1
|
Zhang H, Gao L, Zhang W, Li K. Differentiation of rat bone marrow mesenchymal stem cells into neurons induced by bone morphogenetic protein 7 in vitro. Neurol Res 2022; 45:440-448. [PMID: 36542543 DOI: 10.1080/01616412.2022.2154487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Spinal cord injury (SCI) is caused by external direct or indirect factors with high disability rate, which may even endanger the life of patients. To explore the role of bone morphogenetic protein 7 (BMP-7) in the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into neurons in vitro. METHODS BMSCs were isolated and cultured by whole bone marrow adherence method. Adipogenic induction and osteogenic differentiation were used to test the multi⁃directional differentiation ability of BMSCs. RESULTS After 28 days of adipogenic induction, BMSCs showed lipid droplets in the cytoplasm. After osteogenic induction, there were opaque lumps of mineral nodules in BMSCs. There were also orange-red or red mineral nodules in the extracellular matrix. The BMSCs in the 75 ng/ml BMP-7 group were morphologically similar to the neurons. After induction with BMP-7 for 2 h, the NF200 mRNA expression was higher, mRNA expression levels of SYN1, MAP2 and GFAP were higher. Positive rate of immunofluorescence staining in the BMP-7 group was notably increased. The positive rate of NSE immunofluorescence staining in the BMP-7 group was higher. CONCLUSION BMP-7 can induce rat BMSCs to differentiate into neurons in vitro.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Orthopaedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Lei Gao
- Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Wen Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| | - Kuanxin Li
- Department of Orthopaedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Department of Orthopaedics, the Second Affiliated Hospital of Medical College, Shihezi University, Shihezi 832000, China
| |
Collapse
|
2
|
Miwa T, Wei FY, Tomizawa K. Cdk5 regulatory subunit-associated protein 1 knockout mice show hearing loss phenotypically similar to age-related hearing loss. Mol Brain 2021; 14:82. [PMID: 34001214 PMCID: PMC8130336 DOI: 10.1186/s13041-021-00791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Mitochondrial dysfunction is associated with aging and age-related hearing loss (AHL). However, the precise mechanisms underlying the pathophysiology of hearing loss remain unclear. Cdk5 regulatory subunit-associated protein 1 (CDK5RAP1) enables efficient intramitochondrial translation by catalyzing the deposition of 2-methylthio modifications on mitochondrial tRNAs. Here we investigated the effect of defective mitochondrial protein translation on hearing and AHL in a Cdk5rap1 deficiency C57BL/6 mouse model. Compared to control C57BL/6 mice, Cdk5rap1-knockout female mice displayed hearing loss phenotypically similar to AHL from an early age. The premature hearing loss in Cdk5rap1-knockout mice was associated with the degeneration of the spiral ligament and reduction of endocochlear potentials following the loss of auditory sensory cells. Furthermore, cultured primary mouse embryonic fibroblasts displayed early onset of cellular senescence associated with high oxidative stress and cell death. These results indicate that the CDK5RAP1 deficiency-induced defective mitochondrial translation might cause early hearing loss through the induction of cellular senescence and cochlear dysfunction in the inner ear. Our results suggest that the accumulation of dysfunctional mitochondria might promote AHL progression. Furthermore, our findings suggest that mitochondrial dysfunction and dysregulated mitochondrial tRNA modifications mechanistically cause AHL. Understanding the mechanisms underlying AHL will guide future clinical investigations and interventions in the attempt to mitigate the consequences of AHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308480, Japan.
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Aoba-ku, Sendai, Miyagi, 9808575, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1- Honjo, Chuo-ku, Kumamoto, 8608556, Japan
| |
Collapse
|
3
|
Miwa T. Protective Effects of N 1-Methylnicotinamide Against High-Fat Diet- and Age-Induced Hearing Loss via Moderate Overexpression of Sirtuin 1 Protein. Front Cell Neurosci 2021; 15:634868. [PMID: 33889076 PMCID: PMC8055820 DOI: 10.3389/fncel.2021.634868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common form of hearing loss and the predominant neurodegenerative disease associated with aging. Sirtuin 1 (SIRT1) is associated with the most complex physiological processes, including metabolism, cancer onset, and aging. SIRT1 protein levels are enhanced by the conversion of nicotinamide to N1-methylnicotinamide (MNAM), independent of its mRNA levels. Moreover, MNAM has implications in increased longevity achieved through its mitohormetic effects. Nicotinamide N-methyltransferase (Nnmt) is an enzyme involved in MNAM metabolism, and its level increases under caloric restriction (CR) conditions. The CR condition has implications in delaying ARHL onset. In this study, we aimed to determine the relationship between diet, hearing function, SIRT1 and SIRT3 expression levels in the inner ear, and cochlear morphology. Mice fed with a high-fat diet (HFD), HFD + 1% MNAM, and low-fat diet (LFD) were monitored for age-related auditory-evoked brainstem responses, and changes in cochlear histology, metabolism, and protein and mRNA expressions were analyzed. Our results revealed that the HFD- and aging-mediated downregulated expression of SIRT1 and SIRT3 promoted hearing loss that was obfuscated by MNAM supplementation-induced upregulated expression of cochlear SIRT1 and SIRT3. Thus, our results suggest that MNAM can be used as a therapeutic agent for preventing ARHL.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology and Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan.,Department of Otolaryngology and Head and Neck Surgery, Graduate of School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Lipid nanoparticles-encapsulated brain-derived neurotrophic factor mRNA delivered through the round window niche in the cochleae of guinea pigs. Exp Brain Res 2020; 239:425-433. [PMID: 33215262 DOI: 10.1007/s00221-020-05970-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023]
Abstract
The treatment of sensorineural hearing loss (SNHL) may be achieved via the application of a cochlear implant (CI) that allows the electrical stimulation of spiral ganglion neurons (SGNs). Nevertheless, the efficacy of CIs is limited by the degeneration of SGNs following SNHL. Although the application of exogenous neurotrophic factors has been reported to decrease SGN degeneration, non-invasive targeted drug delivery systems are required to achieve effective results. In this study, an SS-cleavable proton-activated lipid-like material [ssPalm; a neutral lipid nanoparticle (LNP)], was loaded with mRNA, and the efficacy of this material as a delivery system was investigated. Our results showed that LNPssPalm carrying brain-derived neurotrophic factor (BDNF) mRNA was suitable for the treatment of inner ear diseases, preventing the degeneration of SGNs. In conclusion, this modern nanotechnology-based bioconjugation system, LNPssPalm, is a potential non-invasive targeted therapy allowing the delivering biomaterials to specific structures within the inner ear for the treatment of SHNL.
