced gastrointestinal motility in adult mice. This study provides a method for efficiently converting adult mouse EGCs into neurons by small-molecule compounds, which might be a promising therapeutic strategy for gastrointestinal neuropathy.
Collapse
Affiliation(s)
- Chang-Jie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun-Jiang Lian
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo-Wen Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jia-Xue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiu-Hong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao-Ping Pi
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Jun Hou
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
5
|
Abstract
Glia, the non-neuronal cells of the nervous system, were long considered secondary cells only necessary for supporting the functions of their more important neuronal neighbors. Work by many groups over the past two decades has completely overturned this notion, revealing the myriad and vital functions of glia in nervous system development, plasticity, and health. The largest population of glia outside the brain is in the enteric nervous system, a division of the autonomic nervous system that constitutes a key node of the gut-brain axis. Here, we review the latest in the understanding of these enteric glia in mammals with a focus on their putative roles in human health and disease.
Collapse
Affiliation(s)
- Harry J. Rosenberg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 2021; 131:143777. [PMID: 34128471 PMCID: PMC8203445 DOI: 10.1172/jci143777] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.
Collapse
Affiliation(s)
- Marie Hanscom
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terez Shea-Donohue
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Hu NY, Chen YT, Wang Q, Jie W, Liu YS, You QL, Li ZL, Li XW, Reibel S, Pfrieger FW, Yang JM, Gao TM. Expression Patterns of Inducible Cre Recombinase Driven by Differential Astrocyte-Specific Promoters in Transgenic Mouse Lines. Neurosci Bull 2019; 36:530-544. [PMID: 31828740 DOI: 10.1007/s12264-019-00451-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are the most abundant cell type in the central nervous system (CNS). They provide trophic support for neurons, modulate synaptic transmission and plasticity, and contribute to neuronal dysfunction. Many transgenic mouse lines have been generated to obtain astrocyte-specific expression of inducible Cre recombinase for functional studies; however, the expression patterns of inducible Cre recombinase in these lines have not been systematically characterized. We generated a new astrocyte-specific Aldh1l1-CreERT2 knock-in mouse line and compared the expression pattern of Cre recombinase between this and five widely-used transgenic lines (hGfap-CreERT2 from The Jackson Laboratory and The Mutant Mouse Resource and Research Center, Glast-CreERT2, Cx30-CreERT2, and Fgfr3-iCreERT2) by crossing with Ai14 mice, which express tdTomato fluorescence following Cre-mediated recombination. In adult Aldh1l1-CreERT2:Ai14 transgenic mice, tdTomato was detected throughout the CNS, and five novel morphologically-defined types of astrocyte were described. Among the six evaluated lines, the specificity of Cre-mediated recombination was highest when driven by Aldh1l1 and lowest when driven by hGfap; in the latter mice, co-staining between tdTomato and NeuN was observed in the hippocampus and cortex. Notably, evident leakage was noted in Fgfr3-iCreERT2 mice, and the expression level of tdTomato was low in the thalamus when Cre recombinase expression was driven by Glast and in the capsular part of the central amygdaloid nucleus when driven by Cx30. Furthermore, tdTomato was clearly expressed in peripheral organs in four of the lines. Our results emphasize that the astrocyte-specific CreERT2 transgenic lines used in functional studies should be carefully selected.
Collapse
Affiliation(s)
- Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ya-Ting Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Si Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiang-Long You
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ze-Lin Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sophie Reibel
- Chronobiotron - UMS 3415, University of Strasbourg, 67084, Strasbourg, France
| | - Frank W Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084, Strasbourg, France
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Grundmann D, Loris E, Maas-Omlor S, Huang W, Scheller A, Kirchhoff F, Schäfer KH. Enteric Glia: S100, GFAP, and Beyond. Anat Rec (Hoboken) 2019; 302:1333-1344. [PMID: 30951262 DOI: 10.1002/ar.24128] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Since several years, the enteric nervous system (ENS) is getting more and more in the focus of gastrointestinal research. While the main interest was credited for years to the enteric neurons and their functional properties, less attention has been paid on the enteric glial cells (EGCs). Although the similarity of EGCs to central nervous system (CNS) astrocytes has been demonstrated a long time ago, EGCs were investigated in more detail only recently. Similar to the CNS, there is not "the" EGC, but also a broad range of diversity. Based on morphology and protein expression, such as glial fibrillary acidic protein (GFAP), S100, or Proteolipid-protein-1 (PLP1), several distinct glial types can be differentiated. Their heterogeneity in morphology, localization, and transcription as well as interaction with surrounding cells indicate versatile functional properties of these cells for gut function in health and disease. Although NG2 is found in a subset of CNS glial cells, it did not colocalize with the glial marker S100 or GFAP in the ENS. Instead, it in part colocalize with PDGFRα, as it does in the CNS, which do stain fibroblast-like cells in the gastrointestinal tract. Moreover, there seem to be species dependent differences. While GFAP is always found in the rodent ENS, this is completely different for the human gut. Only the compromised human ENS shows a significant amount of GFAP-positive glial cells. So, in general we can conclude that the EGC population is species specific and as complex as CNS glia. Anat Rec, 302:1333-1344, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Grundmann
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Eva Loris
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Silke Maas-Omlor
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
9
|
Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. eLife 2019; 8:42914. [PMID: 30747710 PMCID: PMC6391068 DOI: 10.7554/elife.42914] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.
Collapse
Affiliation(s)
- Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Boesmans W, Hao MM, Fung C, Li Z, Van den Haute C, Tack J, Pachnis V, Vanden Berghe P. Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia 2019; 67:1167-1178. [PMID: 30730592 PMCID: PMC6593736 DOI: 10.1002/glia.23596] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Marlene M Hao
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium.,Leuven Viral Vector Core, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Vassilis Pachnis
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Pochard C, Coquenlorge S, Freyssinet M, Naveilhan P, Bourreille A, Neunlist M, Rolli-Derkinderen M. The multiple faces of inflammatory enteric glial cells: is Crohn's disease a gliopathy? Am J Physiol Gastrointest Liver Physiol 2018. [PMID: 29517926 DOI: 10.1152/ajpgi.00016.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gone are the days when enteric glial cells (EGC) were considered merely satellites of enteric neurons. Like their brain counterpart astrocytes, EGC express an impressive number of receptors for neurotransmitters and intercellular messengers, thereby contributing to neuroprotection and to the regulation of neuronal activity. EGC also produce different soluble factors that regulate neighboring cells, among which are intestinal epithelial cells. A better understanding of EGC response to an inflammatory environment, often referred to as enteric glial reactivity, could help define the physiological role of EGC and the importance of this reactivity in maintaining gut functions. In chronic inflammatory disorders of the gut such as Crohn's disease (CD) and ulcerative colitis, EGC exhibit abnormal phenotypes, and their neighboring cells are dysfunctional; however, it remains unclear whether EGC are only passive bystanders or active players in the pathophysiology of both disorders. The aim of the present study is to review the physiological roles and properties of EGC, their response to inflammation, and their role in the regulation of the intestinal epithelial barrier and to discuss the emerging concept of CD as an enteric gliopathy.
Collapse
Affiliation(s)
- Camille Pochard
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| | - Sabrina Coquenlorge
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| | - Marie Freyssinet
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| | - Philippe Naveilhan
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| | - Arnaud Bourreille
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| | - Michel Neunlist
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| | - Malvyne Rolli-Derkinderen
- Inserm, UMR1235 TENS, Nantes , France.,Nantes University , Nantes , France.,Institut des Maladies de l'Appareil Digestif, IMAD, Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel-Dieu, Nantes , France
| |
Collapse
|
12
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Grubišić V, Verkhratsky A, Zorec R, Parpura V. Enteric glia regulate gut motility in health and disease. Brain Res Bull 2018; 136:109-117. [PMID: 28363846 PMCID: PMC5620110 DOI: 10.1016/j.brainresbull.2017.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
The enteric nervous system, often referred to as the second brain, is the largest assembly of neurons and glia outside the central nervous system. The enteric nervous system resides within the wall of the digestive tract and regulates local gut reflexes involved in gastrointestinal motility and fluid transport; these functions can be accomplished in the absence of the extrinsic innervation from the central nervous system. It is neurons and their circuitry within the enteric nervous system that govern the gut reflexes. However, it is becoming clear that enteric glial cells are also actively involved in this process through the bidirectional signaling with neurons and other cells in the gut wall. We synthesize the recently discovered modulatory roles of enteric gliotransmission in gut motility and provide our perspective for future lines of research.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; Neuroscience Program, Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA
| | - Alexei Verkhratsky