Collapse
|
5
|
Miwa T, Ohta K, Ito N, Hattori S, Miyakawa T, Takeo T, Nakagata N, Song WJ, Minoda R. Tsukushi is essential for the development of the inner ear. Mol Brain 2020; 13:29. [PMID: 32127020 PMCID: PMC7053050 DOI: 10.1186/s13041-020-00570-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/20/2020] [Indexed: 11/21/2022] Open
Abstract
Tsukushi (TSK)—a small, secreted, leucine-rich-repeat proteoglycan—interacts with and regulates essential cellular signaling cascades. However, its functions in the mouse inner ear are unknown. In this study, measurement of auditory brainstem responses, fluorescence microscopy, and scanning electron microscopy revealed that TSK deficiency in mice resulted in the formation of abnormal stereocilia in the inner hair cells and hearing loss but not in the loss of these cells. TSK accumulated in nonprosensory regions during early embryonic stages and in both nonprosensory and prosensory regions in late embryonic stages. In adult mice, TSK was localized in the organ of Corti, spiral ganglion cells, and the stria vascularis. Moreover, loss of TSK caused dynamic changes in the expression of key genes that drive the differentiation of the inner hair cells in prosensory regions. Finally, our results revealed that TSK interacted with Sox2 and BMP4 to control stereocilia formation in the inner hair cells. Hence, TSK appears to be an essential component of the molecular pathways that regulate inner ear development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, 2-4-20 Ougimaci, Kita-ku, Osaka, 5308084, Japan. .,Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan. .,Departments of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan. .,Otolaryngology-Head and Neck Surgery, JCHO Kumamoto General Hospital, 10-10 Toricho, Yatsushiro, 8668660, Japan.
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan.,Program for Leading Graduate Schools HIGO Program, Kumamoto University, 2-2-1 Honjo, Kumamoto, 8608556, Japan.,Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, 2-2-1 Honjo, Kumamoto, 8600881, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, 1000004, Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukak, Toyoake, 4701192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukak, Toyoake, 4701192, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto, 8600881, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Kumamoto, 8600881, Japan
| | - Wen-Jie Song
- Program for Leading Graduate Schools HIGO Program, Kumamoto University, 2-2-1 Honjo, Kumamoto, 8608556, Japan.,Department of Sensory and Cognitive Physiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 8608556, Japan
| | - Ryosei Minoda
- Otolaryngology-Head and Neck Surgery, JCHO Kumamoto General Hospital, 10-10 Toricho, Yatsushiro, 8668660, Japan
| |
Collapse
|
6
|
Lorenzen SM, Duggan A, Osipovich AB, Magnuson MA, García-Añoveros J. Insm1 promotes neurogenic proliferation in delaminated otic progenitors. Mech Dev 2015; 138 Pt 3:233-45. [PMID: 26545349 DOI: 10.1016/j.mod.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 01/12/2023]
Abstract
INSM1 is a zinc-finger protein expressed throughout the developing nervous system in late neuronal progenitors and nascent neurons. In the embryonic cortex and olfactory epithelium, Insm1 may promote the transition of progenitors from apical, proliferative, and uncommitted to basal, terminally-dividing and neuron producing. In the otocyst, delaminating and delaminated progenitors express Insm1, whereas apically-dividing progenitors do not. This expression pattern is analogous to that in embryonic olfactory epithelium and cortex (basal/subventricular progenitors). Lineage analysis confirms that auditory and vestibular neurons originate from Insm1-expressing cells. In the absence of Insm1, otic ganglia are smaller, with 40% fewer neurons. Accounting for the decrease in neurons, delaminated progenitors undergo fewer mitoses, but there is no change in apoptosis. We conclude that in the embryonic inner ear, Insm1 promotes proliferation of delaminated neuronal progenitors and hence the production of neurons, a similar function to that in other embryonic neural epithelia. Unexpectedly, we also found that differentiating, but not mature, outer hair cells express Insm1, whereas inner hair cells do not. Insm1 is the earliest known gene expressed in outer versus inner hair cells, demonstrating that nascent outer hair cells initiate a unique differentiation program in the embryo, much earlier than previously believed.
Collapse
Affiliation(s)
- Sarah M Lorenzen
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anne Duggan
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna B Osipovich
- Center for Stem Cell Biology, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Center for Stem Cell Biology, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jaime García-Añoveros
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Departments of Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|