- The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology University of Ljubljana, Ljubljana, Slovenia; Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Zhu G, Liao X, Han C, Liu X, Yu L, Qin W, Lu S, Su H, Chen Z, Liu Z, Liang Y, Huang J, Yu T, Yang C, Huang K, Shang L, Ye X, Li L, Qin X, Xiao K, Peng M, Peng T. ALDH1L1 variant rs2276724 and mRNA expression predict post-operative clinical outcomes and are associated with TP53 expression in HBV-related hepatocellular carcinoma. Oncol Rep 2017; 38:1451-1463. [PMID: 28714006 PMCID: PMC5549030 DOI: 10.3892/or.2017.5822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Abstract
Aldehyde dehydrogenase 1 family member L1 (ALDH1L1) is downregulated in hepatocellular carcinoma (HCC) tumors, and its decreased expression is associated with the poor prognosis of HCC patients. We, therefore, evaluated the effect of single nucleotide polymorphisms (SNPs) of ALDH1L1, and its mRNA expression on the survival of hepatitis B virus (HBV)-related HCC patients and the association with tumor protein p53 (TP53) expression. ALDH1L1 SNPs in 415 HBV-related HCC patients were genotyped via direct sequencing. Expression profile chip datasets and survival information were obtained from GSE14520. The C allele (CT/CC) carriers of rs2276724 were significantly associated with a favorable prognosis [adjusted P=0.040; adjusted hazard ratio (HR)=0.725; 95% confidence interval (CI)=0.533–0.986]. Joint-effect analyses suggested that the CT/CC genotype of rs2276724 in TP53-negative patients was significantly associated with a decreased risk of death, compared to the TT genotype of rs2276724 in TP53-positive patients (adjusted P=0.037; adjusted HR=0.621; 95% CI=0.396–0.973). Furthermore, low expression of ALDH1L1 predicted a poor prognosis for the HBV-related HCC patients (adjusted P=0.04 for disease-free survival; adjusted P=0.001 for overall survival). Patients with high ALDH1L1 expression and low TP53 expression were significantly associated with a decreased risk of recurrence and death, and patients with a high TP53 expression were also significantly associated with a decreased risk of death in HBV-related HCC, compared with low ALDH1L1 and low TP53 expression. Our results suggest that ALDH1L1 may be a biomarker for predicting postoperative clinical outcomes. Moreover, ALDH1L1-rs2276724 and mRNA expression were associated with TP53 expression in HBV-related HCC patients.
Collapse
Affiliation(s)
- Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Sicong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhengtao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yu Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jianlu Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kaiyin Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Minhao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
15
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
16
|
Hao MM, Capoccia E, Cirillo C, Boesmans W, Vanden Berghe P. Arundic Acid Prevents Developmental Upregulation of S100B Expression and Inhibits Enteric Glial Development. Front Cell Neurosci 2017; 11:42. [PMID: 28280459 PMCID: PMC5322270 DOI: 10.3389/fncel.2017.00042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
S100B is expressed in various types of glial cells and is involved in regulating many aspects of their function. However, little is known about its role during nervous system development. In this study, we investigated the effect of inhibiting the onset of S100B synthesis in the development of the enteric nervous system, a network of neurons and glia located in the wall of the gut that is vital for control of gastrointestinal function. Intact gut explants were taken from embryonic day (E)13.5 mice, the day before the first immunohistochemical detection of S100B, and cultured in the presence of arundic acid, an inhibitor of S100B synthesis, for 48 h. The effects on Sox10-immunoreactive enteric neural crest progenitors and Hu-immunoreactive enteric neurons were then analyzed. Culture in arundic acid reduced the proportion of Sox10+ cells and decreased cell proliferation. There was no change in the density of Hu+ enteric neurons, however, a small population of cells exhibited atypical co-expression of both Sox10 and Hu, which was not observed in control cultures. Addition of exogenous S100B to the cultures did not change Sox10+ cell numbers. Overall, our data suggest that cell-intrinsic intracellular S100B is important for maintaining Sox10 and proliferation of the developing enteric glial lineage.
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, Translational Research in GastroIntestinal Disorders, KU Leuven Leuven, Belgium
| | - Elena Capoccia
- Laboratory for Enteric Neuroscience, Translational Research in GastroIntestinal Disorders, KU LeuvenLeuven, Belgium; Department of Physiology and Pharmacology, Sapienza University of RomeRome, Italy
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience, Translational Research in GastroIntestinal Disorders, KU Leuven Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience, Translational Research in GastroIntestinal Disorders, KU Leuven Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience, Translational Research in GastroIntestinal Disorders, KU Leuven Leuven, Belgium
| |
Collapse
|
17
|
Grubišić V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol 2017; 595:557-570. [PMID: 27106597 PMCID: PMC5233670 DOI: 10.1113/jp271021] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Glia (from Greek γλοία meaning 'glue') pertains to non-neuronal cells in the central (CNS) and peripheral nervous system (PNS) that nourish neurons and maintain homeostasis. In addition, glia are now increasingly appreciated as active regulators of numerous physiological processes initially considered exclusively under neuronal regulation. For instance, enteric glia, a collection of glial cells residing within the walls of the intestinal tract, regulate intestinal motility, a well-characterized reflex controlled by enteric neurons. Enteric glia also interact with various non-neuronal cell types in the gut wall such as enterocytes, enteroendocrine and immune cells and are therefore emerging as important local regulators of diverse gut functions. The intricate molecular mechanisms that govern glia-mediated regulation are beginning to be discovered, but much remains unknown about the functions of enteric glia in health and disease. Here we present a current view of the enteric glia and their regulatory roles in gastrointestinal (GI) (patho)physiology; from GI motility and epithelial barrier function to enteric neuroinflammation.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Neuroscience Program, Department of PhysiologyMichigan State University567 Wilson RoadEast LansingMI48824USA
| | - Brian D. Gulbransen
- Neuroscience Program, Department of PhysiologyMichigan State University567 Wilson RoadEast LansingMI48824USA
| |
Collapse
|
18
|
Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, Cuomo R, Christofi FL. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2016; 22:433-49. [PMID: 26689598 PMCID: PMC4718179 DOI: 10.1097/mib.0000000000000667] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 12/12/2022]
Abstract
The word "glia" is derived from the Greek word "γλoια," glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the "reactive glial phenotype" is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor-α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential.
Collapse
Affiliation(s)
| | - Fabio Turco
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, “Federico II” University of Naples, Naples, Italy; and
| | | | - Suren Soghomonyan
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
| | - Emmett Whitaker
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Rosario Cuomo
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, “Federico II” University of Naples, Naples, Italy; and
| | | |
Collapse
|
19
|
Enriquez-Algeciras M, Bhattacharya SK, Serra HM. Deimination level and peptidyl arginine deiminase 2 expression are elevated in astrocytes with increased incubation temperature. J Neurosci Res 2015; 93:1388-98. [PMID: 25801379 DOI: 10.1002/jnr.23587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
Astrocytes respond to environmental cues, including changes in temperatures. Increased deimination, observed in many progressive neurological diseases, is thought to be contributed by astrocytes. We determined the level of deimination and expression of peptidyl arginine deiminase 2 (PAD2) in isolated primary astrocytes in response to changes on either side (31°C and 41°C) of the optimal temperature (37°C). We investigated changes in the astrocytes by using a number of established markers and accounted for cell death with the CellTiter-Blue assay. We found increased expression of glial fibrillary acidic protein, ALDH1L1, and J1-31, resulting from increased incubation temperature and increased expression of TSP1, S100β, and AQP4, resulting from decreased incubation temperature vs. optimal temperature, suggesting activation of different biochemical pathways in astrocytes associated with different incubation temperatures. Mass spectrometric analyses support such trends. The PAD2 level was increased only as a result of increased incubation temperature with a commensurate increased level of deimination. Actin cytoskeleton and iso[4]LGE, a lipid peroxidase modification, also showed an increase with higher incubation temperature. Altogether, these results suggest that temperature, as an environmental cue, activates astrocytes in a different manner on either side of the optimal temperature and that increase in deimination is associated only with the higher temperature side of the spectrum.
Collapse
Affiliation(s)
- Mabel Enriquez-Algeciras
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida.,CIBICI, Department of Clinical Biochemistry, Faculty of Chemistry, National University of Córdoba, Córdoba, República Argentina
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Horacio M Serra
- CIBICI, Department of Clinical Biochemistry, Faculty of Chemistry, National University of Córdoba, Córdoba, República Argentina
| |
Collapse
|
20
|
Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 2014; 63:229-41. [PMID: 25161129 DOI: 10.1002/glia.22746] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/05/2014] [Indexed: 12/24/2022]
Abstract
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), TARGID, Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|